
Uncertainty Estimation in Deep
Learning with application to Spoken

Language Assessment

Andrey Malinin

Supervisor: Professor Mark J. F. Gales

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Doctor of Philosophy

Christ’s College May 2019

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements. This
dissertation contains fewer than 65,000 words including appendices, bibliography, footnotes,
tables and equations and has fewer than 150 figures.

Andrey Malinin
May 2019

Abstract

Since convolutional neural networks (CNNs) achieved top performance on the ImageNet task
in 2012, deep learning has become the preferred approach to addressing computer vision,
natural language processing, speech recognition and bio-informatics tasks. However, despite
impressive performance, neural networks tend to make over-confident predictions. Thus, it
is necessary to investigate robust, interpretable and tractable estimates of uncertainty in a
model’s predictions in order to construct safer Machine Learning systems. This is crucial
to applications where the cost of an error is high, such as in autonomous vehicle control,
high-stakes automatic proficiency assessment and in the medical, financial and legal fields.

In the first part of this thesis uncertainty estimation via ensemble and single-model
approaches is discussed in detail and a new class of models for uncertainty estimation, called
Prior Networks, is proposed. Prior Networks are able to emulate an ensemble of models using
a single deterministic neural network, which allows sources of uncertainty to be determined
within the same probabilistic framework as in ensemble-based approaches, but with the
computational simplicity and ease of training of single-model approaches. Thus, Prior
Networks combine the advantages of ensemble and single-model approaches to estimating
uncertainty. In this thesis Prior Networks are evaluated on a range classification datasets,
where they are shown to outperform baseline approaches, such as Monte-Carlo dropout, on
the task of detecting out-of-distribution inputs.

In the second part of this thesis deep learning and uncertainty estimation approaches
are applied to the area of automatic assessment of non-native spoken language proficiency.
Specifically deep-learning based graders and spoken response relevance assessment systems
are constructed using data from the BULATS and LinguaSkill exams, provided by Cambridge
English Language Assessment. Baseline approaches for uncertainty estimation discussed and
evaluated in the first half of the thesis are then applied to these models and assessed on the task
of rejecting predictions to be graded by human examiners and detecting misclassifications.

Acknowledgements

First and foremost, I would like to thank my supervisor, Professor Mark Gales, for his
guidance, maverick insight, enthusiasm and patience. I am grateful that he has always made
time to address my questions and has provided honest, candid, and wise advice. Secondly, I
would like to thank (in alphabetical order) Kate Knill, Konstantinos Kyriakopoulos, Anton
Ragni and Yu Wang for invaluable comments and discussions during the writing of various
papers and this thesis. Additionally, I would like to thank Bruno Mlodozeniec for his
assistance in writing the code for work in chapter 8 of this thesis as well as help with
visualizations for talks I have given. I would also like to thank Ramón Fernández Astudillo,
Nicholas Carlini, José Miguel Hernández-Lobato, Richard Turner, Dmitry Vetrov and Mark
van der Wilk for thought provoking and insightful discussions which have helped me gain a
wider view of machine learning. Many thanks must also go to my friends, and especially my
parents, for their continued support. Lastly, I would like to thank Cambridge English and
EPSRC for supporting five years of my PhD and providing real data from spoken language
proficiency exams, which was used in the second half of this thesis.

Table of contents

List of figures xiii

List of tables xix

Nomenclature xxiii

1 Introduction 1
1.1 Thesis Structure . 5

2 Deep Learning 7
2.1 Deep Neural Networks . 7

2.1.1 Feed-Forward Neural Networks 9
2.1.2 Recurrent Neural Networks . 10
2.1.3 Attention Mechanisms . 12
2.1.4 Parameterizing Distributions using Neural Networks 14

2.2 Training . 15
2.2.1 Training models for Classification 15
2.2.2 Training models for Regression 18
2.2.3 Regularization . 20

2.3 Optimization . 22
2.3.1 Gradient Descent Optimization . 22
2.3.2 Learning Rate Schedules . 25
2.3.3 Initialization . 25

2.4 Chapter Summary . 26

3 Predictive Uncertainty Estimation 29
3.1 Sources of Uncertainty . 29

3.1.1 Uncertainty for Classification . 30
3.1.2 Uncertainty for Regression . 34

x Table of contents

3.2 Estimating Data Uncertainty . 37
3.2.1 Estimating Data Uncertainty for Classification 37
3.2.2 Estimating Data Uncertainty for Regression 39

3.3 Estimating Knowledge Uncertainty via Single Models 41
3.3.1 Single Model Approaches for Classification 41
3.3.2 Single Model Approaches for Regression 46

3.4 Estimating Knowledge Uncertainty via Ensembles 49
3.4.1 Ensemble Approaches for Classification 49
3.4.2 Ensemble Approaches for Regression 54

3.5 Limits to Modelling Knowledge Uncertainty 57
3.6 Chapter Summary . 59

4 Prior Networks 61
4.1 General Attributes of Prior Networks . 62
4.2 Prior Networks for Classification . 66

4.2.1 Parameterization and Uncertainty Measures 66
4.2.2 Training Criteria . 69
4.2.3 Experiments on Artificial Data . 76

4.3 Prior Networks for Regression . 80
4.3.1 Parameterization and Uncertainty Measures 81
4.3.2 Training Criteria . 83

4.4 Chapter Summary . 86

5 Experimental Evaluation of Prior Networks 89
5.1 Datasets and Experimental Setup . 90

5.1.1 Model architecture and training 92
5.1.2 Out-of-distribution training data 93

5.2 Evaluation Metrics . 95
5.3 Misclassification Detection . 97

5.3.1 Classification Performance . 97
5.3.2 Assessing misclassification detection via AUPR 98
5.3.3 Assessing misclassification detection via rejection curves 101

5.4 Out-of-Distribution sample Detection . 102
5.4.1 MNIST out-of-distribution input detection 104
5.4.2 CIFAR-10 out-of-distribution input detection 106

5.5 Chapter Summary . 109

Table of contents xi

6 Spoken Language Proficiency Assessment 111
6.1 Spoken Language Proficiency . 112
6.2 Automatic Assessment . 114
6.3 Chapter Summary . 118

7 Deep Learning for Automatic Grading 119
7.1 Approaches to Automatic Grading . 120

7.1.1 Gaussian Processes . 121
7.1.2 Density Networks . 124

7.2 Experimental Evaluation . 127
7.2.1 Assessment Criteria . 127
7.2.2 Datasets . 131
7.2.3 Model Details . 133
7.2.4 Evaluation of Predictive Performance 134
7.2.5 Evaluation of Rejection Performance 134
7.2.6 Evaluation of Calibration Performance 136

7.3 Chapter Summary . 136

8 Deep Learning for Prompt-Response Relevance Assessment 139
8.1 Prompt-Response Relevance Assessment 140
8.2 Indirect Prompt-Response Relevance Assessment 142

8.2.1 Vector distances based Approaches 142
8.2.2 Prompt-topic adapted RNN Language Model 145

8.3 Direct Prompt-Response Relevance Assessment 147
8.3.1 Attention-based Discriminative Models 148
8.3.2 Hierarchical Attention-based Topic Model 151

8.4 Experiments: Indirect Relevance Assessment 154
8.4.1 Description of training and evaluation datasets 155
8.4.2 Model Construction . 156
8.4.3 Prompt Classification . 157
8.4.4 Prompt-Response Relevance Assessment 159

8.5 Experiments: Direct Relevance Assessment 161
8.5.1 Description of training and evaluation datasets 162
8.5.2 Training and Evaluation Data Construction 165
8.5.3 Model and Training Hyper-parameters 165
8.5.4 Assessment Criteria . 166
8.5.5 Performance on Matched Data . 166

xii Table of contents

8.5.6 Performance on Mismatched Data 169
8.5.7 Uncertainty for Direct Relevance Assessment 173

8.6 Chapter Summary . 176

9 Conclusions 179
9.1 Review of Contributions . 179
9.2 Future Work . 183

References 185

Appendix A Derivations of Uncertainty Measures 195
A.1 Dirichlet Prior Networks . 195

A.1.1 Differential Entropy . 196
A.1.2 Mutual Information . 196
A.1.3 Expected Pairwise KL-divergence 197

A.2 Normal-inverse-Wishart Prior Networks 197
A.2.1 Differential entropy of NW−1 Predictive Posterior 198
A.2.2 Differential entropy of Normal-inverse-Wishart distribution 199
A.2.3 Mutual Information Derivations 200
A.2.4 Expected Pairwise KL-divergence 201

Appendix B Symmetries in Forward and Reverse KL-divergences 203
B.1 Dirichlet Distribution . 203
B.2 Normal-inverse-Wishart Distribution . 205

Appendix C SVHN Out-of-Domain Detection 207

List of figures

2.1 Feed-Forward Neural Network . 8
2.2 Structure of a fully connected hidden layer 9
2.3 Recurrent Neural Network . 11
2.4 Long Short-Term Memory Network. Dotted lines represent optional peep-

hole connections. 13

3.1 The top row depicts the Low Data Uncertainty (LDU) dataset with distinct
classes (σ = 1), where Eptr(x)

[
H[Ptr(y|x)]

]
= 0.002 and I[y,x] = 1.097.

The bottom row depicts the High Data Uncertainty (HDU) dataset with
overlapping classes (σ = 4), where Eptr(x)

[
H[Ptr(y|x)]

]
= 0.706 and

I[y,x] = 0.393. 32
3.2 Low data uncertainty dataset (σ = 1) with out-of-distribution input (green dot). 34
3.3 Figures A and C depict distributions with homoscedastic and heteroscedastic

additive Gaussian noise, respectively. Figures B and D depict the decomposi-
tion of the dataset into mean and variance. Green and Red points represent
inputs in areas of low/high heteroscedastic noise, respectively. Violet point
represents out-of-distribution input. 36

3.4 Indication of uncertainty via posterior over class labels P(y|x∗; θ̂). 39
3.5 Conditional entropyH[P(y|x∗; θ̂)] of a pair of classification neural networks

with 2 hidden layers of 100 units with ReLU activations trained on LDU and
HDU datasets with maximum likelihood using Adam [62] optimizer. 40

3.6 Illustration of in-domain (red) and out-of-domain (green) training data using
a toy example. Out-of-domain training data should be close to the in-domain
data in order to learn a tight decision boundary around the in-domain region. 43

3.7 Low-dimensional manifold of data in high-dimensional input space. This
figure shows both the in-domain data and out-of-distribution data lying on
the same 2-dimensional manifold in a 3-D input space. 44

xiv List of figures

3.8 Entropy of predictive posteriorH[P(y|x; θ̂)] derived from DNNs trained in
a multi-task fashion on the LDU and HDU datasets using equation 3.22. The
DNNs had 2 layers of 100 ReLU units. 45

3.9 Probability of in-domain input derived from DNNs with an additional output
head trained on the LDU and HDU datasets via equation 3.24. The DNNs
had 2 layers of 100 ReLU units. Note, the color scale is inverted and white
corresponds to high values in this figure. 46

3.10 Illustration of a toy 1-dimensional Gaussian Process. The variance (uncer-
tainty) increases the further the input is away from the region of training
data. 47

3.11 Desired behaviors of an ensemble of classification models. Figures A and
B show a consistent ensemble in a region of low/high data uncertainty,
respectively. Figure C shows a diverse ensemble for an out-of-distribution
input. 51

3.12 Evaluation of measures of uncertainty derived from an ensemble of mod-
els trained on the Low Data Uncertainty artificial dataset with maximum
likelihood starting from different random initializations. Total Uncertainty,
Expected Data Uncertainty and Mutual Information are derived using equa-
tion 3.31 and Expected Pairwise KL-divergence using equation 3.32. All
models have 2 hidden layers of 100 ReLU units. 55

3.13 Desired an ensemble of regression models which parameterize 2D multivari-
ate normal output distributions. Figures A and B show the means and the
variances of the ensemble coincide, while in figure C both the means and the
variances are highly diverse. 56

3.14 Relationships between domain variable S, inputs x and targets y. 58

4.1 The predictions of an ensemble for in-domain and out-of-domain inputs are
visualized on a simplex and compared to the implicit distribution from they
were sampled. 63

4.2 Desired behaviors of a distribution over categorical output distributions. . . 64
4.3 Actual and desired behaviors of Dirichlet distribution in areas of high data

uncertainty when trained with loss specified in equation 4.25. 73
4.4 Comparison of measures of uncertainty derived from Prior Networks trained

with forward and reverse KL-divergence loss on the Low Data Uncertainty
dataset. Measures of uncertainty are derived via equation 4.13. 77

List of figures xv

4.5 Comparison of measures of uncertainty derived from Prior Networks trained
with forward and reverse KL-divergence loss on the High Data Uncertainty
dataset. Measures of uncertainty are derived via equation 4.13 78

4.6 Comparison of Differential Entropy derived from Prior Networks trained
with forward and reverse KL-divergence loss on the Low Data Uncertainty
and High Data Uncertainty datasets. Differential entropy derived using
equation 4.15. 79

5.1 Samples of images from all datasets . 91
5.2 Comparison of MNIST and Factor Analysis generated images. Factor Analy-

sis images were samples using equation 5.2 with λ = 3. 94
5.3 Prediction Rejection Curves . 97
5.4 Misclassification detection Precision-Recall Curves on MNIST, SVHN and

CIFAR-10 test sets. Constructed using confidence as a measure of (inverse)
uncertainty. The predictions of models from 10 different initializations were
concatenated together as a way of combining predictions. The exception to
this is the explicit ensemble (ENS), where only a single set of predictions is
available. 100

5.5 Histograms of confidence scores of explicit ensemble (ENS) and Prior Net-
work (PN-RKL) on CIFAR-10 test set. The predictions of models from 10
PN-RKL models trained form different initializations were concatenated
together as a way of combining predictions. Only a single set of predictions
is available from ENS. 101

5.6 Mean rejection curves across 10 random initializations on MNIST, SVHN
and CIFAR-10. Constructed using confidence as a measures of (inverse)
uncertainty. Note, only a single set of predictions is obtained from explicit
ensemble ENS. 103

5.7 Highest mutual information in-domain (MNIST test set) images and lowest
mutual information out-of-domain Semeion and Omniglot images. 105

5.8 Histogram of mutual information for in-domain (CIFAR-10 test set) and out-
of-domain (TinyImageNet test set) images derived from explicit ensemble
(ENS) and Prior Network (PN-RKL). Predictions of 10 PN-RKL models
trained from different random initializations are concatenated together. . . . 108

5.9 Highest mutual information in-domain (CIFAR-10 test set) images and lowest
mutual information out-of-domain TinyImageNet images. 109

6.1 CUED Automatic Spoken Language Assessment Pipeline 115

xvi List of figures

7.1 CUED Automatic Spoken Language Assessment Pipeline. This chapter will
focus on the grader component. 120

7.2 A Gaussian process trained on a few data points. The mean and variance
contours are indicated. When the test point is further away from the training
data, the predicted mean and variance revert to the prior. 123

7.3 Density Network which parameterizes univariate normal distribution. . . . 124
7.4 Example prediction rejection curves for regression. 129
7.5 Calibration Curves . 131
7.6 CEFR grade distribution of datasets. Here grades C1 and C2 are combined

into one, because there are so few C2 speakers. 132
7.7 L1 language distribution of datasets. Note, there are no Spanish L1 candi-

dates in the evaluation set. 133
7.8 Mean calibration curves of models across 10 different random initializations

(except ENS, ENS-MT and GP) with ±2σ error bounds. 137

8.1 CUED Automatic Spoken Language Proficiency Pipeline with a Relevance
Assessment Assessment module . 139

8.2 Attention-based Direct Relevance Assessment Model 149
8.3 Hierarchical Attention-based Direct Relevance Assessment Model 152
8.4 Section confusion matrix of RNN1 system on DEV ASR. 158
8.5 False Acceptance vs. False rejection curve on EVL dataset using ASR

transcriptions. 160
8.6 Candidate L1 language distribution of datasets. 163
8.7 CEFR Grade level distribution of datasets 164
8.8 Histograms of relevance probability for HATM on BLT-EVL and LSK. Rel-

evance of positive (relevant) and negative (non-relevant) prompt-response
pairs is depicted in different. The histograms represent concatenated predic-
tions across all 10 HATM models (with different random seeds). 170

8.9 t-SNE projection of prompt embeddings. 171
8.10 Heatmap visualization of HATM mean attention mechanism across 10 ran-

dom initialization. X-axis sorted by section (C-E) and by count. Attending
prompts are located on the y-axis, wile the prompt being attended over are
on the x-axis. 172

8.11 Prediction rejection curves on BLT-EVL and LSK. For individual models
(a and c) the mean rejection curve ±2σ error bounds across 10 models are
depicted. 176

List of figures xvii

C.1 Histogram of mutual information for in-domain (SVHN test set) and out-
of-domain (TinyImageNet test set) images derived from explicit ensemble
(ENSM) and Prior Network (PN-RKL). Predictions of 10 PN-RKL models
trained from different random initializations are concatenated together. . . . 208

List of tables

5.1 Description of in-domain and out-of-domain datasets in terms of number of
images and classes. 90

5.2 Detailed description of Omniglot dataset in terms of number of alphabets,
images and classes. BGS1 and BGS2 are non-overlapping subsets of BG.
BG and EVAL are also non-overlapping datasets. 92

5.3 Training Configurations. η0 is the initial learning rate, γ is the out-of-
distribution loss weight and β is the concentration of the target class. The
batch size for all models was 128. Dropout rate is quoted in terms of proba-
bility of not dropping out a unit. 93

5.4 Mean classification performance (% Error) ±2σ across 10 random initial-
izations. Note, performance of explicit ensemble (ENS) is not a mean, as
it represents the performance of ensembling the predictions of each DNN
model. PN-KL and PN-RKL trained on MNIST use the MNIST-FA out-of-
distribution training data. 98

5.5 Misclassification detection results on MNIST, SVHN and CIFAR-10 test
datasets in terms of mean % AUPR ± 2σ across 10 random initializations.
Note, % AUPR of explicit ensemble (ENS) is not a mean, as it represents
the performance of ensembling the predictions of each DNN model. MNIST
Prior Network used MNIST-FA data as out-of-distribution training data. . . 99

5.6 Mean rejection ratios ±2σ across 10 random initializations on MNIST,
SVHN and CIFAR-10 test sets. Constructed using confidence as a measures
of (inverse) uncertainty. Performance is evaluated on the test sets of MNIST,
SVHN and CIFAR-10. 102

xx List of tables

5.7 MNIST out-of-domain detection results. Results against Semeion are quoted
in terms of mean % AUPR ±2σ across 10 random initializations, as there
are few Semeion images. Results against Omniglot eval dataset are quoted
in terms of mean % AUROC ±2σ, as there are roughly equal amounts of
MNIST (test+valid) and Omniglot images. 104

5.8 Investigation of effect of out-of-distribution training data on out-of-domain
detection performance of Prior Networks. Results against SEMEION are
quoted in terms of mean % AUPR ±2σ across 10 random initializations,
as there are few SEMEION images. Results against Omniglot eval dataset
are quoted in terms of mean % AUROC ±2σ, as there are roughly equal
amounts of MNIST (test+valid) and Omniglot images. 106

5.9 CIFAR-10 out-of-domain detection results in terms of mean % AUROC±2σ
across 10 random initializations (except ENS). CIFAR-10 test set is used as
in-domain data and the test sets of SVHN (10,000 image subset), LSUN and
TIM as out-of-domain data. 107

6.1 CEFR Foreign Language Proficiency Levels 112
6.2 Equivalence between BULATS/LinguaSkill scores and CEFR levels. 114
6.3 CUED Grader Features . 116

7.1 Description of datasets in terms of number of training samples and ASR
word error rate (% WER) relative to crowdsource transcriptions. 132

7.2 Grading performance on BLT-EVAL. Results for DDN, DDN-MT and MCDP
are means ±2σ across 10 model trained from different random initializations. 135

7.3 Prediction rejection performance using Rejection Ratio RR on BLT-EVAL
dataset. Results for DDN, DDN-MT and MCDP models are mean rejection
ratios ±2σ across random initializations. 135

8.1 Data Characteristics . 155
8.2 Prompt, response and word statistics of the prompt-response BULATS

datasets based on 1-best recognition hypotheses. 156
8.3 % False rejection rate in prompt classification on the DEV dataset. KNN

classifier uses 6 nearest neighbour and distance weighting. 158
8.4 Equal error rate (EER) operating points where FA = FR on EVL dataset

using ASR transcriptions. 161
8.5 Prompt, response and word statistics of the prompt-response BULATS and

LinguaSkill datasets based on 1-best recognition hypotheses using SYS-2
ASR systems. 163

List of tables xxi

8.6 ASR %WER on evaluation data sets . 164
8.7 ASR %WER per CEFR grade level on BLT-EVL 165
8.8 Mean % AUROC scores ±2σ on BLT-EVLS1-3 and BLT-EVL across 10

ATM models. Performance is assessed on both SYS1 and SYS2 transcrip-
tions in a matched configuration (training data is also decoded using SYS1
and SYS2). Additionally, sensitivity to prompt shuffling is also assessed. . . 167

8.9 Per-grade level mean % AUROC scores±2σ across 10 ATM models on BLT-
EVL using SYS2 transcriptions. In this table the sensitivity of performance
to the CEFR grade level of the candidates is assessed. 168

8.10 Per-section mean % AUROC scores ±2σ across 10 ATM models on BLT-
EVL using SYS2 transcriptions. Here the performance across sections C-E
of the BULATS exam and how that is affected by prompt shuffling is assessed.168

8.11 Mean % AUROC scores ±2σ across 10 ATM and HATM models on SYS2
transcriptions. Here Seen-Seen corresponds to BLT-EVL while Unseen-
Unseen corresponds to LSK. Seen prompts-unseen is constructed from BLT-
EVL, where negative responses are taken from LSK while unseen-seen is
LSK with negative responses from BLT-EVL. 169

8.12 Comparison of Individual model and Ensemble performance of HATM on
BLT-EVL and LSK datasets in terms of % AUROC. 174

8.13 Misclassification detection experiment in terms of % AUPR (±2σ on indi-
vidual models). 175

8.14 Prediction rejection ratios RR on BLT-EVL and LSK. For individual models
this is a mean ±2σ across 10 models. 175

C.1 SVHN out-of-domain detection results in terms of mean % AUROC ±2σ
across 10 models. Only a single set of results is obtained using explicit
ensemble ENSM. 207

Nomenclature

Acronyms / Abbreviations

ATM Attention-based Model

BiLSTM Bidirectional LSTM

BNN Bayesian Neural Network

CE Cross-Entropy

DNN Deep Neural Network

DPN Dirichlet Prior Network

EPKL Expected Pairwise KL-Divergence

HATM Hierarchical Attention-based Model

KL Kullback-Leibler Divergence

LM Language Model

LSTM Long Short-Term Memory Recurrent Neural Network

MI Mutual Information

NLL Negative Log-Likelihood

NPN Normal-inverse-Wishart Prior Network

OOD Out-of-distribution / Out-of-domain

PN Prior Network

RCE Reverse Cross-Entropy

xxiv Nomenclature

RKL Reverse Kullback-Leibler Divergence

RNN Recurrent Neural Network

RNNLM Recurrent Neural Network Language Model

SNN Siamese Neural Network

Greek Symbols

α Concentration Parameters of Dirichlet

β target Concentration Parameters of Dirichlet

µ Mean

π Parameters of categorical distribution

Σ Covariance

θ Model Parameters

η Learning Rate

γ OOD loss weight

κ Belief strength in NW−1 Prior Mean

ν Belief strength in NW−1 Prior Scatter Matrix

ω Discrete Class

Measures of Uncertainty

H[·] Entropy or Differential Entropy

I[·] Mutual Information (note square brace)

K[·] Expected Pairwise KL-divergence

Other Symbols

R Real Numbers

Probability Distributions

E Expectation

Nomenclature xxv

V Variance

B Bernoulli Distribution

NW−1 Normal inverse-Wishart Distribution

N Normal Distribution

W−1 inverse-Wishart Distribution

Cat Categorical Distribution

Dir Dirichlet Distribution

p(y) Distribution over continuous random variable

P(y) Distribution over discrete random variable

Roman Symbols

h Vector representation or neural network hidden state

m Prior Mean of Normal-inverse-Wishart distribution

S Prior Scatter Matrix of Normal-inverse-Wishart distribution

W Set of word sequences

w Word-sequence

x Input

x∗ Input from test dataset

y Continuous target

D Dataset

I(·) Indicator function (note normal brackets)

L Loss

M Model (generalization of model parameters)

y Discrete target

Chapter 1

Introduction

Artificial Neural Networks are models which are loosely inspired by the human visual
system. The first Neural Network (NN) model, the Perceptron was constructed in 1955
[106]. Since then numerous developments have occurred, most importantly, the discovery
of the Back Propagation algorithm [107] in the 1980s, which allows neural networks to be
efficiently trained using gradient-descent based methods. The current wave of progress in
machine learning began in 2012 when convolutional neural networks (CNNs) achieved top
performance on the ImageNet task [66]. Since then deep learning, the subset of machine
learning which deals with neural networks, has become the preferred approach to addressing
computer vision (CV) [37, 113, 125], natural language processing (NLP) [90, 89, 87], speech
recognition (ASR) [53, 47] and bio-informatics (BI) [17, 5] tasks.

Despite impressive, and ever-improving performance, neural networks tend to make
over-confident predictions [68, 95]. Until recently, there has been little work done on
deriving, understanding, using and evaluating estimates of uncertainty1 in the predictions of
neural networks, beyond simple measures like confidence scores [32]. However, estimating
uncertainty in a model’s predictions is important in many practical applications, as it enables,
for example, the safety of an Artificial Intelligence (AI) / Machine Learning (ML) system [6]
to be increased by acting on the model’s prediction in an informed manner. This is crucial
to applications where the cost of an error is high, such as in autonomous vehicle control,
high-stakes automatic proficiency assessment and in the medical, financial and legal fields.

To illustrate the need for good uncertainty estimates, let’s consider two hypothetical
scenarios involving an autonomous self-driving car. Firstly, consider the situation where
the car’s AI has been trained on data collected in California, where the weather and road

1There are a range of definitions of ‘uncertainty’ in the literature. In this thesis uncertainty will refer to
‘uncertainty in a discriminative model’s predictions’. In other words uncertainty is the inverse of confidence in
a discriminative prediction.

2 Introduction

conditions are good. However, the car is driven to Cambridge, where the cars drive on the
left, the roads are narrow, the weather is poor and traffic signs are different. The conditions
of deployment differ significantly from the data on which it was trained, which may lead the
car’s AI to make poor driving decisions. In this situation, a safe course of action would be
to realize that the conditions differ from the training data and hand over control to a human
driver. The car’s on-board AI should have an understanding of the limits of its knowledge and
when it is uncertain in the actions it takes. Now let’s consider an alternative situation where
the car’s cameras and other sensors get obscured by heavy rain and street signs are covered
with mud, for example. However, unlike before, these conditions have been encountered in
training data and the on-board AI may understand that it is impossible to make safe driving
decisions in these conditions. Here, the car should either hand over control to the human
passenger or initiate a sensor cleaning procedure, which is akin to a human driver turning on
the windshield wipers or switching on fog-lights.

The first hypothetical scenario is an example of "uncertainty in predictions due to lack
of knowledge about or understand of the current input data", which shall be referred to as
knowledge uncertainty. Knowledge uncertainty is a form of unknown-unknown - the AI
lacks the knowledge and understanding to make sense of the data, as it is like nothing it
has encountered in the training data. The second scenario is an example of "uncertainty
in predictions due to uncertainty or noise in the data", which will be referred to as data
uncertainty. Data uncertainty can be considered a known-unknown - the AI has encountered
situations like this in the training data and understands that taking appropriate actions for
these inputs is impossible. Knowledge uncertainty and data uncertainty are the two sources
of uncertainty in predictions. This distinction is important, as in certain applications of
machine learning it may be necessary to know not only whether the model is uncertain, but
also why.

A real-life example illustrating the need for uncertainty estimates is when an Irish
veterinarian living in Australia, who spoke perfect native English, failed an automatically
assessed spoken English proficiency exam [1] which was used to assess candidates applying
for permanent residence. In this situation, it is likely that the automatic assessment system
was trained on Australian speakers of English and the significant accent mismatch caused
the system to incorrectly fail the Irish veterinarian. Had this system been able to provide
estimates of uncertainty, it could have understood that there was a mismatch between training
and deployment data, an example of knowledge uncertainty, and deferred to a human
assessment. Cases like this illustrate how AI systems making potentially life-changing
high-stakes decisions must yield robust estimates of uncertainty in their predictions in order
to avoid mistakes.

3

Fortunately, notable progress has been recently made on predictive uncertainty estimation
for neural networks through the definition of baselines, tasks and metrics [49, 68] and
the development of a range of practical methods for estimating uncertainty. As will be
shown in chapter 3, data uncertainty can be captured by probabilistic classification and
regression models as a consequence of maximum likelihood estimation. Modelling knowledge
uncertainty is more difficult, however.

One class of approaches are Bayesian Neural Networks [79, 78, 55, 94, 35, 28]. Here,
a prior distribution over model parameters p(θ) is used to obtain a posterior distribution
over model parameters conditioned on the training data p(θ|D). The posterior captures the
uncertainty in model parameters, which can be used to derive estimates of the uncertainty in
the predictions due to uncertainty in model parameters which will be referred to as model
uncertainty. Given an appropriate choice of prior and model class, model uncertainty will
capture knowledge uncertainty. Furthermore, Bayesian approaches also allow the sources of
uncertainty to be determined [35, 28]. However, Bayesian Neural Networks (BNNs) have
traditionally been computationally more demanding and conceptually more complicated than
non-Bayesian NNs. Since exact Bayesian inference is intractable for neural network models,
the performance of Bayesian Neural Networks depends on the form of approximations made
due to computational constraints and the nature of the prior distribution over parameters.
Typically inference is done by considering Monte-Carlo sampling from an approximate
posterior q(θ). As a consequence, these methods can be interpreted as a form of ensemble
approach. A recent development has been the technique of Monte-Carlo Dropout [36, 35],
which approximates Monte-Carlo sampling from the posterior by doing multiple stochastic
forward passes through a neural network. Uncertainty estimates are derived by computing the
mean and spread of an ensemble of models sampled using this approach. While work by [98]
suggests that Monte-Carlo Dropout does not sample from an appropriate Bayesian posterior,
Monte-Carlo Dropout has nevertheless been successfully applied to tasks in computer vision
[61, 60]. A number non-Bayesian ensemble approaches have also been proposed, which also
allow measures of uncertainty to be derived from the spread of an ensemble. An example of
this class of ensemble approaches is Deep Ensembles [68], which involves explicitly training
an ensemble of neural networks and has been shown to provide estimates of uncertainty
competitive with Monte Carlo Dropout. Instead of using ensembles of models to capture
knowledge uncertainty, it is possible to consider an alternative class of approaches which
involves only a point-estimate of model parameters θ, which will be referred to as single
model approaches. While there is a wide range of different single model approaches to
capturing knowledge uncertainty [74, 80, 73, 91, 49] which yield good results, many do
not have a good theoretical justification. Thus, in this thesis only a specific type of single

4 Introduction

model approach is considered, where a neural network is explicitly trained in a multi-task
fashion to yield low or high estimates of uncertainty for inputs which are near to, or far
from, the training data, respectively [80, 73]. The performance of these approaches depends
on choice of out-of-domain training data, which can either be sampled from a synthetic
noise distribution or taken from a different dataset during training. These approaches are
both simpler and more computationally efficient both at training and test time than Bayesian
ensemble approaches. However, unlike ensemble methods, they do not allow the source of
uncertainty to be determined within a non-heuristic, theoretically consistent probabilistic
framework. This makes it difficult to use them for tasks where it is important to determine
the source of uncertainty, such as active learning [112], for example.

Summary of Contributions. The contributions of this thesis are broadly split into two
parts. In the first part ensemble and single model approaches are discussed in detail and
a new class of models for uncertainty estimation called Prior Networks (PNs) is proposed.
Prior Networks aim to combine the advantages of ensemble and single-model approaches
to estimating uncertainty in predictions. Specifically, Prior Networks are a single model
approach to estimating uncertainty which allows sources of uncertainty to be determined
within the same probabilistic framework as in ensemble-based approaches, but with the
computational simplicity and ease of training of single-model approaches. Prior Networks
are evaluated on a range image classification datasets where they are used for the tasks of
misclassification detection and out-of-distribution sample detection.

As previously stated, it is important for automatic proficienct assessment systems to yield
robust estimates of uncertainty. Thus, the second part of this thesis involves applying deep
learning approaches and uncertainty estimation to the area of automatic spoken language
assessment. Firstly, deep-learning based systems for automatic assessment of non-native
spoken language proficiency are developed. These systems are then evaluated on examination
candidates’ spoken responses to question-prompts on the BULATS [15] exam provided by
Cambridge English Language Assessment. Approaches for uncertainty estimation discussed
and evaluated in the first half of the thesis are then applied to these models and assessed on
the task of rejecting predictions to be graded by human examiners. Secondly, deep-learning
based systems for automatic assessment of relevance of spoken responses to open-ended
exam prompts are developed and applied to the BULATS [15] and LinguaSkill [2] exams.
Ensemble approaches to uncertainty estimation were applied to these models and used to
detect on which prompts and responses the system made the biggest errors.

1.1 Thesis Structure 5

1.1 Thesis Structure

The structure of this thesis is as follows: chapter 2 introduces the underlying theory on
deep learning, maximum likelihood estimation and gradient descent optimization necessary
to support this thesis. Chapters 3-5 are the theoretical and experimental contributions to
uncertainty estimation for deep learning. Chapter 6 is a transition chapter which introduces
the area of spoken language proficiency assessment and discusses the associated challenges.
Chapters 7 and 8 investigate the application of deep learning and uncertainty estimation
to automatic grading of spoken language proficiency and the assessment of the relevance
of spoken responses to open-ended exam prompts. Chapter 9 concludes the thesis with an
overview of each chapter and a summary of proposed future work. In more detail:

Chapter 2 discusses theory which is necessary to support discussions throughout the rest
of the thesis. This chapter discusses deep learning and standard neural network architectures,
such as feed-forward, convolutional, recurrent and attention layers, maximum likelihood
estimation and gradient-descent based optimization.

Chapter 3 introduces the area of predictive uncertainty estimation. The sources of
uncertainty - data uncertainty and knowledge uncertainty are discussed in the context of
classification and regression tasks. It is shown how probabilistic classification and regression
models capture data uncertainty as a consequence of maximum likelihood estimation. Finally,
single-model and ensemble approaches to capturing knowledge uncertainty are discussed
and contrasted.

Chapter 4 describes the main theoretical contribution of this thesis - a new class of mod-
els for uncertainty estimation, called Prior Networks, which combine advantages of single
model and ensemble approaches to estimating uncertainty. Specifically, Prior Networks are a
single model approach that operates within the same probabilistically coherent framework as
ensemble approaches. This allows the sources of uncertainty to be determined using the same
measures and decompositions as ensemble approaches, but at the computational expense of
single-model approaches.

Chapter 5 is an experimental chapter in which Prior Networks are evaluated on a set of
image recognition tasks. Specifically, the uncertainty estimates produced by Prior Networks
trained on the MNIST [70], SVHN [41] and CIFAR-10 [41] datasets are evaluated on two
applications of uncertainty: detection of misclassifications and detection of out-of-distribution
inputs. Approaches discussed in Chapter 3 are used as baselines to compare Prior Networks
against.

Chapter 6 transitions from the first part of this thesis to the second. It discusses the
area of assessment of spoken language proficiency and introduces the tasks of automatic
grading and prompt-response relevance assessment, which are investigated in chapters 7

6 Introduction

and 8. Furthermore, it details the BULATS and LinguaSkill spoken language proficiency
exams. Automatic graders and prompt-response relevance assessment models will be trained
on spoken responses of candidate taking these exams in chapters 7 and 8.

Chapter 7 applies deep learning to the task of automatic grading of spoken language
proficiency. Models are trained and evaluated on data from the BULATS exam introduced
in chapter 6. Performance of models based on Density Networks, discussed in chapter 3,
is compared to the performance of Gaussian Process graders. Additionally, estimates of
uncertainty in predictions, derived using approaches introduced in chapter 3, are evaluated
on the task of rejecting automatic predictions to be re-assessed by human graders.

Chapter 8 applies deep learning to the task of assessing the relevance of spoken responses
to question-prompts on the BULATS and LinguaSkill exams. There has been little past work
in this area, so there are no ‘standard’ baseline models, unlike in chapters 5 and 7. Two classes
of approaches to prompt-response relevance assessment are considered - indirect approaches,
which treat relevance assessment as a prompt-classification task, and direct approaches,
where models directly yield a relevance score for a prompt-response pair. Estimates of
uncertainty in predictions, derived using approaches introduced in chapter 3, are applied to
direct relevance assessment models and are then evaluated on two tasks. Firstly, estimates
of uncertainty are evaluated on the misclassification detection task described in Chapter 5.
Secondly, uncertainty estimates are used to reject automatic predictions of prompt-response
relevance to be re-assessed by human assessors.

Chapter 9 concludes the thesis with an overview of the contributions of each chapter
and a summary of proposed future work.

Chapter 2

Deep Learning

This chapter introduces theory needed to support discussions in the rest of the thesis. The
chapter is structured into sections discussing neural networks and deep learning, maximum
likelihood estimation, and optimization via stochastic gradient-descent. Specifically, sec-
tion 2.1 introduces neural networks and deep learning, and discusses standard neural network
architectures, such as fully-connected, convolutional, recurrent and attention layers. Sec-
tion 2.2 discusses training of probabilistic models parameterized by neural networks via
maximum likelihood estimation. This discussion also motivates the need for regularization.
Section 2.3 discusses stochastic gradient descent and details several optimizers, such as
Adam [62]. Additionally, this section also discusses the issue of initialization of neural
networks.

2.1 Deep Neural Networks

Neural Networks are non-linear functions with a multi-layer structure which have been
applied to construct models for addressing computer vision (CV) [37, 113, 125], natural lan-
guage processing (NLP) [90, 89, 87], speech recognition (ASR) [53, 47] and bio-informatics
(BI) [17, 5] tasks. Neural networks are nonlinear functions parameterized by parameters θ:

ŷ = f(x;θ) (2.1)

8 Deep Learning

Figure 2.1 Feed-Forward Neural Network

In general, neural networks are structured as a sequence of several nonlinear transformations
or layers:

h(0) = f(x;θ(0))

h(l) = f(h(l−1);θ(l))

ŷ = f(h(L−1);θ(L))

(2.2)

Each of these transformations is called a hidden layer and the output of each hidden layer
h(l) is called the hidden state. A neural network with no hidden layers can only learn
linear relationships and model linear decision boundaries. If one hidden layer is used then
the network is called a Multi-Layer Perceptron. Multi-Layer Perceptrons are universal
function approximators [11, 92, 40] - given a hidden layer which is sufficiently large it can
model arbitrary functions of the input. Models which have more than one hidden layer are
known as Deep Neural Networks (DNNs) and are considered to be more efficient function
approximators than an MLP. This is known as the deep learning hypothesis [9]. A visual
representation of a deep neural network is given in figure 2.1. Neural networks can be seen
as powerful, learnable, non-linear feature extractors which project the input x into a space
where they can be successfully modelled using linear regression or classification models
[11, 40].

While there exists a great variety of different hidden layers and ways in which they can
be connected, this section will cover only the most standard ones. The rest of this section
discusses common feed-forward and recurrent neural networks. Section 2.1.1 discusses
fully connected layers (FNNs), which are the simplest type of layer, and convolutional
layers (CNNs), which are the basic building blocks of neural networks for image processing.
Furthermore, common activation and output functions are also discussed in this section.
Section 2.1.2 discusses both basic recurrent neural network layers (RNNs) as well as sophis-
ticated Long Short-Term Memory (LSTM) recurrent neural networks, which are currently
one of the default architectures for sequence modelling neural networks. Section 2.1.3
discusses neural attention mechanisms, which are also an important component of many

2.1 Deep Neural Networks 9

φ()wi

zi

Figure 2.2 Structure of a fully connected hidden layer

sequence-modelling networks. Finally, section 2.1.4 discusses how neural networks can be
used to parameterize distributions over discrete and continuous random variables.

2.1.1 Feed-Forward Neural Networks

Feed-forward neural networks are non-linear functions which model mappings from an
arbitrary input x to an arbitrary output y:

x 7→ y (2.3)

Even though the input x may have internal structure, in this thesis these mappings will be
considered unstructured because the mapping itself is simply between arbitrary vectors x
and y.

The simplest type of feed-forward layer is the fully connected layer, depicted in figure 2.4,
which consists of an affine transformation of the input followed by an element-wise non-linear
activation function ϕ(·):

z(l) = W (l)h(l−1) + b(l)

h(l) = ϕ(z(l))

θ(l) = {W (l), b(l)}

(2.4)

where W (l) is a H(l−1) × H(l) weight matrix and b(l) is a H(l) dimensional bias vector.
Typical choices of activation function are the logistic or sigmoid function, the hyperbolic

10 Deep Learning

tangent (tanh) function, the Recitified Linear and the Leaky Rectified Linear functions:

ϕsigmoid(x) =
1

1 + e−x

ϕtanh(x) =
ex − e−x

ex + e−x

ϕReLU(x) = max(0, x)

ϕLReLU(x) = max(α · x, x), 0.0 < α < 1.0

In this thesis, all neural networks use Leaky ReLU activation functions in their hidden layers.
Feed-forward networks designed especially for image processing are called Convolution

Neural Networks [71]. CNNs use convolutional layers to build in invariances to translation
and incorporate parameter sharing. Effectively, CNNs contain a strong structural prior on
how image data should be processed. A CNN represents the activations of the l-th hidden
layer as a 3D tensor H(l) ∈ RH(l−1)×W (l−1)×F (l−1) with height H(l−1), width W (l−1) and
F (l−1) channels. Each 2D H(l−1) ×W (l−1) slice of this tensor is a feature map or channel.
The weights per layer are no longer simple matrices (though they could be represented as
such), but rather a set of K(l) kernels K ∈ Rh×w×K(l) . The output of each layer is the
convolution of each kernel with each filter map, followed by an element-wise non-linear
activation function:

H
(l)
j = ϕ(

∑
f∈F (l−1)

H
(l−1)
f ∗K(l)

j + b
(l)
j) ∀j ∈ F (l)

(2.5)

Currently, there is a wide range of ‘standard’ convolutional neural network architectures for
the task of image classification, such as the VGG architecture [113], Residual Network [48]
and DenseNets [59]. However, in this thesis only VGG-style CNNs are considered.

2.1.2 Recurrent Neural Networks

Feed-forward neural networks capture unstructured vector-to-vector mappings x 7→ y.
However, it is possible to use neural networks to model arbitrary sequence-to-vector, vector-
to-sequence and sequence-to-sequence mappings:

{x(1), · · · ,x(T)} 7→ y

x 7→ {y(1), · · · ,y(τ)}
{x(1), · · · ,x(T)} 7→ {y(1), · · · ,y(τ)}

(2.6)

In this thesis these mappings will be referred to as structured.

2.1 Deep Neural Networks 11

delay
Time

h

y

(t)

h
(t−1)

x (t)

(t)

Figure 2.3 Recurrent Neural Network

Mappings to and from sequences can be modelled using a Recurrent Neural Network
(RNN), which is depicted in figure 2.3. RNNs have a recurrent ‘hidden’ state h(t) which
encapsulates all past inputs in a single vector. This hidden state is a function of the current
input and the hidden state at the past time step h(t−1). The output of the RNN at every time
step is a non-linear function of the hidden state h(t):

h(t) = ϕtanh(W
(r)h(t−1) +W (i)x(t) + b(r))

y(t) = ϕ(W (o)h(t) + b(o))
(2.7)

where W (i) is the input weight matrix, W (r) is the recurrent hidden state transition matrix
and W (o) is the output weight matrix, and b(r) and b(o) are bias vectors. RNNs can represent
sequence-to-vector relationships by processing a sequence of inputs {x(1), · · · ,x(T)} and
only outputting the final y(T). This can easily be expanded to model sequence-to-sequence
relationships by reading out each y(t). RNNs are extremely flexible and many other forms
of sequence-to-vector, sequence-to-sequence and vector-to-sequence relationships can be
constructed.

A limitation of RNNs as presented in equation 2.7 is that the content of the hidden state
is completely overwritten on every timestep. In practice it is hard to control what the RNN
remembers and what it does not - which information is retained for a long time and which
is forgotten after only a few time steps. To overcome this limitation, a very popular gated
architecture called the Long Short-Term Memory (LSTM) RNN was introduced [57, 136, 42].
The idea behind an LSTM is to maintain a cell state c(t) which serves as a perfect memory
cell. Three ‘gates’ - the input, forget and output gates are added which control information
flow to and from the memory cell. The gates are functions of the current input x(t) and the

12 Deep Learning

past output hidden state h(t−1):

i = ϕsigmoid(U
(i)h(t−1) +W (i)x(t) + b(i))

f = ϕsigmoid(U
(f)h(t−1) +W (f)x(t) + b(f))

o = ϕsigmoid(U
(o)h(t−1) +W (o)x(t) + b(o))

h̃ = ϕtanh(U
(h̃)h(t−1) +W (h̃)x(t) + b(h̃))

(2.8)

A new update state h̃ is computed in the same way as in a standard RNN. Given the gates i,
f , o, the current cell state will be the sum of the element-wise product of the forget gate of
the previous cell-state and the input gate and the current update hidden state:

c(t) = c(t−1) ⊙ f + h̃⊙ i (2.9)

Given the new cell state, the current output hidden state is computed via an element-wise
product of the output gate and a non-linear function of the cell state:

h(t) = ϕtanh(c
(t))⊙ o (2.10)

A graphical representation of an LSTM is shown in figure 2.4. The main advantage of
an LSTM over a standard RNN is that LSTMs are capable of carrying information over
far longer time-spans, which allows them to capture longer-term dependencies in the data
than simple RNNs. Currently LSTMs are the default model of RNNs for a wide range of
applications, including language modelling [118], machine translation [21, 8] and generative
models [97, 121]. However, newer models called transformers [123], which are not described
in this thesis, have recently been gaining popularity.

2.1.3 Attention Mechanisms

An important component for modern NLP applications, such as Machine Translation [8],
summarization [93, 139, 109] and question answering [50, 76] are Attention Mechanisms. An
attention mechanism is an architectural component which allows the efficient compression of
a variable-length sequence of vectors h(1:T) into a fixed-length vector h. Typically sequence-
to-vector embeddings are computed either by processing via an RNN and using the final
hidden-state or by averaging the sequence:

h =
1

T

T∑
t=1

h(t) (2.11)

2.1 Deep Neural Networks 13

σ σ

σ

time delay

h

x

h

i

x

x

h

h

x

o

f

(t)

(t−1)

(t)

(t−1)(t)(t−1)(t)

(t)
c

(t)
h
(t−1)

~

h c
~

Figure 2.4 Long Short-Term Memory Network. Dotted lines represent optional peep-hole
connections.

The limitation of using the final hidden state of an RNN is that typically it will preserve on
only the most recent information in the sequence. The limitation of averaging is that all
information is equally weighted. Attention mechanisms provide an approach to select only
the most relevant element of the sequence h(1:T) to a particular task, and discard or de-weight
the rest. Attention mechanism are trained as part of a larger network end-to-end, where the
structure of the network is such that it itself learns what is and isn’t relevant to the task which
the whole network is solving.

In an attention mechanism the fixed-length embedding h of the sequence h(1:T) is
computed as a weighted sum of the sequence h(1:T) given a set of attention weights π =

[π1, · · · , πT]1 (eq. 2.12) produced by an attention mechanism.

h =
T∑
t=1

πth
(t), πt ≥ 0,

T∑
t=1

πt = 1 (2.12)

The aim of the attention mechanism is to focus only on the properties of the sequence which
are in some sense ‘relevant’ to the key vector k. The attention weights for each hidden state
are computed as a softmax (eq. 2.13), where the logits are given by a similarity function
s(k,h(τ)) between the key vector and the hidden state.

πt =
es(k,h

(t))∑T
τ=1 e

s(k,h(τ))
(2.13)

1We use the same notation for attention as for discrete probabilities because they are both non-negative and
sum to one.

14 Deep Learning

The similarity function (eq. 8.24) computes how strongly a hidden state relates to the key
vector:

s(k,h(t)) = vT tanh(Λ1k +Λ2h
(t) + b) (2.14)

where the parameters of the attention mechanism are {v,Λ1,Λ2, b}. This similarity function
was used in [8] for neural machine translation. Alternative attention mechanisms, with
different similarity functions [77] and attention sharpening [43] could potentially be used,
but are not explored in this thesis.

2.1.4 Parameterizing Distributions using Neural Networks

In many machine learning tasks neural networks are used to parameterize probability distri-
butions over either categorical random variables y or continuous random variables y. Neural
networks are able to do this by yielding the parameters of these distributions. For example, a
neural network can parameterize a distribution over discrete classes P(y|x;θ) by yielding
the parameters of a categorical distribution:

P(y|x;θ) = Cat(y|π̂)

π̂ = f(x;θ), πc ≥ 0,
K∑
c=1

πc = 1
(2.15)

Here π is a vector of class probabilities:

π =

 P(y = ω1)
...

P(y = ωK)

 (2.16)

A neural network can yield a vector of positive values which sums to one via the softmax
output function:

ϕsoftmax(x)c =
exc∑K
j=1 e

xj

= P(y = ωc|x) = π̂c (2.17)

Similarly, a neural network can parameterize a multivariate normal distribution over
continuous targets y ∈ RK by predicting the mean µ̂ and covariance matrix Σ̂:

p(y|x;θ) = N (y|µ̂, Σ̂){
µ̂, Σ̂

}
= f(x;θ)

(2.18)

2.2 Training 15

Here, the mean is simply a vector of real values which can be predicted by using a linear
output layer. Typically diagonal covariance matrices are considered in such models. Thus,
the model can either yield the log-variances using a linear layer, or the variances using an
exponential output function, for example.

2.2 Training

Having discussed the main types of neural networks and detailed standard architectural
components, it is now necessary to discuss how to train neural networks for classification and
regression tasks using an empirical risk minimization approach called Maximum Likelihood
Estimation. Maximum likelihood estimation is the standard approach for training models,
as it has certain desirable properties, such as consistency and statistical efficiency [40, 92],
under certain conditions. The following discussions for both classification (section 2.2.1)
and regression (section 2.2.2) assume the scenario where a network is trained on a finite
training data set Dtrain and then evaluate on an heldout test data set Dtest. The goal of
training is to make sure that the network will learn to generalize well from the training data
to have good performance on the test data. Situations where the network has low empirical
risk on the training data but high empirical risk on the test data is called over-fitting, while
situations where the network has high empirical risk on both the training and test data is
called under-fitting.

2.2.1 Training models for Classification

Consider a finite datasetDtrain = {x(i), y(i)}Ni=1 sampled from an underlying data distribution
ptr(x, y) where x ∈ RD and y ∈ {ω1, · · · , ωK}. The goal is to train a discriminative
classification model P(y|x; θ̂)2 parameterized via a neural network:

P(y|x∗; θ̂) = Cat(y; π̂)

π̂ = f(x∗; θ̂),
K∑
c=1

π̂c = 1, πc ≥ 0
(2.19)

Typically this is a feed-forward network with a softmax output function which produces a
vector of categorical probabilities π̂. The model P(y|x;θ) is trained via Maximum Likelihood

2P(ωc|x; θ̂) is a shorthand for P(y = ωc|x; θ̂)

16 Deep Learning

Estimation to maximize the likelihood of the observed data:

θ̂ = argmax
θ
{P(Y |X;θ)}

= argmax
θ
{

N∏
i=1

P(y(i)|x(i);θ)}

= argmax
θ
{

N∏
i=1

K∏
c=1

P(ŷ = ωc|x(i);θ)I(y
(i)=ωc)}

(2.20)

where I is an indicator function. Directly optimizing this expression is inconvenient, as the
product of probabilities can yield numerically unstable behaviour in floating-point numbers.
A far more stable loss to maximize is log-likelihood, which yields the same maximum, as log
is a monotonic function of the input. This transforms the loss from a product of probabilities
into a sum of log-probabilities. Furthermore, as it is customary to minimize a loss function,
instead of maximizing the log-likelihood we minimize the negative log-likelihood. Finally,
this loss can be expressed as an expectation by diving by N , which does not affect the
location of the maximum, yielding:

θ̂ = argmin
θ

{
− 1

N

N∑
i=1

K∑
c=1

I(y(i) = ωc) ln P(ŷ = ωc|x(i);θ)
}

= argmin
θ

{
Ep̂tr(x,y)

[
LNLL(y,x,θ)

]} (2.21)

where the expectation is taken with respect to the empirical distribution p̂tr(x, y) = Dtrain.
This yields the standard form of negative log-likelihood loss used for training classification
models. This is a form of empirical risk minimization, where the risk is the negative log-
likelihood.

LNLL(y,x,θ) = −
K∑
c=1

I(y = ωc) ln P(ŷ = ωc|x;θ) (2.22)

In this thesis the notation L(θ,D) will be a short hand notation for the expectation of the
loss with respect to the true underlying distribution ptr(x, y):

L(θ,D) = Eptr(x,y)[LNLL(y,x,θ)] (2.23)

A similar notation will be a shorthand for the expectation with respect to a specific finite
dataset L(θ,Dtrain):

L(θ,Dtrain) = Ep̂tr(x,y)[LNLL(y,x,θ)] (2.24)

2.2 Training 17

Further insight can be obtained by taking the expectation of this loss with respect to the
true underlying distribution ptr(x, y):

L(θ,D) = Eptr(x)

[
−

K∑
c=1

EPtr(y|x)[I(y = ωc)] ln P(ŷ = ωc|x;θ)
]

= Eptr(x)

[
−

K∑
c=1

Ptr(ωc|x) ln P(ωc|x;θ)
]

= Eptr(x)

[K∑
c=1

Ptr(ωc|x) ln
Ptr(ωc|x)
P(ωc|x;θ)

− Ptr(ωc|x) ln Ptr(ωc|x)
]

= Eptr(x)

[
KL[Ptr(y|x)||P(y|x;θ)]︸ ︷︷ ︸

Reducible Loss

+ H[Ptr(y|x)]︸ ︷︷ ︸
Irreducible Loss

]
(2.25)

This derivation shows that maximizing the likelihood of the data is equivalent to minimizing
the KL-divergence between the model and the underlying data distribution, where the loss is
lower bounded by the expected entropy of the conditional distributionH[Ptr(y|x)]. However,
it is necessary to point out that this derivation is only valid when there is an infinite amount
of training data and when the true distribution Ptr(y|x)] is within the family of models which
can be captured by model being trained P(y|x;θ). Consider a Monte-Carlo approximation to
the expectation for a finite dataset:

L(θ,D) = 1

N

N∑
i=1

[K∑
c=1

1

Ni

Ni∑
j=1

−I(y(ij) = ωc) ln P(ŷ = ωc|x(i);θ)
]

x(i) ∼ ptr(x), y
(ij) ∼ Ptr(y|x(i))

(2.26)

For the derivation to be accurate, the number Ni of samples y(ij) ∼ Ptr(y|x(i)) must be large
in order to appropriately capture the conditional distribution at a particular x(i). In practice,
however, Ni = 1 and only a single sample of y(ij) of obtained for every x(i). In the case
that the data exists on a sufficiently smooth manifold this may not be a problem given that
the inputs x cover the manifold with sufficient density. This implies that the number N of
samples of x(i) has to be large. Consequently, a model trained on a finite dataset sampled
from the underlying distribution may only model part of the space and poorly generalize to a
different test dataset sampled from the same underlying distribution ptr(x, y).

18 Deep Learning

2.2.2 Training models for Regression

Maximum likelihood training of regression models is similar to MLE training of classification,
the primary difference is that the targets are points in a continuous space rather than discrete
class labels. Consider a finite dataset Dtrain = {x(i),y(i)}Ni=1 sampled from an underlying
data distribution ptr(x,y) where x ∈ RD and y ∈ RK . The goal is to train a Density
Network p(y|x;θ) to maximize the likelihood of the training data as follows:

θ̂ = argmax
θ

{
p(Y |X;θ)

}
= argmax

θ

{ N∏
i=1

p(y(i)|x(i);θ)
}

= argmin
θ

{ 1

N

N∑
i=1

− ln p(y(i)|x(i);θ)
}

= argmin
θ

{
Ep̂tr(x,y)

[
LNLL(y,x,θ)

]}
(2.27)

As in the derivation for classification, maximum-likelihood estimation is done via minimiza-
tion of the expectation of the negative log-likelihood with respect to the empirical distribution
p̂tr(x,y) = Dtrain. Similar to the derivation 2.25 it is possible to show that in expectation
minimizing negative log-likelihood is equivalent to minimizing the expected KL-divergence
between the model and the underlying data distributions:

L(θ,D) = Eptr(x)

[
Eptr(y|x)[− ln p(y|x;θ)]

]
= Eptr(x)

[
−
∫

ptr(y|x) ln p(y|x;θ)dy
]

= Eptr(x)

[∫
ptr(y|x) ln

ptr(y|x)
p(y|x;θ)

− ptr(y|x) ln ptr(y|x)dy
]

= Eptr(x)

[
KL[ptr(y|x)||p(y|x;θ)]︸ ︷︷ ︸

Reducible Loss

+ H[ptr(y|x)]︸ ︷︷ ︸
Irreducible Loss

]
(2.28)

This derivation, just like in the case for classification, requires that a large amount of data is
available to train the model and that the true distribution falls within the family of models
p(y|x;θ). A crucial difference from the derivation 2.25 is that it is also necessary to assume
the correct output density in order to be able to fully minimize this loss. Specifically, while
all conditional distributions over discrete classes can be parameterized by a softmax output,
there is a large variety of possible continuous distributions over the continuous targets y,
each reflecting a different set of assumptions about ptr(y|x). A common choice of output

2.2 Training 19

distribution is the multivariate normal (MVN) distribution with a diagonal covariance matrix3.
In this case, the neural network will yield the mean and variances, conditioned on the input
x:

p(y|x; θ̂) = N (y; µ̂, Σ̂)

{µ̂, Σ̂} = f(x; θ̂)
(2.29)

Alternative choices of output distribution are possible, including, but not limited to, the
Laplace distribution, the multivariate Student’s T distribution or a Generalized Normal
distribution.

Unfortunately, the true distribution p(ytr|x) may be multi-modal and non-symmetric,
making common choices of output distribution inappropriate. In these cases it is possible to
parameterize a mixture of normal distributions using a Mixture Density Network [10]:

p(y|x∗; θ̂) =

Q∑
q=1

N (y; µ̂(q), Σ̂(q))π̂q

{µ̂(1:Q), Σ̂(1:Q), π̂} = f(x∗; θ̂), 0 ≤ πq,

Q∑
q=1

πq = 1

(2.30)

where µ̂(q) and Σ̂(q) are the mean and variance of the q-th mixture component. The mixture
weights π̂ are produced via a softmax output head. A mixture of normal distributions
can approximate an arbitrary distribution ptr(y|x) given a sufficient number of mixture
components.

It is necessary to point out that the reason we are interested in accurately capturing
the distribution ptr(y|x), rather than just a point estimate ŷ, is because we are interested
probabilistic models which can yield uncertainty estimates. Models which only yield a point
estimates, called Regressors, are more commonly used for regression tasks than Density
Networks. However, it can be shown that Regressors, which are commonly trained with an
L2 loss, are a special case of a Density Network. Consider the negative log-likelihood for
a model which parameterizes a multivariate normal output density with a fixed covariance

3It is possible to use a full-covariance matrix to model variable correlation, but is not commonly done

20 Deep Learning

Σ̂ = I:

LNLL(y(i),x(i),θ)) =− ln p(y(i)|x(i);θ)

= − ln

(
1√
|2πΣ̂|

e−
1
2
(y(i)−µ̂(i))T Σ̂−1(y(i)−µ̂(i))

)

=
1

2
(y(i) − µ̂(i))T Σ̂−1(y(i) − µ̂(i)) +

1

2
ln(|2πΣ̂|)

=
1

2
||(y(i) − µ̂(i))||22 +

K

2
ln(2π), ⇐⇒ Σ̂ = I

(2.31)

Thus, minimization of negative log-likelihood for a multivariate normal density network with
a fixed covariance equal to the identity matrix is equivalent to minimization of the square of
the L2 norm between the network output and the target. Similarly, it can be shown other Lp

losses are special cases of Maximum Likelihood Estimation with different output densities
and a fixed output variance. Throughout the rest of this thesis only density networks will be
considered for regression tasks.

2.2.3 Regularization

As discussed in sections 2.2.1 and 2.2.2, derivations 2.25 and 2.28 only hold in the infinite
data scenario. In practice, it is necessary to operate on finite datasets. In order to improve the
generalization to a previously heldout test dataset Dtest different forms of regularization are
used. The four most common forms of regularization for deep learning are weight decay,
early stopping, data augmentation and dropout [11, 92, 40, 117]. There are many other
forms of regularization, but their discussion is beyond the scope of this thesis.

Weight decay is one of the oldest known forms of regularization which puts an L2 norm
penalty on each of the weights and prevents them from growing too large, thereby preventing
over-fitting. This has additional benefits, such as stabilizing training and smoothing the
function learned by the neural network:

L(θ,Dtrain) = LNLL(θ,Dtrain) +
λ

2
||θ||22 (2.32)

Weight decay can be seen as a form of Maximum A-Posteriori (MAP) estimation where a
zero-mean normal prior p(θ) = N (θ|0, σ2

p · I) with a variance of σ2
p is assumed over the

parameters θ:
θ̂ =argmax

θ
{P(y|X;θ)p(θ)}

=argmin
θ

{
LNLL(θ,Dtrain)− ln p(θ)

} (2.33)

2.2 Training 21

Using other Lp norms is equivalent to assuming a different prior distribution p(θ) over the
weights [40, 11, 92].

Another well known form of regularization is called early stopping [40, 11, 92]. This
form of regularization requires three datasets - Dtrain, Dvalid and Dtest, all assumed to
be sampled from the same underlying distribution. The model is trained to minimize the
expected negative log-likelihood of the training data, while at the same time keeping track
of the expected negative log-likelihood on the validation dataset. The loss on the validation
dataset is considered to be a proxy for the loss of the model on a heldout test dataset, which
also comes from the same underlying distribution. When the loss on the validation set stops
decreasing and starts rising, training of the model is stopped, thereby preventing the model
from over-fitting to the training data.

The best way to improve model generalization and decrease over-fitting is to simply
use more data. Unfortunately, it is not always possible to gather additional training data,
especially for supervised tasks. However, it is possible augment an existing training dataset
with a set of valid perturbations of the training data [40]. For example, images of objects
can be flipped, rotated and shifted, as these transformations do not alter the ‘content’ or
class of the image while adding new training data points which teach the model to be robust
to realistic perturbations of the data. However, care must to taken to only augment using
valid transformations. For example, in a digit or character classification task it is not valid
to flip the digits up/down or left/right, as that will alter the content, but shifts and minor
rotations are acceptable. Unfortunately, in domains other than image classification, it may
be difficult to define a set of transformations, which limits the use of data augmentation to
mainly image-related tasks.

Finally, a popular type of regularization is called Dropout [117, 116, 56], which encour-
ages neural networks to learn robust representations. Dropout regularization works in two
phases: training and inference. During training, for every input, the activations of every
hidden layer are randomly zeroed-out by multiplying by a binary mask-vector sampled from
a Bernoulli distribution with a probability of producing 1 equal to p:

h(l) =
1

p
b⊙ h(l), b ∼ B(p) (2.34)

The resulting activations are multiplied by 1
p

in order to maintain the same expected activation
magnitude as when dropout is not used. During inference no Bernoulli noise is used and all
units in a hidden layer are active. By randomly zeroing out hidden units dropout regularization
encourages the network to learn intermediate feature representations which are informative
and robust by themselves, rather than only in very specific combinations. Furthermore, this

22 Deep Learning

can be seen as a form of model-averaging. By training multiple sub-nets within the same
network to learn the same function, and using the mean network during inference dropout
can be seen as a form of pseudo-ensemble. It is possible to use an explicit form of model
averaging via Monte-Carlo Dropout, where for the same test input x∗ different dropout
masks are used, and the predictions given each dropout mask are averaged together:

P(y|x∗; θ̂) =
1

M

M∑
m=1

P(y|x∗, b(m); θ̂), b(m) ∼ B(p) (2.35)

This can sometimes yield a performance benefit at increased computational cost, as it requires
re-running the networks for the same input M times.

2.3 Optimization

Having discussed objectives to optimize in section 2.2, it is now necessary to discuss how to
actually carry out this optimization with respect to the model parameters θ. Unfortunately,
it is not possible to obtain closed-form solutions for the optimization problem defined in
the previous section in equations 2.20 and 2.27 for deep neural networks. Instead, neural
networks are optimized using iterative gradient descent methods [107]. Currently, there
exists a wide range of gradient descent optimizers for neural networks, including stochastic
gradient descent with momentum [11, 40], RMSProp [40], Adagrad [29], AdaDelta [138]
and Adam [62]. The current section describes gradient descent optimization, detailing the
Adam optimizer [62] used to train all models throughout this thesis, and discusses the topics
of learning rate scheduling and initialization.

2.3.1 Gradient Descent Optimization

Gradient descent methods can be broadly split into Batch gradient descent and Stochastic
gradient descent. Batch Gradient Descent minimizes the loss over the entire training dataset
per-iteration t. A full pass over the entire training dataset is called an epoch, and for batch
gradient descent each iteration is one epoch. The model is trained by updating the parameters
with the gradient of a loss functionL(y(i),x(i),θ) with respect to the parameters θ, multiplied
by the learning rate η: Where the gradient of the loss with respect to each parameter is
obtained via the Error Back-propagation (BP) [107] and Error Back-Propagation Through
Time (BPTT) [87, 88, 86] algorithms for feed-forward and recurrent networks, respectively.
Batch Gradient Descent yields the exact gradient of the loss on the training data, but may
take a long time to iterate over datasets of millions or billions of data points.

2.3 Optimization 23

Algorithm 1 Batch Gradient Descent
while t ≤ T do

θ(t+1) ← θ(t) − η · 1
N

∑N
i=1∇θLNLL(y(i),x(i),θ)

end while

Instead of doing a full pass over the dataset before updating the parameters, it is possible
to update the parameters after processing each datapoint, doing N parameter updates per
epoch. This is called Stochastic Gradient Descent [105]. This approach yields significantly

Algorithm 2 Stochastic Gradient Descent
while t ≤ T ·N do

θ(t+1) = θ(t) − η · ∇θLNLL(y(t),x(t),θ)
end while

faster convergence than Batch Gradient Descent, but at the cost of noisy gradient updates.
In Stochastic Gradient Descent the gradient of the loss at each datapoint is a single-sample
approximation to the gradient of the loss over the entire dataset. As a consequence, it may be
necessary to use a far lower learning rate to avoid instabilities during training.

A compromise between Batch and Stochastic Gradient Descent is Stochastic Minibatch
Gradient Descent, which minimizes the loss on stochastic minibatches of size Nb << N .
The size of the minibatch is typically between 16 and 256 datapoints. Sizes are given in
powers of 2 because of the way data is best partitioned on modern GPUs. However, seeing
the same training examples in the same order every epoch may introduces unnecessary biases
into the model. Thus, mini-batches are shuffled between each epoch via uniform sampling
from the training data without replacement. In practice, Stochastic Gradient Descent and
minibatch shuffling can be seen as forms of regularization, as the noise added to the gradients
may prevent the model from over-fitting to the training dataset and avoid getting stuck in a
local minimum.

Algorithm 3 Stochastic Minibatch Gradient Descent

while t ≤ T · N
Nb

do
θ(t+1) = θ(t) − η · 1

Nb

∑Nb

i=1∇θLNLL(y(i),x(i),θ), {x(i), y(i)}Nb
i=1 ∼ Dtrain

end while

If stochastic gradient descent yields particularly noisy gradients or the curvature of the
loss surface is strong in some directions and weak in others, gradient descent may yield
‘zig-zagging’ behaviour along the loss surface which slows convergence. Momentum methods
are typically used to avoid this behaviour and accelerate convergence by adding the previous

24 Deep Learning

parameter update, multiplied by the momentum rate α where 0 ≤ α ≤ 1, to the current
parameter update. This increases the effective learning rate in the direction of consistent
gradients and accelerates convergence.

Algorithm 4 Stochastic Minibatch Gradient Descent with Momentum

while t ≤ T · N
Nb

do
m(t) = (1−α)·

(
1
Nb

∑Nb

i=1∇θLNLL(y(i),x(i),θ)
)
+α·m(t−1), {x(i), y(i)}Nb

i=1 ∼ Dtrain

θ(t+1) = θ(t) − η ·m(t)

end while

Currently, Adam [62] is a popular state-of-the-art stochastic gradient based optimization
algorithm for neural networks. Adam, as well as other adaptive learning rate methods like
Adagrad [29] and RMSprop [40] are pseudo-second order methods which attempt to account
for the curvature of the loss surface along each dimension. The advantage of Adam is that it
combines momentum with automatic adjustment of the learning rate for each parameter.

Algorithm 5 Adam

s(0) = r(0) = 0
while t ≤ T · N

Nb
do

g(t) = 1
Nb

∑Nb

i=1∇θLNLL(y(i),x(i),θ), {x(i), y(i)}Nb
i=1 ∼ Dtrain

s(t) = β1 · s(t−1) + (1− β1) · g(t)

r(t) = β2 · r(t−1) + (1− β2) · g(t) ⊙ g(t)

ŝ(t) = s(t)

1−βt
1

r̂(t) = r(t)

1−βt
2

θ(t+1) = θ(t) − η ŝ(t)√
r̂(t)+ϵ

end while

In Adam, the biased estimates of the first and second moments of the gradients, s(t) and
r(t), are computed at each iteration. The biased estimate of the first moment s(t) directly
incorporates momentum into the algorithm. The first and second moments of the gradients
are then de-biased, yielding the unbiased estimates of the first and second moments. This de-
biasing is important only at the beginning of training and as training progresses the unbiased
estimates tend to the biased estimates. The parameters are then updated by subtracting the
ratio of the unbiased estimate of the first moment ŝ(t) and the square root of the unbiased
estimate of the second moment r̂(t), multiplied by the global learning rate η. This process
is controlled by the hyper parameters β1, β2 and ϵ, whose typical values are 0.9, 0.999 and
1e-8, respectively.

2.3 Optimization 25

The potential drawbacks of Adam are that the estimates of the second order moments
may become stale near a local minimum and that Adam does not properly interact with
weight decay regularization. Several extensions to Adam have been proposed to address
these issues, such as Adamax[62], AMSGrad [104], and AdamW [75], but the performance
improvements are not consistent. Thus, throughout this thesis the standard version of Adam
is used to train all neural network models.

2.3.2 Learning Rate Schedules

The learning rate η plays an important role in gradient descent optimization. If a learning
rate is too high, then training may become unstable, and if the learning rate is too low, then it
may take the optimization process a long time to converge to a local minimum. Furthermore,
due to the noisy nature of the gradients, stochastic gradient descent and minibatch stochastic
gradient descent will not converge to a local minimum without a decaying learning rate. Thus,
it is necessary to decay the learning rate over the course of training, so that the optimization
can settle in some local (or global) minimum. Typically, an exponentially decaying learning
rate is used:

η(t) = η(0)e−
t
λ (2.36)

where λ is the decay constant and η0 is the initial learning rate.
It is possible to consider alternative learning rate schedules. Currently cyclical learning

rates are popular, as they allow for faster optimization. In particular, in this work the 1-Cycle
Policy [115, 114] is sometimes used instead of the exponentially decaying learning rates.
Here, a cycle length is defined in terms of a number of epochs. The learning rate is linearly
increased from η(0) to 10 ∗ η(0) for half the cycle and then linearly decayed back down to
η(0) for the second half of the cycle. Then the learning rate is linearly decay to η(0)

100
for the

remaining number of epochs. Fast Ai [45] report that this approach allows for significantly
faster training of neural networks, which is why is was adopted in this work.

2.3.3 Initialization

An important factor in the success or failure of training a neural network is the choice of
initialization scheme for the parameters θ. Initialization is known to have a strong effect on
the optimization process and the generalization of the resulting model, though how exactly
initialization affects the latter property is not fully understood [40]. Furthermore, the effects
of initialization on the network’s capacity to generalize are more pronounced when there is

26 Deep Learning

less training data. As the quantity of available training data increase initialization effects play
a smaller role in generalization.

In general, initialization must accomplish two tasks - it must induce symmetry breaking
and avoid saturating the non-linear activations, so that gradients can propagate effectively
throughout the entire network. Symmetry breaking is necessary to force each neuron in each
hidden layer to learn a different function, otherwise the effective capacity of the network is
diminished. This can be accomplished by randomly initializing the parameters. However, the
choice of distribution from which the parameters are initialized can have a strong affect on
the optimization process. If the variance of the distribution is too large, then the non-linear
activations may saturate or explode and impede gradient flow. On the other hand, if the
variance is too small, then information may poorly flow through the network. Work by
Xavier and Bengio [38] suggests initializing from either a uniform distribution or a normal
distribution, where the bounds on the uniform distribution or the variance of the normal
distribution is a function of the number of neurons in the previous layer (fanin) and the
number of neurons in the following layer (fanout):

θ ∼ U(−
√

6

fanin + fanout
,

√
6

fanin + fanout

θ ∼ N (0,

√
2

fanin + fanout
)

(2.37)

The motivation is to make sure that the scale of the activation of every neuron is such that
the activation function is within a linear region and does not saturate, which enables good
gradient flow throughout the entire network. This is especially important for very deep
networks. From empirical evidence, the particular choice of uniform or normal distribution
does not seem matter greatly.

2.4 Chapter Summary

This chapter introduced the theory necessary to support discussions throughout the rest of
this thesis. Section 2.1 introduced neural networks and deep learning, presenting them as
powerful, trainable feature extractors which project the input features into a space where
they can be linearly classified or regressed. The main architectural components of deep
learning models considered in this thesis, such as fully-connected layers, convolutions layers,
recurrent networks layers and attention mechanisms were discussed. Fully-connected layers
are used in each neural network trained in this thesis. Convolution layers are used in models
trained on image datasets throughout chapter 5. Bidirectional Long Short-Term Memory

2.4 Chapter Summary 27

(LSTM) recurrent neural networks and attention mechanisms are used to construct relevance
assessment models operating over variable length prompts and responses in chapter 8.

Section 2.2 discussed the proprieties of maximum likelihood estimation for both classifi-
cation and regression tasks. It was shown that a model trained via maximum likelihood will
recover the true underlying distribution of data, given a sufficiently large amount of training
data and correct model class. This result is particularly relevant to the estimation of data
uncertainty discussed in the next chapter.

Section 2.3 discussed stochastic minibatch gradient descent and detailed the Adam [62]
optimization algorithm, which is used to train all neural network models in this thesis.
Additionally, several initialization schemes were described and discussed in the context of
their effect on gradient-descent optimization.

Chapter 3

Predictive Uncertainty Estimation

The previous chapter discussed common architectural components of neural networks, such
as feed-forward and recurrent layers, maximum likelihood training of parametric models for
classification and regression, and optimization techniques. This chapter introduces the area
of uncertainty estimation for discriminative parametric classification and regression models.
The sources of uncertainty in predictions, specifically data uncertainty, which occurs due
to noise and class overlap in the data, and knowledge uncertainty, which occurs when the
training and test data are mismatched, are discussed in section 3.1 in the context of both
classification and regression tasks. In section 3.2 it is shown that probabilistic classification
and regression models will naturally capture estimates of data uncertainty as a consequence
of maximum likelihood training, given certain conditions. Capturing estimates of knowledge
uncertainty, however, is more difficult. In this chapter, two classes of approaches for capturing
knowledge uncertainty are considered. Approaches based on deriving estimates of knowledge
uncertainty from a neural network parameterized using a single set of model parameters, also
know as single model approaches, are discussed in sections 3.3. Approaches to estimation of
knowledge uncertainty using an ensemble of models, where each model is parameterized
by a unique set of mode parameters, are discussed in section 3.4. This chapter closes with a
discussion of the limitations in modelling knowledge uncertainty in section 3.5.

3.1 Sources of Uncertainty

In order to understand the problem of uncertainty estimation it is first necessary to understand
the sources of uncertainty in predictions. Conceptually, there are two fundamental sources of
uncertainty. Firstly, uncertainty in predictions can arise due to the irreducible uncertainty
inherent in the data, which is known as data uncertainty or aleatoric uncertainty. Data un-
certainty arises due to the complexity, multi-modality and noise in the data. Data uncertainty

30 Predictive Uncertainty Estimation

is irreducible because it is a property of the underlying distribution which generated the data,
rather than a property of the model.

The second source of uncertainty is epistemic or knowledge uncertainty, and represents
uncertainty in the model’s predictions due to a lack of understanding or knowledge on the
part of the model regarding the current input for which the model is making a prediction.
1 In other words, this form of uncertainty arises when the test input x∗ comes from a
different distribution than the one which generated the training data. This is why the name
distributional uncertainty is also used. Mismatch between the test and training distributions is
also known as dataset shift [102] and is a situation which often arises for real world problems.
As knowledge uncertainty uncertainty is a property of the model, unlike data uncertainty,
it can be reduced by providing more knowledge, in the form of training data, to the model.
In this thesis the names knowledge uncertainty or distributional uncertainty will be used
interchangeably.

The ability to separately model the sources of uncertainty in predictions is important,
as different actions can be taken by the model depending on the source of uncertainty. For
example, in active learning [112] tasks collecting training data from regions with high data
uncertainty is pointless, as that uncertainty is inherently irreducible. On the other hand,
collecting additional training data from regions associated with high knowledge uncertainty
will provide more knowledge, which should improve the quality of the model and its capacity
to generalize.

3.1.1 Uncertainty for Classification

This section discusses the sources of uncertainty in the context of classification tasks, pro-
viding an illustrative example of each source of uncertainty on artificial datasets. Consider
a finite dataset Dtr from a distribution ptr(x, y) over inputs x ∈ RD and class labels
y ∈ {ω1, · · · , ωK}:

Dtr = {x(i), y(i)}Ni=1

{x(i), y(i)} ∼ ptr(x, y)
(3.1)

1In general, the term epistemic uncertainty covers both uncertainty in predictions for in-domain test inputs
x∗ due to data sparsity as well as uncertainty due to distributional mismatch. However, in this thesis we use a
narrower definition of epistemic uncertainty, which we refer to as knowledge uncertainty, which covers only
the latter.

3.1 Sources of Uncertainty 31

In the context of a discriminative classification task, the data uncertainty at an input point x
is defined as the entropy of the true conditional distributionH[ptr(y|x)]:

H[Ptr(y|x)] = −
K∑
c=1

Ptr(y = ωc|x) ln Ptr(y = ωc|x) (3.2)

The entropy of a discrete probability distribution is an information-theoretic measure of
uncertainty[23]. The overall level of data uncertainty of the distribution ptr(x, y) will be
given by the expected conditional entropy:

Eptr(x)

[
H[Ptr(y|x)]

]
(3.3)

A related way of thinking about data uncertainty is to consider the mutual information
between y and x, defined as:

I[y,x] = KL[ptr(x, y)||ptr(x)Ptr(y)]
=H[Ptr(y)]− Eptr(x)

[
H[Ptr(y|x)]

] (3.4)

where the marginal distribution Ptr(y) is given by:

Ptr(y) =

∫
RD

ptr(x, y)dx (3.5)

The mutual information can be interpreted as a measure of information gain - it answers the
question "how much information does x convey about y?". Alternatively, it can be seen as
a measure of independence of y and x. If the mutual information is high, then the level of
data uncertainty is low and x conveys a large degree of information about y and vice versa.
Conversely, if the mutual information is 0, then x conveys no information about y, which is
another way of saying that x and y are independent. This situation corresponds to a high
degree of data uncertainty.

To illustrate the concept of data uncertainty more concretely, consider a ‘toy’ distribution
ptr(x, y) which consists of three normally distributed clusters with tied isotropic covariances
with equidistant means, where each cluster corresponds to a separate class. The marginal
distribution over x is given as a mixture of Gaussian distributions:

ptr(x) =
3∑

c=1

ptr(x|y = ωc) · Ptr(y = ωc) =
1

3

3∑
c=1

N (x;µc, σ
2 · I) (3.6)

32 Predictive Uncertainty Estimation

(a) Low data uncertainty (LDU) dataset (b) Entropy of LDU dataset

(c) High data uncertainty (HDU) dataset (d) Entropy of HDU dataset

Figure 3.1 The top row depicts the Low Data Uncertainty (LDU) dataset with distinct classes
(σ = 1), where Eptr(x)

[
H[Ptr(y|x)]

]
= 0.002 and I[y,x] = 1.097. The bottom row

depicts the High Data Uncertainty (HDU) dataset with overlapping classes (σ = 4), where
Eptr(x)

[
H[Ptr(y|x)]

]
= 0.706 and I[y,x] = 0.393.

The conditional distribution over the classes y can be obtained via Bayes’ rule:

Ptr(y = ωc|x) =
ptr(x|y = ωc) · Ptr(y = ωc)∑3
k=1 ptr(x|y = ωk) · Ptr(y = ωk)

=
N (x;µc, σ

2 · I)∑3
k=1N (x;µk, σ2 · I)

(3.7)

Samples of x from the marginal ptr(x) for the case when σ = 1 are shown in figure 3.1a.
Here, as the three classes are distinct and non-overlapping, it is easy to assign a test sample x∗

(green point in figure 3.1a) to the correct class. The conditional entropy, shown in figure 3.1b,
is high only along the decision boundaries between classes. The expected conditional entropy
is 0.002 and the mutual information between y and x is 1.097. Now consider the dataset in
shown in figure 3.1c, where the covariances of each cluster are increased so that there is a
large degree of class overlap. The entropy, shown in figure 3.1d, is now high in a wide region

3.1 Sources of Uncertainty 33

along the decision boundaries and is highest in the area of class overlap. Due to the large
degree of class overlap, it will be more difficult to assign the same test sample x∗ (green
point) to the correct class. The expected conditional entropy is 0.706, which is approximately
45 times larger than for the dataset with no class overlap. The mutual information is 0.393,
which is about a third of the mutual information with no class overlap. Clearly, there is
low uncertainty in the prediction when the classes are non-overlapping and high uncertainty
in the predictions when they do overlap. Thus, the first dataset, with no overlap, will be
referred to as the Low Data Uncertainty (LDU) dataset through the rest of this thesis. The
artificial dataset with significant class overlap will be referred to as the High Data Uncertainty
(HDU) dataset throughout the rest of this thesis. These two datasets will be used to illustrate
examples of approaches discussed in this chapter and in chapter 4.

For classification problems data uncertainty arises from the natural complexity of the
data and the structure of decision boundaries. Datasets which contain a large number of fine-
grained classes have a higher level of data uncertainty, as the distinctions between classes
erodes. To illustrate, consider a dataset with two sets of labels - one with ten ‘coarse’ classes
and one with a hundred fine-grained classes, with ten classes corresponding to different
variants of each class from the first data set. The first set of labels contains the classes
‘animals, cars, airplanes’ and seven other classes. The second set of labels contains the
fine-grained classes "dog, wolf, cat, ..." corresponding to the coarse class "animals" and the
fine-grained classes "Audi, Ferrari, BMW, Mercedes, etc..." corresponding to the coarse class
"cars" and so on. There will be more confusion between different types of cars and different
types of animals than there will be between cars and animals. Thus, the second set of labels
will have a higher level of data uncertainty. Thus, data uncertainty depends on how the input
space is partitioned into regions belonging to different classes. If the partitioning is such that
the regions are distinct, then there is low data uncertainty. Conversely, if the regions are
partitioned such that certain regions are similar, then there is high data uncertainty.

Now consider the situation described in figure 3.2, where the test sample x∗ is far away
from the region of training data. Such a sample will be referred to, interchangeably, as either
an out-of-distribution or out-of-domain sample because it is sampled from a distribution
pout(x, y) different to the one from which the training data was sampled. In mathematical
terms, the input can be considered out-of-distribution relative to the training data if its
probability density under the marginal distribution ptr(x

∗) is smaller than a threshold δ.
Although in practice p(x) is unavailable.

ptr(x
∗) ≤ δ (3.8)

34 Predictive Uncertainty Estimation

Figure 3.2 Low data uncertainty dataset (σ = 1) with out-of-distribution input (green dot).

In this situation, a model trained on a finite datasetDtrn may have no understanding or knowl-
edge2 of the discriminative mapping x 7→ y appropriate to pout(x, y), due to distributional
mismatch. The test sample x∗ could correspond to unseen variations of known classes or to
an example of a new, unseen class. As no training data is observed in that region, without
strong modelling assumptions it is difficult to know to what class x∗ actually belongs. Thus,
there will be a high level of knowledge uncertainty in the prediction.

3.1.2 Uncertainty for Regression

Having discussed the sources of uncertainty for classification tasks, we now discuss the
sources of uncertainty in the context of regression tasks, showing examples of each source of
uncertainty on artificial datasets. Consider the following a finite dataset Dtrn sample from a
distribution ptr(x,y) over inputs x ∈ RD and targets y ∈ RK :

Dtrn = {x(i),y(i)}Ni=1

{x(i),y(i)} ∼ ptr(x,y)
(3.9)

Similar to classification tasks, where data uncertainty is represented by the entropy of the
true posterior over classes (eqn. 3.2), data uncertainty for regression tasks is represented by
the Differential Entropy of the true posterior over targets y:

H[ptr(y|x)] = −
∫
RK

ptr(y|x) ln ptr(y|x)dy (3.10)

2Subject to generalization ability and prior knowledge encoded by the user.

3.1 Sources of Uncertainty 35

Differential entropy can be interpreted as a measure of the concentration of probability
density on the support. A crucial difference between data uncertainty for regression and
classification is that entropy is non-negative and bounded while differential entropy can be
unbounded and negative, depending on the nature of p(y|x) and the dynamic range of y. 3

In general, differential entropy is not a strict generalization of discrete (Shannon) entropy
and lacks many of its properties and interpretations. However, relative differential entropy
is the exact equivalent of discrete KL-divergence for continuous distributions. Thus, while
differential entropy cannot be used as an absolute measure of uncertainty, it can be used as a
relative measure of uncertainty. For example, it is impossible to make absolute statements
about uncertainty for continuous random variables, but it is possible to say whether there
is more or less uncertainty at an input x∗

A than at an input x∗
B. In contrast, it is possible to

make both absolute and relative statements about uncertainty for discrete random variables.
A more detailed discussion of the properties of entropy and differential entropy is beyond the
scope of this thesis and can be found in [23]. As in the case of classification, data uncertainty
can be assessed via the mutual information between y and x, defined as:

I[y,x] = KL[ptr(x,y)||ptr(x)ptr(y)]
=H[ptr(y)]− Eptr(x)

[
H[ptr(y|x)]

] (3.11)

where the marginal distribution ptr(y) is given by:

ptr(y) =

∫
RD

ptr(x,y)dx (3.12)

More insight into data uncertainty for regression can be obtained by consider an alterna-
tive formulation of the generation of the dataset presented in equation 3.9:

x ∼ ptr(x)

y = f(x) + ϵ
(3.13)

were ϵ is additive noise, which itself may be a function of x. There are two notable classes
of such noise - homoscedastic noise, which does not depend on x:

ϵ ∼ ptr(ϵ) (3.14)

3Differential entropy is not scale invariant.

36 Predictive Uncertainty Estimation

(a) Dataset with homoscedastic noise (b) Mean and homoscedastic variance

(c) Dataset with heteroscedastic noise (d) Mean and heteroscedastic variance

Figure 3.3 Figures A and C depict distributions with homoscedastic and heteroscedastic
additive Gaussian noise, respectively. Figures B and D depict the decomposition of the
dataset into mean and variance. Green and Red points represent inputs in areas of low/high
heteroscedastic noise, respectively. Violet point represents out-of-distribution input.

and heteroscedastic noise, which is a function of the input x:

ϵ ∼ ptr(ϵ|x) (3.15)

Unlike in classification tasks, where data uncertainty arises due to the complexity of the
decision boundaries, data uncertainty in regression tasks is the result of noisy observations
of y. This is depicted in figure 3.3. Here either homoscedastic Gaussian noise, shown in
figure 3.3a, or heteroscedastic Gaussian noise, shown in figure 3.3c, is added to the function
f(x) = sinx+ x

10
. In figure 3.3b heteroscedastic noise is smallest when x = 0 and largest

at either end where |x| = 15. Note, it is impossible to say whether the noise (and therefore,
differential entropy) at any particular point is small or large in general - it only possible to
compare the noise at two different points in the distribution.

3.2 Estimating Data Uncertainty 37

For regression tasks knowledge uncertainty represents uncertainty about both the mapping
represented by the function f(x) and the nature of the noise ϵ. Unlike classification, where
data uncertainty and the prediction are linked, knowledge uncertainty over the systematic
component (prediction) and knowledge uncertainty over the noise (data uncertainty) can be
treated separately for regression tasks. Consider the datasets in figure 3.3. There is no data in
the region |x| ≥ 15. Thus in this region there will be uncertainty in the function which is
being modelled as well as the nature of the additive noise. It is difficult to know whether the
systematic component changes or continues. Thus, the further a test input x∗ is away from
the region of training data, the more uncertainty there is in a model’s estimation of the both
the underlying systematic component and the noise (data uncertainty).

3.2 Estimating Data Uncertainty

Having discussed the nature of data uncertainty and knowledge uncertainty for both clas-
sification and regression in the previous section, we now discuss how to obtain estimates
of uncertainty in the predictions due to data uncertainty for both classification and regres-
sion models. Crucially, it is shown how a parametric probabilistic model will naturally
estimate data uncertainty as a consequence of maximum likelihood estimation, given certain
conditions.

3.2.1 Estimating Data Uncertainty for Classification

In order to obtain estimates of data uncertainty it is necessary to use a probabilistic model,
such as a standard classification neural network which parameterizes a discrete posterior
distribution over class labels y conditioned on the input x:

P(y|x∗; θ̂) = Cat(y; π̂)

π̂ = f(x∗; θ̂),
K∑
c=1

π̂c = 1, πc ≥ 0
(3.16)

In chapter 2 section 2.2.1 it was shown that the minimization of the expected negative
log-likelihood is equivalent to minimizing the expected KL divergence between the model
P(y|x;θ) and the true conditional distribution Ptr(y|x). This result is reproduced below for

38 Predictive Uncertainty Estimation

convenience:

LNLL(θ,D) = Eptr(x)

[
KL[Ptr(y|x)||P(y|x;θ)]︸ ︷︷ ︸

Reducible Loss

+ H[Ptr(y|x)]︸ ︷︷ ︸
Irreducible Loss

]
≥ Eptr(x)

[
H[Ptr(y|x)]

] (3.17)

where expected negative log-likelihood is lower-bounded by the expected entropy of Ptr(y|x),
which, as discussed in section 3.1.1, is the average data uncertainty of the distribution
Ptr(y|x). As was discussed in section 3.1.1, the conditional entropy of the underlying
distribution H

[
Ptr(y|x)

]
represents the data uncertainty at the input x. Thus, a model

P(y|x;θ) should capture uncertainty in predictions due to data uncertainty in its posterior
over classes when trained via maximum likelihood. 4

A necessary condition for this result to hold true is that an infinite amount of training data
is available and that the true underlying distribution lies within the model class which can be
parameterized. Thus, in practice a model will only capture an estimate of data uncertainty,
as it is only possible to minimize the KL divergence with respect to an empirical distribution
derived from a finite training dataset p̂tr(x, y) = Dtrn. A model P(y|x;θ) may over-fit to
the training data and yield poor estimates of uncertainty on a held-out test dataset if it is too
large. Alternatively, a model fail to fit the training data at all and also yield poor estimates
of data uncertainty if it is too simple. The quality of estimates of data uncertainty should
asymptotically increase with the amount of training data. Models which generalize well
should also yield more accurate estimates of data uncertainty.

Given a model P(y|x; θ̂) which generalizes well, the expected behavior for inputs which
are in regions of low and high data uncertainty are given in figure 3.4: The entropy of the
predictive posterior is the model’s estimate of data uncertainty at a particular test input x∗:

H[P(y|x∗; θ̂)] = −
K∑
c=1

P(y = ωc|x∗;θ) ln P(ωc|x∗; θ̂) (3.18)

However, entropy is an ‘overall’ measure of uncertainty in the predictions as it depends on
the entire posterior distribution over classes. It is possible to obtain a measure of uncertainty
in predicting the most likely class for a particular test input x∗ via the likelihood of that class:

P = max
c
{P(ωc|x∗;θ)} (3.19)

4In the uncertainty estimation community this seems to be well-known, but unstated.

3.2 Estimating Data Uncertainty 39

(a) Low Uncertainty (b) High Uncertainty

Figure 3.4 Indication of uncertainty via posterior over class labels P(y|x∗; θ̂).

This yields the confidence of the mode P5. This measure of uncertainty is not affected by the
probabilities of the other classes, as they are irrelevant to the prediction, and may yield a
more precise estimate of uncertainty in the prediction.

Estimation of data uncertainty is illustrated on the Low Data Uncertainty (LDU) and
High Data Uncertainty (HDU) datasets introduced in section 3.1.1. Figure 3.5 demonstrates
how the conditional entropy of a pair of simple DNNs trained using maximum likelihood
on these captures data uncertainty. The distribution of entropy of DNNs trained on these
datasets, shown in figures 3.5a and 3.5b, is almost identical to the distribution of entropy
of the true underlying distribution, shown in figures 3.1b and 3.1d. In these experiments it
is easy to obtain enough training data and the true underlying distribution is easily within
the class of models which can be parameterized by the neural networks considered here. In
practice it is difficult to fully satisfy these conditions for real applications.

3.2.2 Estimating Data Uncertainty for Regression

The previous section shows how a classification model will naturally capture data uncertainty
as a consequence of maximum likelihood training. This section will demonstrate how the
same can be done for regression tasks when using probabilistic models for regression. It was
shown in section 2.2.2 that training a Density Network p(y|x;θ) via maximum likelihood
is equivalent to minimizing the expected KL divergence between the model and the true

5Here confidence is the inverse of uncertainty.

40 Predictive Uncertainty Estimation

(a) Low Data Uncertainty dataset (b) High Data Uncertainty dataset

Figure 3.5 Conditional entropyH[P(y|x∗; θ̂)] of a pair of classification neural networks with
2 hidden layers of 100 units with ReLU activations trained on LDU and HDU datasets with
maximum likelihood using Adam [62] optimizer.

conditional distribution ptr(y|x). The result is reproduced below for convenience:

LNLL(θ,D) = Eptr(x)

[
KL[ptr(y|x)||p(y|x;θ)]︸ ︷︷ ︸

Reducible Loss

+ H[ptr(y|x)]︸ ︷︷ ︸
Irreducible Loss

]
≥ Eptr(x)

[
H[ptr(y|x)]

] (3.20)

where expected negative log-likelihood is lower-bounded by the expected differential entropy
of ptr(y|x). As discussed in section 3.1.2, data uncertainty for regression tasks is expressed
as the differential entropy of the underlying distribution. Thus, as the loss is reduced and the
model p(y|x;θ) becomes closer to ptr(y|x), it will yield increasingly accurate estimates of
data uncertainty in the form of differential entropy of the density network for a test input x∗:

H[p(y|x∗; θ̂)] = −
∫
RK

p(y|x∗; θ̂) ln p(y|x∗; θ̂)dy (3.21)

Modelling data uncertainty for regression tasks is more difficult than for classification
tasks. For the result in equation 3.20 to hold it is necessary to have infinite training data
and for the true distribution to be within the class of models parameterizable by the neural
network. To satisfy the second condition it is necessary not only to have a model of sufficient
capacity, but to also choose the appropriate probability density function which the Density
Network parameterizes. The choice of probability density which the model parameterizes
should reflect the structure of homoscedastic or heteroscedastic noise in the data.

3.3 Estimating Knowledge Uncertainty via Single Models 41

If an incorrect output density is chosen, then the KL divergence term in equation 3.20
cannot be reduced to zero and the model will not fully capture the uncertainty in the data.
Unfortunately, it is difficult to a-priori know the structure of the noise in the data and therefore
choose the appropriate output density function. However, Mixture Density Networks [10],
which can approximate arbitrary distributions ptr(y|x) provided they have sufficient mixture
components, can be used to overcome this limitation.

Given a well trained density network p(y|x; θ̂) the differential entropy of the posterior
over y at a test input x∗ will be the model’s estimate of uncertainty in the prediction due to
data uncertainty. However, the expression for differential entropy is not always tractable for
continuous probability density functions. Specifically, it is intractable for mixture density
networks, though it is possible to obtain approximations [58, 64]. Alternatively, instead
of using information-theoretic measures of uncertainty, it is possible to examine second
and higher-level moments of p(y|x∗; θ̂) in order to characterize the noise via variance,
skew, kurtosis, etc... However, depending on the choice of output distribution, information
regarding uncertainty may be lost when examining finite moments of a distribution.

3.3 Estimating Knowledge Uncertainty via Single Models

The previous section showed how probabilistic classification and regression models will
naturally capture data uncertainty as a consequence of maximum likelihood estimation.
Unfortunately, it is more difficult to capture estimates of knowledge uncertainty, which,
as defined in this thesis, is the uncertainty in predictions due to a mismatch between the
training and test distributions. In this section we consider approaches to obtaining estimates
of knowledge uncertainty from a single probabilistic model parameterized using a single set
of model parameters6. These approaches are discussed in the context of both classification
and regression tasks.

3.3.1 Single Model Approaches for Classification

As discussed in section 3.1.1, knowledge uncertainty corresponds to uncertainty in predictions
due to a lack of knowledge about mapping x 7→ y in the regions of the input space from
which a test sample x∗ came from. One way this can be indicated by a model is via a high
entropy posterior distribution over class labels (eqn. 3.18), as shown in figure 3.4b. The
current section discusses how a single probabilistic classification model can be made to yield

6In contrast to ensemble approaches considered in the next section, which use multiple sets of model
parameters.

42 Predictive Uncertainty Estimation

a high entropy posterior for out-of-distribution inputs which come from regions of the input
space far from the training data.

The simplest approach is to simply hope that a model trained via maximum likelihood
will naturally yield a high-entropy posterior distribution over classes for out-of-distribution
(OOD) inputs. This approach was evaluated as a baseline for detection of misclassifications
and out-of-distribution samples in [49]. However, standard maximum likelihood estimation
does not contain any mechanism which drives a model to learn the limits of its knowledge. It
is, in general, difficult to guarantee any particular behaviour on out-of-distribution data for
parametric models trained with standard maximum likelihood, especially neural networks, as
they are complex non-linear parametric functions.

A diverse range of approaches has been proposed to modify a neural network classification
model to produce high-entropy predictive posteriors for out-of-distribution inputs, such as
[73, 74, 91]. However, while many of these methods have impressive empirical results, few
have solid theoretical justification for why they work. Consequently, in this thesis only
a particular class of single models approaches [73, 80] which does provide a theoretical
justification is considered. This approach [73] involves multi-task training of a model to
simultaneously minimize negative log-likelihood on in-domain training data and the KL
divergence between the model and a uniform distribution U(y) on out-of-domain training
data:

LMT (θ,D) = LNLL(θ,Dtrn)︸ ︷︷ ︸
In−Domain Loss

+γ · Ep̂out(x)

[
KL[U(y)||P(y|x;θ)]

]︸ ︷︷ ︸
Out−of−Distribution Loss

(3.22)

where γ is a weight associated with out-of-distribution loss. By minimizing this loss function
the model should learn a decision boundary between the in-domain region and the rest of the
input space, given an appropriate choice of out-of-distribution training data.

This approach can be interpreted as explicitly building in knowledge about the limits
of the model’s understanding, which is encoded via the choice of out-of-domain training
distribution Dout = p̂out(x). It is necessary to select Dout in such a way as to learn a tight
decision boundary between the in-domain region and everything else. Consider figure 3.6,
which depicts the three-class toy classification Low Data Uncertainty dataset introduced in
section 3.1.1. The in-domain data is shown in red and out-of-distribution data is shown in
green. If the decision boundary is ‘too loose’, as depicted in figure 3.6a, then certain out-of-
domain inputs may be incorrectly considered to be in-domain. Alternatively, if the decision
boundary is ‘too tight’, as depicted in figure 3.6b, then certain in-domain inputs may be
incorrectly considered out-of-domain. The out-of-distribution data must be carefully chosen
so that it is near the in-domain region, but doesn’t overlap with it, as depicted in figure 3.6c.
Crucially, the Dout must lie on, or close to, the same manifold on which the in-domain data

3.3 Estimating Knowledge Uncertainty via Single Models 43

(a) Loose Decision Boundary (b) Overlap of In-domain and OOD Data

(c) Tight Decision Boundary

Figure 3.6 Illustration of in-domain (red) and out-of-domain (green) training data using a toy
example. Out-of-domain training data should be close to the in-domain data in order to learn
a tight decision boundary around the in-domain region.

lies, as shown in figure 3.7. The motivation for this is that in a real deployment scenario
out-of-distribution data is likely going to have similar structure to the in-domain data. For
example, in image classification tasks, where an in-domain data consists of natural images,
OOD images are also likely to be natural images of the real world. In this scenario, using
images of cartoons, random noise or other ‘unnatural’ images as OOD training data will result
in the model learning a decision boundary which is too loose. One approach to generating
such data is to use a generative model, such as Factor Analysis [92, 80], Variational Auto-
encoders [63] or Generative Adversarial Networks [39, 73]. However, generating appropriate
OOD training data is still an open task. In practice it is possible to use data from a different,
appropriately chosen dataset [73].

Consider a model trained via the loss specified in equation 3.22 on appropriately chosen
out-of-distribution data. The entropy of the posterior of over classes produced by this model
becomes a measure of total uncertainty rather than just data uncertainty or knowledge

44 Predictive Uncertainty Estimation

Figure 3.7 Low-dimensional manifold of data in high-dimensional input space. This figure
shows both the in-domain data and out-of-distribution data lying on the same 2-dimensional
manifold in a 3-D input space.

uncertainty. This leads to a complication - in order to distinguish out-of-domain and in-
domain inputs this approach implicitly assumes the entropy of the model’s posterior over
classes never reaches a maximum in-domain. Otherwise, a high entropy posterior over classes
could indicate uncertainty in the prediction due to either an in-domain input in a region
of severe class overlap or an out-of-distribution input far from the training data. However,
this assumption may or may not hold, depending on the nature of the in-domain data. As a
result, while it is possible to determine whether the model is uncertain, it may not always
be possible to robustly determine why the model is uncertain using this approach. This is a
detriment to applications where it is necessary to determine the source of uncertainty.

This problem is illustrated on the 3-class artificial datasets introduced in section 3.1.1.
Figure 3.8 shows the entropy of the predictive posterior derived from a pair of DNNs trained
on the Low Data Uncertainty and High Data Uncertainty datasets, respectively, using the
loss specified in equation 3.22. The out-of-distribution training data was sampled as shown
in figure 3.6c. Figure 3.8 shows that the entropy is high in the entire out-of-domain region
on both the LDU and HDU datasets, which is the desired out-of-distribution behaviours.
However, the entropy is also high along the decision boundaries, which is most clearly seen
in figure 3.8b. In fact, the entropy is equally high in the region where all classes overlap and

3.3 Estimating Knowledge Uncertainty via Single Models 45

(a) Total Uncertainty (b) Total Uncertainty

Figure 3.8 Entropy of predictive posterior H[P(y|x; θ̂)] derived from DNNs trained in a
multi-task fashion on the LDU and HDU datasets using equation 3.22. The DNNs had 2
layers of 100 ReLU units.

out-of-distribution. This makes it difficult to distinguish inputs associated with a high degree
of data uncertainty from inputs associated with a high degree of knowledge uncertainty.

An ad-hoc solution is to introduce an extra ‘output head’ to yield the probability of the
input being in-domain P(in|x∗; θ̂):

P(y|x∗; θ̂) = Cat(y; π̂)

P(in|x∗; θ̂) = π̂in

{π̂, π̂in} = f(x∗; θ̂)

(3.23)

This model would use the softmax to yield a distribution over classes, from which measures
of total uncertainty are derived, and a separate probabilistic output head, which gives the
probability of the input being in-domain. Such a model can be trained in a multi-task fashion
with the following loss:

L(θ,D) = LMT (θ,D) + γ · LAD(θ,D)

LAD(θ,D) = −
(
Ep̂tr(x)

[
ln P(in|x;θ)

]︸ ︷︷ ︸
In−Domain Loss

+Ep̂out(x)

[
ln
(
1− P(in|x;θ)

)]︸ ︷︷ ︸
Out−of−Distribution Loss

)
(3.24)

Given this model, if the entropy of the predictive posterior is high and the probability of
in-domain is high, then there is a high level of data uncertainty. Conversely, if the entropy is
high, but probability of in-domain is low, then there is a high level of knowledge uncertainty.

46 Predictive Uncertainty Estimation

(a) Low Data Uncertainty dataset (b) High Data Uncertainty dataset

Figure 3.9 Probability of in-domain input derived from DNNs with an additional output head
trained on the LDU and HDU datasets via equation 3.24. The DNNs had 2 layers of 100
ReLU units. Note, the color scale is inverted and white corresponds to high values in this
figure.

This approach is illustrated on the 3-class artificial LDU and HDU datasets in figure 3.9,
which shows the output of the extra output head for DNNs trained on these datasets using
the loss in equation 3.24. The probability of input being in-domain is high in-domain, even
in region of class overlap and long decision boundaries, and low elsewhere, which is the
desired behaviour. Clearly, this approach alleviates the issues of conflating data uncertainty
with knowledge uncertainty. However, it is not clear how to interpret estimates of data and
knowledge uncertainty within a single consistent probabilistic framework. Specifically, while
this approach could work from a practical point of view, it can only answer the question
"what is the probability that the input is in-domain?". It does not allow questions about how
much uncertainty there is in the prediction of a particular class due to knowledge uncertainty
to be posed. It is necessary to point out that while figures 3.8 and 3.9 show that it is possible
to choose OOD training data which allows the model to learn to yield high estimates of
uncertainty out-of-distribution, the task of choosing OOD training data for real tasks and
datasets is highly non-trivial.

3.3.2 Single Model Approaches for Regression

Having discussed how to train neural probabilistic models for classification to capture esti-
mates of knowledge uncertainty, we now discuss how the same can be done for probabilistic
regression models. As discussed in section 3.1.2, knowledge uncertainty for regression

3.3 Estimating Knowledge Uncertainty via Single Models 47

Input features

G
ra
d
e

Training data

Mean

Variance

Figure 3.10 Illustration of a toy 1-dimensional Gaussian Process. The variance (uncertainty)
increases the further the input is away from the region of training data.

models is uncertainty in both the underlying systematic mapping x 7→ y, represented by the
function f(x), and the nature of the additive homoscedastic/heteroscedastic noise p(ϵ) for
out-of-domain test inputs x∗. Consider figure 3.10 which shows a toy 1-dimensional Gaus-
sian Process, a non-parametric Bayesian model7, whose variance, an estimate of knowledge
uncertainty, increases the further the input is from the region on training data. Gaussian
Processes, being non-parametric models, do this by measuring an ‘average distance’ from
the test input x∗ to the training data. However, neural networks are parametric models and
function in a fundamentally different way to Gaussian Processes, so it is not possible to
use measures of distance between an input and the training data. The goal is to construct
a model p(y|x;θ) which emulates the behaviour of a Gaussian Process. Specifically, the
model should yield increasing estimates of uncertainty, via differential entropy (eqn. 3.21),
for example, as the further the input is away from the region of training data.

Having defined the desired behaviour, let’s consider how it can be achieved. As was
previously discussed, there are no guarantees on the behavior of a neural network trained via
maximum likelihood on out-of-distribution inputs. One way to ensure that a Density Network
parameterized by a neural network yields high-entropy posteriors for out-of-distribution
inputs is to explicitly train it to do so via multi-task training [80]. Here, a multi-task loss is
specified for in-domain training data Dtrn and out-of-distribution training data DOOD:

L(θ,D) = Lin(θ,Dtrn) + γ · Lout(θ,DOOD) (3.25)

7More information about Gaussian Process models can be found in chapter 7.

48 Predictive Uncertainty Estimation

where γ is the weight of the out-of-distribution loss. Here the in-domain loss is the KL-
divergence between the model and a ‘teacher model’ p(y|x; θ̃) trained on in-domain data:

Lin(θ,Dtrn) = Ep̂tr(y,x)

[
KL[p(y|x; θ̃)||p(y|x;θ)]

]
(3.26)

The teacher model can be constructed by training a standard Density Network on in-domain
data via maximum likelihood. The limitation of this loss function is that if the Density
Network is a mixture density network the KL divergence between the teacher and target
model can only be exactly computed if they have the same number of mixture components
and each component is individually matched. Otherwise, KL-divergence is intractable and an
approximation will need to be used. For out-of-distribution data the KL-divergence between
the model and high-entropy out-of-domain distribution pout(y) is minimized:

Lout(θ,Dout) = Ep̂out(x)

[
KL[pout(y)||p(y|x;θ)]

]
(3.27)

The target out-of-domain distribution pout(y) should have then same form as the output
distribution of the Density Network. One potential choice of pout(y) is to use the marginal
distribution of the training data ptr(y), as the differential entropy of the marginal ptr(y) is
equal to or larger than the mean differential entropy of the conditional distribution ptr(y|x),
as shown in section 3.1.2.

Conceptually, this approach is similar to the one discussed for classification tasks [73].
The idea is the same - to explicitly build in knowledge about the limits of the model’s
knowledge. In the context of regression this can be interpreted as training a model to emulate
a Gaussian Process and yield increasingly high variances further away from the region of
training data. Just like the approach discussed in the previous section, this approach requires
out-of-distribution training data, sampled from an out-of-domain distribution pout(x), which
may be non-trivial to obtain. This data must be close to the in-domain data and to lie on
(or near to) the same data manifold in order to learn to tight decision boundary between the
in-domain region and everything else.

However, this approach suffers from a similar issue to the one discussed for classification
in the previous section - the differential entropy of the posterior over classes becomes a
measure of total uncertainty. This means that it is difficult to know a-priori whether the model
is yielding a high differential entropy posterior due to having an out-of-distribution input or
due to being in a region of particularly high heteroscedastic noise. However, unlike similar
approaches for classification, where the entropy of the posterior is bounded, it may be possible
to construct a pout(y) whose differential entropy is far higher for out-of-distribution data

3.4 Estimating Knowledge Uncertainty via Ensembles 49

than for in-domain data, depending on the choice of output density function parameterized
by the model. While this may work in practice, it is still a heuristic approach. Furthermore,
this may adversely affect the model due to such practicalities as having different dynamic
ranges for in-domain and out-of-distribution differential entropy. It is possible to apply
the same ad-hoc solution of having an extra separate output head to yield probability of
in-domain P(in|x; θ̂). However, just as in the case of classification, it is difficult to interpret
the uncertainty estimates within a single unified probabilistic framework.

3.4 Estimating Knowledge Uncertainty via Ensembles

The previous section discussed how knowledge about the limitations of a model’s knowledge
can be explicitly build into a single model P(y|x; θ̂). However, these approaches require out-
of-distribution training data and either don’t allow sources of uncertainty to be determined,
or do so in an ad-hoc fashion. The current section discusses how measures of knowledge
uncertainty can be obtained by considering an ensemble of modelsM, where each model
M is defined both by the model parameters θ and the architectural choices Λ, such as
architecture, initialization, training scheme, etc... Note, that a change of notation is made
in this section for generality. This change of notation is for generality of discussion. Here,
instead of explicitly building in knowledge into a single mode, ensemble approaches make use
of the property that a single model P(y|x∗,M(m)) displays a particular range of behaviours
for in-domain data and has ‘undefined’ behaviour for out-of-distribution data. An ensemble
of independent models {P(y|x∗,M(m))}Mm=1 is therefore going to be consistent in-domain
and yield a diverse set of predictions for inputs which are out-of-distribution, as each model
will yield a different ‘undefined behaviour’. By using this property of an ensemble, both
data uncertainty and knowledge or distributional uncertainty can be assessed within a single
consistent probabilistic framework without the need for out-of-distribution training data. The
current section discusses ensemble approaches for both classification and regression models,
as well as their limitations.

3.4.1 Ensemble Approaches for Classification

In this thesis a Bayesian viewpoint on ensembles is adopted, as it provides a particularly
elegant probabilistic framework which allows distributional uncertainty to be linked to
Bayesian model uncertainty. The essence of Bayesian methods is to treat the modelsM
as random variables and place a prior distribution p(M) over them to compute a posterior

50 Predictive Uncertainty Estimation

distribution over models p(M|D) via Bayes’ rule:

p(M|D) = p(D|M)p(M)

p(D)
∝ p(D|M)p(M)

∝ p(D|θ,Λ)p(θ|λ)P(Λ)

(3.28)

Here, model uncertainty is captured in the posterior distribution p(M|D). The expected
predictive distribution for a test input x∗ is obtained by taking the expectation with respect to
the model posterior:

P(y|x∗,D) = Ep(M|D)

[
P(y|x∗,M)

]
(3.29)

In practice it is standard to work with distributions over model parameters θ rather than ar-
chitectures. Typically, a particular model architecture λ̂ is chosen and a posterior distribution
over the model parameters θ is computed:

p(θ|D,Λ = λ̂) ∝ p(D|θ,Λ = λ̂)p(θ|Λ = λ̂) (3.30)

However for the sake of generality in this section posteriors over modelsM rather than
model parameters are considered.

Consider an ensemble {P(y|x∗,M(m))}Mm=1 of models sampled from the posterior
p(M|D). Each of the models M yields a different estimate of data uncertainty. Un-
certainty in predictions due to model uncertainty is expressed as the level of spread, or
‘disagreement’, of a ensemble sampled from the posterior. The aim is to craft a posterior
p(M|D), via appropriate choice of prior p(M), which yields an ensemble that exhibits
the set of behaviours described in figure 3.11. Specifically, for an in-domain test input x∗

the ensemble should yield a consistent set of predictions with little spread, as described in
figure 3.11a and figure 3.11b. In other words, the models should agree in their estimates of
data uncertainty. On the other hand, for inputs which are different from the training data the
models in the ensemble should ‘disagree’ and produce a diverse set of predictions, as shown
in figure 3.11c. Ideally, the models should yield increasingly diverse predictions as input
x∗ moves further away from the training data. If an input is completely unlike the training
data, then the level of disagreement should be significant. Measures of model uncertainty
will capture knowledge uncertainty given an appropriate choice of prior. However, if a prior
p(M) which doesn’t yield the behavior in figure 3.11 is chosen, then model uncertainty will
not capture knowledge uncertainty. Thus, while single model approaches explicitly build

3.4 Estimating Knowledge Uncertainty via Ensembles 51

(a) In-domain input with low uncertainty (b) In-domain input with high data uncertainty

(c) Out-of-distribution input

Figure 3.11 Desired behaviors of an ensemble of classification models. Figures A and B
show a consistent ensemble in a region of low/high data uncertainty, respectively. Figure C
shows a diverse ensemble for an out-of-distribution input.

in knowledge about the limitations of the model’s knowledge via training data, ensemble
approaches implicitly build in this knowledge via choice of prior.

Given an ensemble {P(y|x∗,M(m))}Mm=1 which exhibits the desired set of behaviours,
the entropy of the expected distribution P(y|x∗,D) can be used as a measure of total un-
certainty in the prediction. Effectively P(y|x∗,D) is a ‘single model’ whose behaviour
out-of-distribution is determined via ensemble diversity rather than out-of-distribution train-
ing data. Just as in the case of a single model, it is not possible to determine from the entropy
of the predictive posterior whether this uncertainty is due to a high degree of data or model
uncertainty. Howevever, uncertainty in predictions due to model uncertainty can be assessed
via measures of the spread, or ‘disagreement’, of the ensemble such as Mutual Information:

I[y,M|x∗,D]︸ ︷︷ ︸
Model Uncertainty

= H
[
Ep(M|D)[P(y|x∗,M)]

]︸ ︷︷ ︸
Total Uncertainty

−Ep(M|D)

[
H[P(y|x∗,M)]

]︸ ︷︷ ︸
Expected Data Uncertainty

(3.31)

52 Predictive Uncertainty Estimation

This formulation of mutual information allows the total uncertainty to decomposed into
model uncertainty and expected data uncertainty. The entropy of the expected distribution,
or total uncertainty, will be high whenever the model is uncertain - both in regions of severe
class overlap and out-of-domain. However, the difference of the entropy of the expected
posterior and the expected entropy of the posterior will be non-zero only if the models
disagree. For example, in regions of class overlap each member of the ensemble should
yield a high entropy posterior (figure 3.11b) - the entropy of the expected and the expected
entropy will be similar and mutual information will be low. In this situation total uncertainty
is dominated by data uncertainty. On the other hand, for out-of-domain inputs the ensemble
yields diverse posterior distributions over classes such that the expected posterior over classes
is near uniform (figure 3.11c) while the expected entropy may be much lower. In this region
of input space the models’ understanding of data is low and the estimates of expected data
uncertainty are poor.

An alternative measure of ensemble diversity is the Expected Pairwise KL-Divergence
between each model in the ensemble. Here the expected KL-divergence between independent
samples from p(M|D) is computed:

K[y,M|x∗,D]︸ ︷︷ ︸
Model Uncertainty

= Ep(M1|D)p(M2|D)

[
KL[P(y|x∗,M1)||P(y|x∗,M2)]

]

= −
K∑
c=1

Ep(M1|D)[P(y|x∗,M1)]EP(M2|D)[ln P(y|x∗,M2)]︸ ︷︷ ︸
Total Uncertainty

− Ep(M|D)

[
H[P(y|x∗,M)]

]︸ ︷︷ ︸
Expected Data Uncertainty

≥I[y,M|x∗,D]

(3.32)

where p(M1|D) = p(M2|D). Interestingly, this measure is an upper bound on the mutual
information and also allows total uncertainty to be decomposed into model uncertainty and
data uncertainty. Notably, only estimates of model uncertainty differ, while the estimate of
data uncertainty provided by both decompositions is the same.

So far ensembles have been shown to have desirable theoretical properties which give
them an advantage over single-model approaches. However, there are several practical
difficulties when working with ensembles. Firstly, inference using an ensemble is M times
more computationally expensive than for single model approaches. Given the expression
for the predictive posterior of an ensemble, mutual information and expected pairwise KL-
divergence given in equations 3.29, 3.31 and 3.32, one may wish to obtain closed-form

3.4 Estimating Knowledge Uncertainty via Ensembles 53

expressions and avoid using an ensemble of models in the first place. However, all these
expectations are intractable for neural network models, which is why it is necessary to
approximate them via an ensemble in the first place.

The second limitation is that obtaining p(M|D) is usually intractable for neural networks.
To address this model posterior is approximated using either an explicit or implicit variational
approximation p(M|D) ≈ q(M). There is a range of approximate inference approaches.
Notably, ‘Bayes by Backprop’ [13] and ‘Probabilistic back-propagation’ [51] are two approx-
imate inference approaches which attempt to provide an approximate variational posterior
q(θ). Unfortunately, neither method scales to large tasks. Alternatively some approaches
attempt to link stochastic optimization with noise on the gradients to Markov Chain Monte-
Carlo sampling from the model posterior p(θ|D) via Langevin Dynamics [127]. Another
approximate inference scheme is Monte-Carlo dropout [36], which approximates sampling
from an implicit variational posterior by doing test-time Monte-Carlo dropout, as described
in section 2.2.3. Monte-Carlo Dropout is currently the most widespread, computationally
cheap and simplest to implement approximate Bayesian approach to generating an ensemble
of models which has been applied to a range of tasks [60, 61].

Unfortunately all of these approaches assume priors of convenience, such as independent
Gaussian priors, which do not necessarily yield ensembles with the desired properties. In
general, it is difficult to select an appropriate model prior and model architecture to craft a
model posterior which induces an ensemble with the desired properties for deep, distributed
black-box models with millions of parameters, such as neural networks. Furthermore, the
need to approximate the true posterior with an approximation adds further complication, as
selection of the desired properties of the ensemble now needs to be incorporated into the
approximate inference scheme. This makes it hard to guarantee the desired properties of
the ensemble for current state-of-the-art Deep Learning models. Consequently measures of
ensemble diversity may fail to accurately capture knowledge uncertainty in practice.

It is necessary to point out that while the discussion of ensembles so far has been from
a Bayesian viewpoint, it is possible construct ensembles using a range of non-Bayesian
approaches. For example, it is possible to explicitly construct an ensemble of M models by
training on the same data with different random seeds [68] and/or different model architec-
tures. Alternatively, it is possible to generate ensembles via Bootstrap approaches [92, 99],
where each model is trained on a re-sampled version of the training data. These approaches
have the same attributes and the same measures of uncertainty can be derived as for Bayesian
ensembles. The difference lies in how the behaviour and diversity of the ensemble is con-
trolled. However, it is similarly difficult to guarantee the diversity of ensembles generated
using these non-Bayesian approaches.

54 Predictive Uncertainty Estimation

Having discussed the properties and limitations of ensemble approaches in detail, we
now illustrate the performance of an ensemble of models trained on the toy 3-class dataset
introduced in section 3.1.1. Figure 3.12 shows the behaviour of measures of uncertainty
derived from an ensemble of 10 models trained on the low data uncertainty version of the
artificial dataset (no class overlap). The total uncertainty, given by the entropy of the expected
predictive distribution, is high in a broadening region along the decision boundaries. The
expected data uncertainty, given by the average conditional entropy of the models in the
ensemble, is highest along the decision boundaries in-domain and decrease further out. The
mutual information, obtained via equation 3.31, is high only out-of-distribution and low
in-domain. Finally, the expected pairwise KL divergence, derived via equation 3.32, has
the same attributes as mutual information, but is significantly higher. Thus, the measures of
uncertainty derived from an ensemble naturally decompose into knowledge uncertainty and
data uncertainty.

However, unlike the measures of uncertainty derived from a single model shown in
figure 3.8, all measures of uncertainty derived from the ensemble are low out-of-domain
far from the decision boundaries. This illustrates that even on toy datasets it is difficult to
guarantee the desired behaviour everywhere out-of-distribution 8.

3.4.2 Ensemble Approaches for Regression

Ensemble approaches can be applied to obtain measures of knowledge uncertainty for
regression tasks in same was as for classification tasks. Consider an ensemble of Density
Networks {p(y|x,M(m))}Mm=1 sampled from the model posterior p(M|D). The goal is to
choose a prior p(M) such that it yields an ensemble which is consistent in-domain and
diverse out-of-domain. To illustrate, consider an ensemble of density networks where each
model parameterizes a multivariate normal output distribution. This ensemble must be
constructed to yield the behaviors described in figure 3.13. Specifically, if the input is in
an in-domain region of (relative) low data uncertainty, which for regression tasks takes
the form of homoscedastic or heteroscedastic noise, then predictions should be consistent
and the variance should be small, as shown in figure 3.13a. If the input lies in a region
of heavy noise, then the variance should be large, as shown in figure 3.13b. Finally, if
then input is out-of-distribution, then the ensemble should be highly diverse as shown in
figure 3.13c. Note, that there is diversity both in the means µ̂(m) predicted by the ensemble
and the estimates of data uncertainty given by the predicted covariances Σ̂(m) of each density

8Figures describing behaviour of an ensemble trained on the HDU data and ensembles obtained via
Monte-Carlo dropout are omitted here, as they have the same characteristics.

3.4 Estimating Knowledge Uncertainty via Ensembles 55

(a) Total Uncertainty (b) Expected Data Uncertainty

(c) Mutual Information (d) Expected Pairwise KL-divergence

Figure 3.12 Evaluation of measures of uncertainty derived from an ensemble of models
trained on the Low Data Uncertainty artificial dataset with maximum likelihood starting from
different random initializations. Total Uncertainty, Expected Data Uncertainty and Mutual
Information are derived using equation 3.31 and Expected Pairwise KL-divergence using
equation 3.32. All models have 2 hidden layers of 100 ReLU units.

network. The effect of knowledge uncertainty on both the estimates of data uncertainty and
the prediction is explicit for regression models, as discussed in section 3.1.2.

Given an ensembles of density networks, the predictive distribution is obtained by
integrating out the model parameters:

p(y|x∗,D) = Ep(M|D)

[
p(y|x∗,M)

]
(3.33)

The differential entropy of the predictive distributionH
[
p(y|x∗,D)

]
becomes a measure of

total uncertainty and has the same attributes as the differential entropy of a single model
trained using approaches discussed in the previous section. The diversity of the ensemble

56 Predictive Uncertainty Estimation

(a) In-domain input with low uncertainty (b) In-domain input with high data uncertainty

(c) Out-of-distribution input

Figure 3.13 Desired an ensemble of regression models which parameterize 2D multivariate
normal output distributions. Figures A and B show the means and the variances of the
ensemble coincide, while in figure C both the means and the variances are highly diverse.

can be assessed via the mutual information:

I[y,M|x∗,D]︸ ︷︷ ︸
Model Uncertainty

= H
[
Ep(M|D)[p(y|x∗,M)]

]︸ ︷︷ ︸
Total Uncertainty

−Ep(M|D)

[
H[p(y|x∗,M)]

]︸ ︷︷ ︸
Expected Data Uncertainty

(3.34)

which allows total uncertainty to be decomposed into model uncertainty and expected data
uncertainty. Note that although differential entropy is unbounded, the mutual information is
bounded from below and is always greater or equal to zero, as it is in fact a KL divergence.

3.5 Limits to Modelling Knowledge Uncertainty 57

In general, mutual information will be intractable to compute, as the differential entropy
of a sum of density functions is intractable. However, if there exists a closed-form solution for
the KL-divergence between the output distributions parameterized by the Density Network,
then it is possible to consider the expected pairwise KL-divergence between all density
networks:

K[y,M|x∗,D]︸ ︷︷ ︸
Model Uncertainty

= Ep(M1|D)p(M2|D)

[
KL[p(y|x∗,M1)||p(y|x∗,M2)]

]
(3.35)

which has the same properties as mutual information. Unfortunately, there is no general
closed-form solution for the KL-divergence between Mixture Density Networks, making
both the mutual information and the expected pairwise KL-divergence intractable. While
it is possible to consider approximations, it is not clear what properties of each measure
remain. An alternative is to step away from information theoretic measures of uncertainty
and examine second and higher order moments. Consider the law of total variance [28]:

V[y|x∗]︸ ︷︷ ︸
Total Uncertainty

= Vp(M|D)

[
Ep(y|x∗,M)[y]

]︸ ︷︷ ︸
Model Uncertainty

+Ep(M|D)

[
Vp(y|x∗,M)[y]

]︸ ︷︷ ︸
Expected Data Uncertainty

(3.36)

here the total variance of V[y|x∗] is decomposed into expected variance (data uncertainty)
and variance of the means of each model in the ensemble (model uncertainty). This is
conceptually similar to the decomposition available through mutual information, which
separates out total uncertainty into model and expected data uncertainties. However, as
this only considers second order moments, some information regarding the structure of
uncertainty is lost. It is possible to further characterize the uncertainty by consider higher
order moments via the law of total cumulance, however the resulting expressions may be
unwieldly.

3.5 Limits to Modelling Knowledge Uncertainty

As discussed in section 3.1, knowledge uncertainty, as defined in this thesis, in the general
case will arise due to mismatch between the joint distributions ptr(x, y) and pout(x, y) or
between ptr(x,y) and pout(x,y) for classification and regression tasks, respectively. This is
also known as dataset shift and has been studied extensively [102]. Here we examine the
nature of this mismatch in greater detail and the limitations to detecting it for discriminative
tasks. Consider an unobserved latent variable S which represents the domain and a joint

58 Predictive Uncertainty Estimation

s
x

y
(a) Domain s affect p(x, y)

s
x

y
(b) Domain s affects P(y)

s
x

y
(c) Domain s affects p(x)

Figure 3.14 Relationships between domain variable S, inputs x and targets y.

distribution over {x, y} which is conditioned on it, such that:

ptr(x, y) = p(x, y|S = s1)

pout(x, y) = p(x, y|S = s2)
(3.37)

This describes the scenario where the domain variable s affects the joint distribution. The
associated dependency structure between domain S and the variables {x, y} is as described
in figure 3.14a. In an image classification task, this can correspond to defining a distribution
over a different set of images and associated classes altogether. It also possible to consider
situations where the domains affects only the marginal distributions over either x or y, as
described in figures 3.14b and 3.14c, respectively.

The situation where the domain only affects P(y), also known as prior probability shift
[102], can correspond to changing the distribution over classes, such adding new classes. This
is a situation which corresponds to the task itself changing. In the context of classification,
this is not a situation which the system designer would allow to occur. However, in the
context of regression prior probability shift corresponds to the underlying process changing
such that the same x now map to a different set of y, which is not an impossible situation
to occur. Consider predicting the amount of calories burned based on pulse, blood pressure
and walking distance - depending on the metabolism of the person, the same distribution of
pressure, pulse and distance can correspond to very different levels of calorie expenditure.
On the other hand, the situation where the domain affects only p(x), called covariate shift
[102], can correspond to the model being exposed to an outlier image which corresponds to
new, unseen classes, for example. This can happen often in typical deployment scenarios.
There is a range of other, more subtle, forms of dataset shift discussed in [102].However they
are outside the scope of the current discussion.

3.6 Chapter Summary 59

In a real deployment scenario for discriminative models trained on unstructured data
(where x 7→ y) neither the domain variable S nor true targets y are observable. This limits
the nature of distributional mismatches which are detectable, as it is impossible to detect
prior probability shift (shift of the marginal P(y)) based on samples of x. Thus, disciminative
models are only able detect the distributional mismatches where some form of covariate shift
occurs - either when S affects the joint distribution over x and y or only the marginal over x.

3.6 Chapter Summary

This chapter discussed the area of estimation of the uncertainty in the predictions of paramet-
ric models for classification and regression. Two main sources of uncertainty in predictions
were defined - data uncertainty and knowledge uncertainty in section 3.1. The former relates
to the natural noise and class overlap in the data while the latter refers to the distributional
mismatch between training and test data. In section 3.2 it was shown that probabilistic
discriminative models will naturally capture estimates of data uncertainty as a consequence
of maximum likelihood training, subject to the conditions that they have sufficient capacity
and are exposed to a large amount of training data. In the case of regression models, it is
also necessary to either specify the appropriate output density functions for the model to
parameterize or to use a mixture density network[10] with a sufficient number of mixture
components in order to be able to minimize the reducible loss in equation 3.20.

Two classes of approaches to capturing estimates of knowledge uncertainty were discussed
in this chapter - single model approaches discussed in section 3.3, and ensemble approaches,
discussed in section 3.4. Single model approaches derive uncertainty estimates from a
single model’s output posterior distribution and/or additional output heads. Crucially, these
approaches require extra out-of-distribution training data in order to learn a decision boundary
between the in-domain and out-of-domain regions. While it is easy to construct this data
for toy tasks, like the Low Data Uncertainty and High Data Uncertainty datasets introduced
in section 3.1, construction of out-of-distribution training data for real tasks and datasets
is a non-trivial process and an open research question. Ensemble approaches, on the other
hand, derive estimates of knowledge uncertainty via measures of diversity of an ensemble of
models. These approaches allow the sources of uncertainty to be decomposed via measures of
uncertainty such as mutual information (equation 3.31) and expected pairwise KL divergence
(equation 3.32). The behaviour of an ensemble is controlled, either explicitly or implicitly,
via choice of prior over models or model parameters and the approximate inference scheme.
Unfortunately, in practice it is difficult to guarantee the desired behavior of an ensemble of
neural network models, as was shown in figure 3.12.

60 Predictive Uncertainty Estimation

Finally, section 3.5 discussed the limitations of modelling knowledge uncertainty by
discriminative models operating on unstructured data (x 7→ y). Specifically, it is stated that
only knowledge uncertainty due to a change in the behaviour of the inputs x, a situation
called covariate shift, is detectable, as only the input x is observable in real deployment
scenarios.

Chapter 4

Prior Networks

As discussed in the previous chapter, data uncertainty is captured naturally as part of maxi-
mum likelihood training of probabilistic models, given that certain conditions are satisfied.
However, modelling knowledge uncertainty is more complicated. The previous chapter
discussed single model and ensemble approaches to estimating knowledge uncertainty in
section 3.3 and 3.4. Single model approaches are easy to train and computationally cheap,
but do not allow data uncertainty and knowledge uncertainty to be assessed separately within
a single consistent probabilistic framework. Furthermore, they require out-of-distribution
training data in order to define their behaviour for OOD inputs and obtaining such data may
be a non-trivial task. On the other hand, ensemble approaches, which derive uncertainty
estimates from the diversity of an ensemble of models, have desirable theoretical properties,
such as being able to decompose total uncertainty into data uncertainty and knowledge uncer-
tainty and not requiring any out-of-distribution training data. However, ensemble approaches
may be significantly computationally more expensive than single model approaches, and it is
hard to control the diversity of an ensemble in practice.

The current chapter presents the main theoretical contributions of this thesis - a new class
of models called Prior Networks. By directly parameterizing a conditional distribution over
output distributions, Prior Networks emulate ensembles, which can be seen as samples from
an implicit conditional distribution over distributions. This allows Prior Networks to combine
the elegant theoretical properties of ensembles with the practical advantages of single model
approaches.

This chapter is structured as follows - the general attributes of Prior Networks and
measures of uncertainty are discussed in sections 4.1; Prior Networks for classification are
discussed in section 4.2; training criteria for classification Prior Networks are investigated
in section 4.2.2 and evaluated on the artificial Low Data Uncertainty and High Data Un-
certainty datasets from the previous chapter in section 4.2.3; Prior Networks for regression

62 Prior Networks

are discussed in section 4.3; training criteria for regression Prior Networks are discussed in
section 4.3.2.

4.1 General Attributes of Prior Networks

Consider an ensemble of classification models {P(y|x∗,M(m))}Mm=1 sampled from the model
posterior p(M|D). This ensemble can be viewed as an ensemble of categorical output distri-
butions {Cat(y;π(m))}Mm=1, where the parameters π(m) of output distribution are assumed
to be deterministic given the architecture, model parameters and input x∗:

{P(y|x∗,M(m))}Mm=1 = {Cat(y|π(m))}Mm=1

π(m) = f(x∗;M(m)), M(m) ∼ p(M|D)
(4.1)

The crucial insight in this chapter is that this ensemble can equivalently be seen as an
ensemble of categorical output distributions {Cat(y;π(m))}Mm=1 sampled from an implicit
conditional distribution over output distributions p(π|x∗,D):

{P(y|x∗,M(m))}Mm=1 → {Cat(y;π(m))}Mm=1, π
(m) ∼ p(π|x∗,D) (4.2)

Similarly, ensembles of density networks {p(y|x∗,M(m))}Mm=1 can be interpreted as an
ensemble of probability density functions {p(y|µ(m),Σ(m))}Mm=1 sampled from a conditional
distribution over output distributions p(µ,Σ|x∗,D). Further intuition can be obtained by
considering figure 4.1. The output distributions of an ensemble {P(y|x∗,M(m)}Mm=1 for both
in-domain and out-of domain inputs are depicted as points on a K − 1 dimensional standard
simplex in figures 4.1a and 4.1b, respectively. These output distributions can be considered to
be sampled from a conditional distribution over output distributions p(π|x∗,D), visualized
in figures 4.1c and 4.1d.

Using more general notation, ensemble approaches can be seen as sampling output
distributions P(y|py)1 from an implicit distribution over output distributions p(py|x∗,D).
This implicit distribution is constructed to yield consistent output distributions P(y|py) in-
domain and diverse output distributions P(y|py) out-of-domain. This behaviour, in a Bayesian
framework, is obtained via appropriate choice of prior distribution p(M) and approximate
inference method. However, controlling the behavior of the implicit distribution over output

1This is a general notation for an arbitrary output distribution over discrete variables used in this thesis,
and py are parameters of this arbitrary output distribution. An arbitrary output distribution over continuous
variables is p(y|py).

4.1 General Attributes of Prior Networks 63

distributions indirectly by appropriate selection of prior and approximate inference method is
difficult, as discussed in section 3.4.

In this thesis we instead propose to directly parameterize a conditional distribution
over output distributions p(py|x∗, θ̂) using a neural network. This class of models will be
referred to as Prior Networks because the model parameterizes prior distributions over output
distributions P(y|py)2. Prior Networks will be explicitly trained, via methods previously
discussed for single model approaches, to emulate the same behaviours of the distribution over
output distributions implicit in ensemble methods. This should yield a model which works
within the same theoretical framework as ensemble approaches, but has the computational
efficiency of single model approaches.

(a) {P(y|x∗,M(m)}Mm=1 for in-domain x∗ (b) {P(y|x∗,M(m)}Mm=1 for out-of-
domain x∗

(c) p(π|x∗,D) for in-domain x∗ (d) p(π|x∗,D) for out-of-domain x∗

Figure 4.1 The predictions of an ensemble for in-domain and out-of-domain inputs are
visualized on a simplex and compared to the implicit distribution from they were sampled.

Before discussing Prior Networks specifically for classification and regression, let’s
consider general properties of Prior Networks in more detail. Prior Networks specify a
conditional distribution p(py|x∗, θ̂) over point-estimate output distributions P(y|py). The
aim is to emulate the behaviour of an ensemble of models using a single parametric model.
Given a Prior Network p(py|x∗; θ̂), the predictive distribution will be given by the expected

2In hindsight, a more appropriate name would have been Posterior Network.

64 Prior Networks

distribution under the Prior Network:

P(y|x∗; θ̂) = Ep(py|x∗;θ̂)

[
P(y|py)

]
(4.3)

Estimates of data uncertainty are captured by the point-estimate output distributions P(y|py).
Each sample py represents a different estimate of data uncertainty at a particular input
x∗, similarly to how each model in an ensemble captures a different estimate of data
uncertainty. Knowledge uncertainty is described by measures of spread of P(y|py), similar
to how measures of spread of an ensemble capture knowledge uncertainty.

(a) In-domain input with low uncertainty (b) In-domain input with high data uncertainty

(c) Out-of-distribution input

Figure 4.2 Desired behaviors of a distribution over categorical output distributions.

In order to be able to appropriately capture both data and knowledge uncertainty an
explicit distribution over output distributions parameterized by a Prior Network should have
the same properties as the ensembles discussed in section 3.4. Specifically, a Prior Network
should yield a sharp distribution p(py|x∗, θ̂) over low-entropy output distributions P(y|py)
when it is confident in its prediction. For an input in a region with high degrees of data
uncertainty a Prior Network should yield a sharp distribution focused on a high-entropy

4.1 General Attributes of Prior Networks 65

output distributions P(y|py), which corresponds to being confident in not being able to
properly classify/predict a value due to data uncertainty. Finally, for ‘out-of-distribution’
inputs the Prior Network should yield a high entropy distribution over distributions. For
classification models these behaviours can be visualized on a simplex, as shown in figure 4.2.
Note, however, that a more nuanced description of in-domain behaviour would be a sharp
prior distribution with the mean located on a point on the simplex which corresponds to the
appropriate level of data uncertainty.

Given a Prior Network which yields the behaviours described above, the total uncertainty
in the prediction will be given by the entropy (or differential entropy) of the predictive
distribution (equation 4.3), just like for single model and ensemble approaches. However,
as is the case of ensembles, it is possible to decompose the total uncertainty into data
uncertainty and knowledge uncertainty via measures of spread of P(y|py), such as mutual
information:

I[y, py|x∗; θ̂]︸ ︷︷ ︸
Knowledge Uncertainty

= H
[
Ep(py|x∗;θ̂)[P(y|py)]

]︸ ︷︷ ︸
Total Uncertainty

−Ep(py|x∗;θ̂)

[
H[P(y|py)]

]︸ ︷︷ ︸
Expected Data Uncertainty

(4.4)

It is also possible to use the expected pairwise KL divergence between pairs of independent
samples from a Prior Network as a measure of spread:

K[p(py|x∗, θ̂)] = E
p(p

(1)
y |x∗,θ̂)p(p

(2)
y |x∗,θ̂)

[
KL[P(y|p(1)y)||P(y|p(2)y)]

]
(4.5)

where p(p
(1)
y |x∗, θ̂) = p(p

(2)
y |x∗, θ̂). As was shown in section 3.3.1, expected pairwise

KL divergence is an upper bound on mutual information and can also be decomposed into
estimates of expected data uncertainty and knowledge uncertainty. Finally, it also possible to
calculate the differential entropy, a measure of concentration of probability density, of the
Prior Network:

H[p(py|x∗, θ̂)] = −
∫

p(py|x∗; θ̂) ln(p(py|x∗; θ̂))dpy (4.6)

As will be shown later, given appropriate choice of prior distribution over categorical
distributions or probability density functions, it is possible to calculate all of these measures
in closed form without sampling. This makes Prior Networks a non-ad hoc single model ap-
proach which is both computationally efficient and operates within a consistent probabilistic
framework, combining the best properties of single model and ensemble approaches.

Having discussed the general properties of Prior Networks, it is necessary to discuss
how they can be trained. This work considers a method for training Prior Networks based

66 Prior Networks

on approaches for single models described in in chapter 3 section 3.3. A Prior Network
is explicitly trained in a multi-task fashion to yield the behaviors, described in figure 4.2.
Specifically, an in-domain loss Lin(θ,Dtrn) is used to train the model to yield low entropy
priors p(py|x,θ) over either low or high entropy output distributions P(y|py) for in-domain
inputs in regions of low or high data uncertainty, respectively. An out-of-distribution loss
Lout(θ,Dout) is used to force the model to yield a high-entropy prior distribution p(py|x,θ)
for out-of-distribution inputs x∗. The overall loss will be a weight sum of the in-domain and
out-of-distribution losses:

L(θ,D) =Lin(θ,Dtrn) + γ · Lout(θ,Dout) (4.7)

Like the approaches discussed in section 3.3, this method requires out-of-distribution
training data Dout. As before, this data can be synthetically generated on the boundary
of the in-domain region using generative models such as Factor Analysis, Variational Au-
toencoders [63] or Generative Adversarial Networks [39]. Alternatively, a different, real
dataset can be used as a proxy [73]. While generation of out-of-distribution training data is
an open task, the exploration of methods to generate this data is beyond the scope of this
thesis. Instead, this work focuses on investigating the in-domain and out-of-distribution
losses which yield the desired behaviour of a Prior Network, given appropriate choice of
out-of-distribution training data.

4.2 Prior Networks for Classification

Having discussed Prior Networks in general, we now consider how to construct Prior Net-
works for classification tasks and derive closed-form expressions for the measures of uncer-
tainty discussed in the previous section. A Prior Network for classification parameterizes
a conditional prior distribution p(π|x∗; θ̂) over categorical output distributions Cat(y|π)
using a neural network:

p(π|x∗; θ̂) = p(π; α̂)

α̂ = f(x∗; θ̂)
(4.8)

where p(π; α̂) is a prior distribution over categorical distributions.

4.2.1 Parameterization and Uncertainty Measures

There is a range of prior distributions p(π;α) which a Prior Network can parameterize,
such as the Dirichlet distribution, Generalized Dirichlet Distribution [22, 130], a Mixture of

4.2 Prior Networks for Classification 67

Dirichlet distributions or the Logistic-Normal distribution [84]. While all of these distribution
have support on a standard simplex, each yields a different set of behaviours. In this thesis the
Dirichlet distribution, a conjugate prior distribution over categorical distributions, is chosen
due to its well understood behaviour and tractable analytic properties:

p(π;α) = Dir(π;α) (4.9)

The Dirichlet distribution is defined as:

Dir(π;α) = C(α)
K∏
c=1

παc−1
c , αc > 0

C(α) =
Γ(α0)∏K
c=1 Γ(αc)

, α0 =
K∑
c=1

αc

(4.10)

where Γ(·) is the gamma function - a generalization of the factorial function to real num-
bers. The Dirichlet distribution is parameterized by its concentration parameters α =

[α1, · · · , αK]
T. The sum of all the concentration parameters α0 =

∑K
c=1 αc is called the

precision of the Dirichlet distribution. Higher values of α0 lead to sharper distributions. The
concentration parameters can be interpreted as pseudo-counts of prior occurrences of each
class at a given input x∗. A Prior Network which parametrizes a Dirichlet distribution will
be referred to as a Dirichlet Prior Network (DPN).

Given a Dirichlet Prior Network p(π|x∗; θ̂) the predictive posterior used for classification
is given by the expected output distribution under the Prior Network:

P(y|x∗; θ̂) = Ep(π|x∗;θ̂)

[
P(y|π)

]
= Cat(y|π̂) (4.11)

where π̂ is the mean of the Dirichlet distribution. If an exponential output function is used
for the DPN, where αc = ezc , then the expected posterior probability of a label ωc is given by
the softmax function:

P(y = ωc|x∗; θ̂) =
α̂c∑K
k=1 α̂k

=
ezc(x

∗)∑K
k=1 e

zk(x∗)
(4.12)

It turns out, therefore, that standard DNNs for classification with a softmax output function
predict the expected categorical distribution under a Dirichlet prior. However, standard DNNs
do not necessarily learn to model the distribution around the mean, as the softmax function
only predicts the ratio of the concentration parameters α̂c to the precision α̂0 and is not
sensitive to arbitrary scaling of the concentration parameters by a multiplicative constant.

68 Prior Networks

The measures of uncertainty of Prior Networks discussed in section 4.1 can be calculated
in closed form for Dirichlet Prior Networks. In this section only the final closed-form
solutions of the measures of uncertainty are shown. However, the derivations are available in
appendix A. The closed-form solution for mutual information is:

I[y,π|x∗, θ̂]︸ ︷︷ ︸
Knowledge Uncertainty

= H[Ep(π|x∗,θ̂)[P(y|π]]︸ ︷︷ ︸
Total Uncertainty

− Ep(π|x∗,θ̂)[H[P(y|π)]]︸ ︷︷ ︸
Expected Data Uncertainty

= −
K∑
c=1

α̂c

α̂0

ln
α̂c

α̂0︸ ︷︷ ︸
Total Uncertainty

−
K∑
c=1

− α̂c

α̂0

(
ψ(α̂c + 1)− ψ(α̂0 + 1)

)
︸ ︷︷ ︸

Expected Data Uncertainty

(4.13)

where ψ(·) is the digamma Function, which is the derivative of the natural logarithm of the
gamma function. Similarly, the closed for solution can also be obtained for the expected
pairwise KL divergence:

K[p(π|x∗; θ̂)] = −
K∑
c=1

α̂c

α̂0

(
ψ(α̂c)− ψ(α̂0)

)
︸ ︷︷ ︸

Total Uncertainty

−
K∑
c=1

− α̂c

α̂0

(
ψ(α̂c + 1)− ψ(α̂0 + 1)

)
︸ ︷︷ ︸

Expected Data Uncertainty

=
K − 1

α̂0

(4.14)

where K is the number of classes. This is a particularly elegant result, as it shows that the
knowledge uncertainty within a Dirichlet is proportional to the inverse of the precision α0.
Finally, it is also possible to obtain a closed-form solution for the differential entropy of the
Dirichlet distribution:

H[p(π|x∗; θ̂)] = − ln C(α̂)−
K∑
c=1

(α̂c − 1) ·
(
ψ(α̂c)− ψ(α̂0)

)
(4.15)

Differential entropy does not decompose into data uncertainty and knowledge uncertainty,
but is a measure of concentration of the Dirichlet distribution on its support. As discussed
in section 3.1.2, differential entropy can in general be unbounded from below and above.
However, for the Dirichlet distribution differential entropy is maximum when the distribution
is flat over the simplex, which occurs when all the concentration parameters α are equal to 1.

It is interesting to consider an alternative parameterization of Dirichlet Prior Networks.
Given equation 4.12, the concentration parameters α of the Dirichlet distribution can be

4.2 Prior Networks for Classification 69

expressed as the product of the means of the Dirichlet π̂ and the precision α̂0:

α = π̂ · α0 (4.16)

This leads to an alternative parameterization of the Dirichlet distribution:

p(π|x∗; θ̂) = p(π; π̂ · α̂0)

{π̂, α̂0} = f(x∗; θ̂), α̂0 > 0, π̂c ≥ 0,
K∑
c=1

π̂c = 1.
(4.17)

As the precision α0 is inversely proportional to knowledge uncertainty (equation 4.14), this
form of model is similar to the one described in equation 3.23, which has a extra output head
that yields the probability P(in|x∗; θ̂). In addition to class probabilities, both the model in
equation 3.23 and a Prior Network parameterized as above yield a score of how ‘in-domain’
the input x∗ is. Thus, the model in equation 3.23 can be interpreted as an ad hoc version of
a Prior Network. The difference is that the Prior Network approach gives an interpretation
to this score which can be directly related to uncertainty in predictions, tying everything
together into one consistent probabilistic framework.

4.2.2 Training Criteria

Having discussed how to construct Prior Networks for classification and derived closed-form
solutions for the measures of uncertainty described in section 4.1, it is now necessary to
discuss how they are trained. The desired set of behaviors of a Prior Network for classification
are depicted in figure 4.2. Specifically, a Prior Networks should yield a low-entropy prior
focused on low-entropy output distributions for an in-domain input in a region of low data
uncertainty. For in-domain inputs in a region of high data uncertainty, the Prior Network
should yield a low-entropy prior focused on high-entropy output distributions. Again, the
more nuanced description of in-domain behaviour would be a sharp prior distribution with
the mean located on a point on the simplex which corresponds to the appropriate level of
data uncertainty. Finally, a Prior Network should yield a high-entropy prior over output
distributions for out-of-distribution inputs. As described in section 4.1, Prior Networks will
be trained in a multi-task fashion using an in-domain loss Lin(θ,Dtrn) and an out-of-domain
loss Lout(θ,Dout).

Firstly, let’s consider how specify an in-domain loss Lin(θ)
3 to yield the desired be-

haviours in figures figures 4.2a and 4.2b. The primary difficulty with specifying an appro-

3The dataset Dtrn is omitted from the loss function for brevity of notation throughout the rest of this section

70 Prior Networks

priate loss function is that the training data consists of samples from the true conditional
distribution over classes, but we are interested in learning the appropriate behaviour for a
conditional distribution over distributions over classes. This means that the training data
does not contain information about the desired concentration of the Dirichlet distribution,
which should be high in-domain and low out-of-domain. Consider using standard negative
log-likelihood loss:

LNLL
in (θ) = Ep̂tr(x,y)

[
−

K∑
c=1

I(y = ωc) ln
(
Ep(π|x∗;θ̂)

[
P(y = ωc|π)

])]
= Ep̂tr(x)

[
−

K∑
c=1

P̂tr(y = ωc|x) ln P(y = ωc|x;θ)
]

= Ep̂tr(x)

[
−

K∑
c=1

P̂tr(y = ωc|x)(ln π̂c)
]

= Ep̂tr(x)

[
−

K∑
c=1

P̂tr(y = ωc|x)(ln α̂c − ln α̂0)
]

(4.18)

As the loss is insensitive to arbitrary scaling of the concentration parameters α̂ by a multi-
plicative constant, the precision α0 is degenerate if exponential output functions (αc = ezc)
are used. This means that while this loss may appropriately capture data uncertainty, it is not
necessarily going to yield large values of α̂0 in-domain, as the absolute values of the logits
(and therefore the alphas) are not constrained, only their relative magnitudes. This makes
this an inappropriate loss for Prior Networks.

A parallel work which investigated a model similar to Dirichlet Prior networks [111] pro-
posed to use an upper bound to the negative log-likelihood obtained via Jensen’s inequality:

LNLL
in (θ) = Ep̂tr(x)

[
−

K∑
c=1

P̂tr(y = ωc|x) ln
(
Ep(π|x∗;θ̂)

[
P(y = ωc|π)

])]
≤ Ep̂tr(x)

[
−

K∑
c=1

P̂tr(y = ωc|x)Ep(π|x;θ)
[
ln P(y = ωc|π)

]]
= Ep̂tr(x)

[
−

K∑
c=1

P̂tr(y = ωc|x)
(
ψ(α̂c)− ψ(α̂0)

)]
= LNLL−UB

in (θ)

(4.19)

This upper bound yields a loss whose form is almost identical to standard negative log-
likelihood loss, except with digamma functions instead of natural logarithms. The advantage

4.2 Prior Networks for Classification 71

of this form is that multiplicative constants will no longer cancel out, which means that
the precision is no longer degenerate under any choice of output function. Furthermore, as
the magnitude of the concentration parameters grows the difference between the negative
log-likelihood and the upper bound decreases. This property can be analyzed by considering
the following asymptotic series approximation to the digamma function:

ψ(x) = ln x− 1

2x
+O(x2)

≈ lnx− 1

2x

(4.20)

(4.21)

Given this approximation, it is easy to show that this upper-bound loss is equal to the negative
log-likelihood plus an extra term which drives the concentration parameter α̂c to be as large
as possible:

LNLL−UB
in (θ) = Ep̂tr(x)

[
−

K∑
c=1

P̂tr(y = ωc|x)
(
ψ(α̂c)− ψ(α̂0)

)]
≈ Ep̂tr(x)

[
−

K∑
c=1

P̂tr(y = ωc|x)
(
ln(π̂c)−

1− π̂
2α̂c

)]
= LNLL

in (θ) + Ep̂tr(x)

[K∑
c=1

P̂tr(y = ωc|x)
(1− π̂
2α̂c

)]
(4.22)

Clearly, this extra term goes to zero and the difference between the upper-bound and the
negative log-likelihood vanishes as the concentration increases. This suggests that this loss
should correctly capture data uncertainty when α̂ have a large magnitude, and knowledge
uncertainty should be captured appropriately due to this loss driving the precision α̂0 to be
high. However, a practical issue reported in [111] was that the precision α̂0 has a tendency to
grow large and cause numerical overflow, requiring additional ad hoc terms which prevent
that from happening.

As these two losses do not yield the desired behaviour of the Dirichlet distribution in
a controlled fashion, an obvious alternative to consider is to explicitly define the desired
Dirichlet distribution p(π|β) for every training input x, where β are the target concentration
parameters, and then minimize the KL-divergence between it and the model. This loss can
be directly optimized without sampling as the expression of the KL-divergence between two
Dirichlet distributions parameterized by concentration parameters β and α is available in

72 Prior Networks

closed-form:

KL[p(π|β)||p(π|α)] = ln C(β)− ln C(α) +
K∑
c=1

(βc − αc)
(
ψ(βc)− ψ(β0)

)
(4.23)

The target concentration parameters should reflect the desired in-domain behaviour of a Prior
Network: a sharp Dirichlet distribution with the mean located on a point which reflects the
level of data uncertainty. However, as the only information available to construct this target
distribution is the class label, we can only set the target concentration parameters β(c) such
that the Dirichlet is sharp in the corner corresponding to the target class, and low elsewhere:

β
(c)
k =

{ β + 1 if c = k

1 if c ̸= k
(4.24)

Here β should take on a large value, for example 1e2. Note, the concentration parameters
have to be strictly positive, so it is not possible to set them to 0. Instead, they are set to one,
which additionally provides a small degree smoothing, preventing the class probabilities
from taking on extremely small values. As the Dirichlet is a conjugate prior, the target
concentration parameters can be interpreted to represent a posterior Dirichlet distribution
after β observations of the target class, where the prior Dirichlet distribution was flat. This
leads to the following loss function, which is what we used in the original work on Prior
Networks [81]:

LKL
in (y,x,θ) =

K∑
c=1

I(y = ωc) · KL[p(π|β(c))||p(π|x;θ)] (4.25)

Unfortunately, this loss will not appropriately estimate data uncertainty. Consider taking
the expectation of this loss with respect to the empirical distribution p̂tr(x, y) = Dtrn:

LKL
in (θ) = Ep̂tr(x,y)

[K∑
c=1

I(y = ωc) · KL[p(π|β(c))||p(π|x;θ)]
]

= Ep̂tr(x)

[
−

K∑
c=1

P̂tr(y = ωc|x)
∫
SK−1

p(π|β(c)) ln p(π|x;θ)dπ
]

= Ep̂tr(x)

[
−
∫
SK−1

K∑
c=1

P̂tr(y = ωc|x)p(π|β(c)) ln p(π|x;θ)dπ
]

= Ep̂tr(x)

[
KL
[K∑

c=1

P̂tr(y = ωc|x)p(π|β(c))||p(π|x;θ)
]]

(4.26)

4.2 Prior Networks for Classification 73

This shows that this loss is effectively minimizing the KL-divergence between the model and
a mixture of Dirichlet distributions which has a mode in each corner of the simplex. When
the level of data uncertainty is low, this is not a problem, as there will be only a single mode.
However, when there is a significant amount of data uncertainty the target distribution will
be multi-modal. As the KL-divergence is zero-avoiding [11, 92], it will drive the model to
spread itself over each mode. The Dirichlet distribution can yield an (almost) multi-modal
behaviour with the probability density being high only at the corners of the simplex by
driving the precision to be less than the number of classes, as shown in figure 4.3a. However,
this is an undesirable behaviour with regards to modelling data uncertainty, as the model
should instead yield a distribution with a single mode at the center of the simplex as shown
in 4.3b.

(a) Actual behaviour (b) Desired behaviour

Figure 4.3 Actual and desired behaviors of Dirichlet distribution in areas of high data
uncertainty when trained with loss specified in equation 4.25.

The main issue of the KL-divergence loss is that the target distribution p(π|β(c)) is
arithmetically summed in expectation, which induces an incorrect target distribution. Thus,
the question is, what is the appropriate loss function such that the correct target Dirichlet
distribution, which is sharp at the point on the simplex which corresponds to the correct
level of data uncertainty, is induced in expectation? It turns out that this can be achieved
by considering the reverse KL-divergence between the target distribution p(π|β(c)) and the
model instead of the forward KL-divergence.

LRKL
in (y,x,θ) =

K∑
c=1

I(y = ωc) · KL[p(π|x;θ)||p(π|β(c))] (4.27)

By taking the expectation of the reverse KL-divergence with respect to the empirical distribu-
tion, it can be shown that this loss becomes the reverse KL-divergence between the model

74 Prior Networks

and a geometric mixture of target Dirichlet distributions.

LRKL
in (θ) = Ep̂tr(x)

[K∑
c=1

P̂tr(y = ωc|x)KL
[
p(π|x;θ)||p(π|β(c))

]]
= Ep̂tr(x)

[
Ep(π|x;θ)

[
ln p(π|x;θ)−

K∑
c=1

P̂tr(y = ωc|x) ln p(π|β(c))
]]

= Ep̂tr(x)

[
Ep(π|x;θ)

[
ln p(π|x;θ)− ln

K∏
c=1

p(π|β(c))P̂tr(y=ωc|x)
]]

= Ep̂tr(x)

[
KL
[
p(π|x;θ)||p(π|β̄)

]
+ C

β̄ =
K∑
c=1

P̂tr(y = ωc|x) · β(c)

(4.28)

A geometric mixture of Dirichlet distributions results in a standard Dirichlet distribution
whose concentration parameters β̄ are an arithmetic mixture of the target concentration
parameters for each class. When there is low data uncertainty this loss simply yields the
reverse KL-divergence to a sharp Dirichlet at a particular corner. However, when the data
uncertainty is significant, this loss minimizes the reverse KL-divergence to a Dirichlet with a
single mode close to the center of the simplex. This is exactly the behaviour which the model
should learn when there is an in-domain input in a region of significant data uncertainty. A
full derivation is available in appendix A.

It is interesting to further analyze the properties of this loss by decomposing the reverse
KL-divergence into the reverse cross-entropy and the negative differential entropy:

LRKL
in (θ) = Ep̂tr(x)

[
Ep(π|x;θ)

[
− ln Dir(π|β̄)

]︸ ︷︷ ︸
Reverse Cross−Entropy

− H
[
p(π|x;θ)

]︸ ︷︷ ︸
Differential Entropy

]
(4.29)

Let’s consider the reverse-cross entropy term in more detail:

LRCE
in (θ) = Ep̂tr(x)

[
Ep(π|x;θ)

[
−

K∑
c=1

K∑
k=1

P̂tr(y = ωc|x)
(
β
(c)
k − 1

)
ln πk

]]
= Ep̂tr(x)

[
−

K∑
c=1

K∑
k=1

P̂tr(y = ωc|x)
(
β
(c)
k − 1

)(
ψ(α̂k)− ψ(α̂0)

)] (4.30)

4.2 Prior Networks for Classification 75

When the target concentration parameters β(c)are defined as in equation 4.24, the form of the
reverse KL-divergence loss will be:

LRKL
in (θ) = Ep̂tr(x)

[
− β

K∑
c=1

P̂tr(y = ωc|x)
(
ψ(α̂c)− ψ(α̂0)

)
−H

[
p(π|x;θ)

]]
= β · LNLL−UB

in (θ)− Ep̂tr(x)

[
H
[
p(π|x;θ)

]] (4.31)

This is the upper bound on the negative log-likelihood defined in equation 4.19, weighted
by the target concentration β and regularized by maximizing the differential entropy of the
model. Thus, minimizing the reverse KL-divergence is equivalent to using the upper-bound
loss with the appropriate regularization term to prevent it from driving the precision of the
model to extreme values. Curiously, this expression is equivalent to the forward cross-entropy
between discrete distributions, plus additional regularization terms which drive α̂ to have
appropriate behaviour. In contrast, the expression for the forward KL-divergence between
Dirichlet distributions contains within itself an expression for the reverse cross-entropy
between discrete distributions. This property is explored in appendix B.

An advantage of the reverse KL-divergence loss is the ability to accurately control the
desired precision of the Prior Network in different in-domain region. Consider a situation
example where a certain class in under-represented relative to the other classes in the
training dataset. It is possible to correct the balance the dataset by over-sampling data-points
belonging to that class, but indicate a higher level of knowledge uncertainty via a lower target
concentration β than for the other classes. Due to the nature of the reverse KL-divergence
loss, the concentration parameters will be appropriately smoothed on the boundaries between
each class. This suggests that the reverse KL divergence is the optimal loss which allows a
Prior Network to learn to yield a sharp distribution at either a corner or near the center of the
simplex for in-domain inputs in areas of low or high data uncertainty, respectively.

Finally, an alternative approach to training Dirichlet Prior Networks, which is not explored
in this thesis and is left to future work, would be to explicitly distill an ensemble of models
into a Prior Network via using approaches like teacher-student training [54]. Ideally, this
approach should be able to capture both the data uncertainty and knowledge uncertainty
estimates of an ensemble and may yield improvements to classification performance along
with a reduction in computational expense. However, it is not clear if a Dirichlet distribution
sufficient to exactly capture the behaviour of an ensemble of models.

Having obtained the loss which yields the desired in-domain behaviour of a Prior Network,
it is now necessary to discuss the choice of out-of-domain loss. As previously stated, the
desired behaviour of a Prior Network for out-of-distribution inputs is a high entropy prior

76 Prior Networks

distribution over categorical distributions where all categorical distributions are equiprobable,
as described in figure 4.2c. The maximum entropy Dirichlet distribution is a flat Dirichlet
distribution which can be obtained by setting all the concentration parameters to one (β = 1).
Thus, the obvious loss to consider is the KL divergence between the Prior Network and a
target Dirichlet distribution p(π;β) where β = 1:

LKL
out (θ) = Ep̂out(x)

[
KL[p(π;1)||p(π|x;θ)]

]
(4.32)

However, as the in-domain loss with the most desirable properties is the reverse KL diver-
gence, it makes sense to be consistent and also use the reverse divergence as the out-of-
distribution loss:

LRKL
out (θ) = Ep̂out(x)

[
KL[p(π|x;θ)||p(π;1)]

]
(4.33)

which is exactly equivalent to maximizing the differential entropy of the Dirichlet distribution.
This also has the advantage that on the boundary of the in-domain and out-of-distribution
regions the concentration parameters are appropriately smoothed, and multi-task loss is
always minimizing the reverse KL-divergence to a standard Dirichlet distribution.

4.2.3 Experiments on Artificial Data

The previous section investigated the theoretical properties of several training criteria for
Prior Networks. In this section the properties of these criteria are assessed empirically by
using them to train Prior Networks on the artificial 3-class Low Data Uncertainty (LDU) and
High Data Uncertainty (HDU) datasets introduced in the chapter 3 section 3.1.1. Specifically,
both the forward and reverse KL-divergence between the Prior Network and a target Dirichlet
distribution are considered. In these experiments, Prior Networks parameterize the Dirichlet
distribution by directly yielding the concentration parameters α̂. The models use the same
architecture and training hyper-parameters as the previous networks trained on these datasets
in chapter 3. The out-of-distribution training data Dout was sampled such that it forms a thin
shell around the training data, as shown in figure 3.6c. The target Dirichlet concentration
parameters β(c) were constructed as described in equation 4.24, with β = 1e3. The in-domain
loss and out-of-distribution losses were equally weighted when trained using the forward KL-
divergence loss. However, it was found that it is necessary to weight the out-of-distribution
loss 10 times as much as the in-domain loss when using reverse KL divergences.

Figures 4.4 and 4.5 depict the behaviour of measures of uncertainty derived from Prior
Networks trained using either the forward or the reverse KL-divergence loss on the LDU and
HDU datasets, respectively. Specifically, the figures depict total uncertainty, expected data

4.2 Prior Networks for Classification 77

(a) Total Uncertainty - KL (b) Total Uncertainty - reverse KL

(c) Expected Data Uncertainty - KL (d) Expected Data Uncertainty - reverse KL

(e) Mutual Information - KL (f) Mutual Information - reverse KL

Figure 4.4 Comparison of measures of uncertainty derived from Prior Networks trained with
forward and reverse KL-divergence loss on the Low Data Uncertainty dataset. Measures of
uncertainty are derived via equation 4.13.

78 Prior Networks

(a) Total Uncertainty - KL (b) Total Uncertainty - reverse KL

(c) Expected Data Uncertainty - KL (d) Expected Data Uncertainty - reverse KL

(e) Mutual Information - KL (f) Mutual Information - reverse KL

Figure 4.5 Comparison of measures of uncertainty derived from Prior Networks trained with
forward and reverse KL-divergence loss on the High Data Uncertainty dataset. Measures of
uncertainty are derived via equation 4.13

4.2 Prior Networks for Classification 79

uncertainty and mutual information, which is a measure of knowledge uncertainty. As was
shown in equation 4.4, mutual information is the difference of total uncertainty and expected
data uncertainty.

(a) Low Data Uncertainty Dataset - KL (b) Low Data Uncertainty Dataset - reverse KL

(c) High Data Uncertainty Dataset - KL (d) High Data Uncertainty Dataset - reverse KL

Figure 4.6 Comparison of Differential Entropy derived from Prior Networks trained with
forward and reverse KL-divergence loss on the Low Data Uncertainty and High Data
Uncertainty datasets. Differential entropy derived using equation 4.15.

Figures 4.4a and 4.4b show that Prior Networks trained using either the forward KL-
divergence or reverse KL-divergence loss appropriately capture the total uncertainty of the
LDU dataset. However, Prior Networks trained using forward KL-divergence do not fully
capture data uncertainty, as figure 4.4c shows that data uncertainty is lower in the region
where all three decision boundaries meet than along the decision boundaries where only
two classes meet. As a result, the mutual information provided by a Prior Network trained
with the forward KL-divergences is higher in-domain along the decision boundaries than
out-of-domain. In contrast, figures 4.4d and 4.4f show that the measures of uncertainty

80 Prior Networks

provided by a Prior Network trained using the reverse KL-divergence decompose correctly.
Data uncertainty is highest along the decision boundaries and mutual information is 0 in
in-domain, even along the decision boundaries.

These trends in the behaviours of uncertainty estimates are more apparent on the HDU
dataset. By comparing figures 4.5a and 4.5b it is clear that a Prior Network trained using
forward KL-divergence over-estimates total uncertainty in domain, as the total uncertainty
is equally high along the decision boundaries, in the region of class overlap and out-of-
domain. The Prior Network trained using reverse KL-divergence, on the other hand, yields
a far more structured estimate of total uncertainty. Figure 4.5c shows that the expected
data uncertainty is altogether incorrectly estimated by a Prior Network trained via forward
KL-divergence. This causes mutual information, which is the difference of total uncertainty
and data uncertainty to also behave incorrectly. On the other hand, the Prior Network trained
via reverse KL-divergence yields correct decompositions of uncertainty.

Lastly, figure 4.6 depicts the behaviour of the differential entropy of Prior Network
trained on the LDU and HDU datasets using both KL-divergence losses. Unlike the total
uncertainty, expected data uncertainty and mutual information, it is less clear what is the
desired behaviour of the differential entropy. Conceptually, it should be low in-domain
and high out-of-distribution. Figures 4.6 shows that on both the LDU and HDU datasets
both losses yield low differential entropy in-domain and high differential entropy out-of-
distribution. However, the reverse KL-divergence seems to capture more of the structure
of the dataset, which is especially evident in figure 4.6d, then the forward KL-divergence.
However, in general both losses seem to yield an appropriate behaviour of differential entropy.

The experiments in this section support the analysis in the previous section and illustrate
how the reverse KL-divergence is a generally more suitable optimization criterion than the
forward KL-divergence, especially for datasets with a significant level of data uncertainty.
However, it is important to keep in mind that the LDU and HDU are toy datasets where it is
possible to obtain ideal out-of-distribution training data. However, the behaviours of Prior
Networks trained using the forward and reverse KL-divergences losses may be different on
real datasets.

4.3 Prior Networks for Regression

Having investigated Prior Networks for classification tasks in detail, we now consider Prior
Networks for regression tasks. As discussed in section 4.1, Prior Networks yield an explicit
conditional distribution p(py|x∗; θ̂) over output distribution, where py are the parameters

4.3 Prior Networks for Regression 81

of the parametric forms of the output distributions. Here, output distributions p(y|py) over
continuous variables y ∈ RK are considered.

The desired behaviour of a Prior Network for classification was depicted in figure 4.2.
Unfortunately, it is difficult to visualize a distribution over the parameters of a probability
density function which would convey the same degree of intuition. However, in chapter 3 fig-
ure 3.13 depicts the desired behaviour of an ensemble of 2D multivariate normal distributions.
Specifically the ensemble should be consistent for in-domain inputs in regions of low/high
data uncertainty and highly diverse both in the location of the mean and in the structure
of the covariance for out-of-distribution inputs. Samples of continuous output distributions
from a regression Prior Network should yield the same behaviour.

4.3.1 Parameterization and Uncertainty Measures

While there is a wide range of continuous output distributions, as discussed in sections 2.2.2
and 3.2.2, in this work only the multivariate normal (MVN) p(y|µ,Σ) density function is
considered. The corresponding Prior Network would parameterize a prior over the mean and
covariance matrix p(µ,Σ|x∗; θ̂). This can be summarized in the general notation for Prior
Networks:

{µ,Σ} = py

p(y|µ,Σ) = p(y|py)
p(µ,Σ|x∗; θ̂) = p(py|x∗; θ̂)

(4.34)

The conjugate prior distribution over multivariate normal distributions is the Normal-inverse-
Wishart distribution NW−1, which can be parameterized using a neural network as follows:

p(µ,Σ|x∗; θ̂) = NW−1(µ,Σ; m̂, Ŝ, κ̂, ν̂)

{m̂, Ŝ, κ̂, ν̂} = f(x∗; θ̂), κ̂ > 0, ν̂ > K − 1
(4.35)

where m and S are the prior mean and the positive-definite prior scatter matrix, while
κ and ν are the strengths of belief in each prior, respectively. The parameters κ and ν

are conceptually similar to precision of the Dirichlet distribution α0. The Normal-inverse-
Wishart is a compound distribution which decomposes into a product of a conditional normal
distribution over the mean and an inverse-Wishart distribution over the covariance:

NW−1(µ,Σ;m,S, κ, ν) = N (µ;m,
1

κ
Σ) · W−1(Σ;S, ν)

= p(µ|Σ) · p(Σ)
(4.36)

82 Prior Networks

The inverse-Wishart distribution W−1 is a distribution over positive-definite symmetric
matrices Σ of size K ×K defined as follows:

W−1(Σ;S, ν) =
|S| ν2

2
νK
2 ΓK(

ν
2
)
|Σ|

−(ν+K+1)
2 e−

1
2
tr(SΣ−1), ν ≥ K − 1 (4.37)

where ΓK(·) is the multivariate gamma function and K is the dimensionality of y. The
decomposition of the Normal-inverse-Wishart prior p(µ,Σ) into a conditional prior over the
mean p(µ|Σ) and a prior over the covariance p(Σ) illustrates how knowledge uncertainty in
the prediction µ and the data uncertainty, described by Σ, can be separately discussed for
regression.

Given a Prior Network which parameterizes a Normal-inverse-Wishart distribution, the
expected predictive posterior distribution will be the multivariate T distribution:

p(y|x∗; θ̂) = Ep(µ,Σ|x∗;θ̂)

[
p(y|µ,Σ)

]
= T (y|m̂,

κ̂+ 1

κ̂(ν̂ −K + 1)
Ŝ, ν̂ −K + 1), ν̂ ≥ K − 1, κ̂ > 0

(4.38)

The T distribution is heavy-tailed generalization of the multivariate normal distribution
defined as:

T (y|µ,S, ν) =
Γ(ν+K

2
)

Γ(ν
2
)ν

K
2 π

K
2 |Σ| 12

(
1 +

1

ν
(y − µ)TΣ−1(y − µ)

)− (ν+K)
2
, ν ≥ 0 (4.39)

where ν is the number of degrees of freedom. In the limit, as ν → ∞, the T distribution
converges to a normal distribution. The mean, mode and median of the T distribution are
all equal to µ, as the T distribution is symmetric. However, the mean is only defined when
ν > 1 and the variance is defined only when ν > 2. This means that the predictive posterior
of the Prior Network given in equation 4.38 only has a defined mean and variance when
ν̂ > K + 1.

Given a Normal-inverse-Wishart Prior Network it is possible to compute closed-form
expression for all measures of uncertainty discussed in section 4.1, including the differential
entropy of the expected posteriorH

[
p(y|x∗; θ̂)

]
, the differential entropy of the Prior Network

H[p(µ,Σ|x∗; θ̂)], the mutual information I[y, (µ,Σ)|x∗; θ̂] and the expected pairwise KL-
divergence K[p(µ,Σ|x∗; θ̂)]. However, these expressions are omitted and instead provided
in appendix A, as they are quite complex and give little additional insight.

4.3 Prior Networks for Regression 83

4.3.2 Training Criteria

Having discussed how to construct Prior Networks for regression, we now discuss how they
can be trained. As discussed in section 4.1, Prior Networks are trained using multi-task
training where an in-domain loss Lin(θ,Dtr) and an out-of-distribution loss Lout(θ,Dout)

are jointly minimized:

L(θ,D) = Lin(θ,Dtr) + γ · Lout(θ,Dout) (4.40)

Just as in the case of classification tasks, it is necessary to have the Prior Network yield a
high-entropy prior distribution over output distributions for out-of-distribution inputs and
a low-entropy prior distribution over output distributions in-domain. Specifically, samples
of continuous output distributions from a regression Prior Network should be consistent
for in-domain inputs in regions of low/high data uncertainty and highly diverse both in the
location of the mean and in the structure of the data uncertainty for out-of-distribution inputs.

First, let’s consider how to specify the loss Lin(θ,Dtr) to train the model to yield the
desired in-domain behaviour. Both the Normal and inverse-Wishart distribution are conjugate
priors and a members of the exponential family of distribution. Thus, by analogy with
Prior Networks for classification, the consistent choice of in-domain loss function is the
reverse KL-divergence between the model and a target Normal-inverse-Wishart distribution
p(py; m̃, S̃, κ̃, ν̃):

LRKL
in (y,x,θ) = KL[p(µ,Σ|x;θ)||p(µ,Σ; m̃, S̃, κ̃, ν̃)]

= −Ep(µ,Σ|x;θ)[ln p(µ,Σ; m̃, S̃, κ̃, ν̃)]︸ ︷︷ ︸
Reverse Cross Entropy

− H[p(µ,Σ|x;θ)]︸ ︷︷ ︸
Differential Entropy

(4.41)

This loss decomposes into the reverse cross-entropy and the negative differential entropy. As
in the case for classification, the negative differential entropy can be seen as a regularizer
which prevents the distribution over normal distributions from becoming too sharp. Let’s

84 Prior Networks

consider the reverse cross-entropy term in greater detail:

LRCE
in (y,x,θ) = − Ep(µ,Σ|x;θ)

[
ln p(µ,Σ; m̃, S̄, κ̄, ν̄)

]
= − Ep(µ,Σ|x;θ)

[−(ν̃ +K + 2)

2
ln |Σ| − 1

2
tr(S̃Σ−1)

− κ̃

2
(µ− m̃)TΣ−1(µ− m̃)

]
=

(ν̃ +K + 2)

2

(
ln |Ŝ| −K ln 2−

K∑
c=1

ψ
(ν̂ −K + c

2

))
+
Kκ̃

2κ̂

+
1

2
tr
(
ν̂Ŝ−1

(
S̃ + κ̃(m̂− m̃)(m̂− m̃)T

))
+ ln Z̃

(4.42)

where the normalization constant Z̃ is:

ln Z̃ =
ν̃K

2
ln 2 + ln ΓK(

ν̃

2
) +

D

2
ln(

2π

κ̃
)− ν0

2
ln |S̃| (4.43)

Where the target parameters are a function of both x and y, as defined below:

m̃ =
κ0

κ0 + β
m0 +

β

κ0 + β
y

S̃ = ν0Σ0 +
βκ0
κ0 + β

(yyT +m0m
T
0 − 2m0y

T)

κ̃ = κ0 + β, ν̃ = ν0 + β

{m0,Σ0} = f(x; θ̃)

(4.44)

Here m0 and Σ0 can be obtained via a teacher density network p(y|x; θ̃) trained via
maximum likelihood. As defined above, the parameters make use of the conjugacy property
of the Normal-inverse-Wishart distribution and represent the parameters of a Normmal-
inverse-Wishart posterior after observing the training data. The parameter β represent how
strongly we believe in the observations and κ0 and ν0 represent how strongly we believe
in the prior estimates of the mean and scatter matrix, respectively. If the density network
is trained on the same dataset as the regression Prior Network, then conceptually there
is not much point in using prior maximum likelihood estimates for the mean and scatter
matrix. In contrast, if a model trained on one dataset is being adapted to a new dataset, it is
possible to control the degree to which the model is biased to the new data via β, κ0 and ν0.
However, as the latter situation is not considered in this thesis, the parameters of the target

4.3 Prior Networks for Regression 85

Normal-inverse-Wishart can be set to:

m̃ = y, S̃ = 0

κ̃ = β, ν̃ = β
(4.45)

This greatly simplifies the expression for the loss. Taking the expectation of the reverse cross
entropy with respect to the empirical distribution p̂(x,y) yields:

LRCE
in (θ,Dtr) = Ep̂(x,y)

[
LRCE

in (y,x,θ)
]

= Ep̂(x)

[(β +K + 2)

2

(
ln |Ŝ| −

K∑
c=1

ψ
(ν̂ −K + c

2

))
+
Kβ

2κ̂

+
β

2
tr
(
ν̂Ŝ−1

(
Σtr + (m̂− µtr)(m̂− µtr)

T
))]

(4.46)

Estimates data uncertainty will be naturally captured via the last term in equation 4.46, while
the first term regularizes the covariance matrix. In general, this expression is an upper bound
to the forward KL-divergence between the normal distribution and the underlying distribution
of the training data, with additional terms that drive κ̂ and ν̂ to be large. This shows that
reverse KL-divergence is an appropriate loss function for Prior Network parameterizing the
Normal-inverse-Wishart distribution.

Curiously, the expression for the reverse KL divergence between Normal-inverse-Wishart
distributions contain within itself the expression for the upper bound to the forward cross-
entropy between normal distributions. As was shown in section 4.2.2, the expression reverse
KL divergence between Dirichlet distributions contains within it the expression for the
forward KL-divergence between discrete distributions. It is possible this ‘anti-symmetry’ is a
general property of α-divergences between members of the exponential family of distributions
and should be explored in future work.

Similarly, a Prior Network can be trained to yield a high-entropy distribution for out-
of-domain inputs by minimizing the reverse KL-divergence between the model and a high-
entropy target Normal-inverse-Wishart distributions:

LRKL
out (θ,Dout) = Ep̂(x)

[
KL[p(py|x;θ)||p(py; m̃, S̃, κ̃, ν̃)]

]
(4.47)

Conceptually, choosing an out-of-distribution target distribution is similar to choosing the
mean and variance to which a Gaussian Process reverts far away from training data. One
possible choice of target out-of-domain distribution is a uninformative, improper Normal-

86 Prior Networks

inverse-Wishart distribution obtained by setting the parameters as follows:

m̃ = 0, κ̃ = 1e− 6

S̃ = I, ν̃ = 1e− 6
(4.48)

Under an improper, uninformative prior all possible output distributions are, in some sense,
‘equally likely’, which corresponds to a situation where the model doesn’t understand the data.
However, it may be better to choose a weakly informative prior distribution over multivariate
normal distributions, where m̃ and S̃ are set the marginal mean and scatter matrix of the
targets, respectively, and where ν and κ are set to small values [92]:

m̃ =
1

N

N∑
i=1

y(i), S̃ =
N∑
i=1

(y(i) − m̃)(y(i) − m̃)T

κ̃ = 1e− 3, ν̃ = K + 2

(4.49)

Thus, the model regresses to the marginal distribution over y for out-of-domain inputs, but
indicates a large degree of knowledge uncertainty via low values of κ̂ and ν̂. The weight
γ would control the boundary of the in-domain and out-of-domain regions by appropri-
ately smoothing the parameters of the Normal-inverse-Wishart distribution between the two
regions.

4.4 Chapter Summary

This chapter introduced a new class of models for modelling uncertainty, called Prior Net-
works. In section 4.1, by drawing analogy with ensembles, which can be seen as samples from
an implicit distribution over output distributions, it was proposed to explicitly parameterize a
distribution over output distributions using a single neural network. These models, called
Prior Networks, effectively emulate an ensemble of models using a single neural network,
combining the elegant theoretical properties of ensembles with the practical advantages of
single model approaches. Specifically, by yielding the same measures of uncertainty as
ensembles, Prior Networks are able to decompose the sources of uncertainty within a single
coherent probabilistic framework. This is important for tasks where it is necessary to know
the source of uncertainty, such as active learning. Furthermore, Prior Networks provide a
clear link between single-model and ensemble approaches - both approaches capture uncer-
tainty via a conditional distribution over output distributions. The difference between the
two approaches is in the way the behaviour of the distribution is controlled - either via an
implicit or explicit prior p(M) and approximate inference scheme or via the training data D.

4.4 Chapter Summary 87

In section 4.2 the construction of Prior Networks for classification by parameterizing
the Dirichlet distribution was investigated and closed form expressions for measures of
uncertainty were provided. In section 4.2.2 the theoretical properties of several loss functions
were investigated. It was shown that reverse KL-divergence loss is theoretically able to
train a Prior Network to yield the desired set of in-domain and out-of-distribution behaviour
described in figure 4.2. In section 4.2.3 the forward and reverse KL divergences losses were
used to train toy Prior Networks on the Low Data Uncertainty and High Data Uncertainty
datasets introduced in the previous chapter. The experiments confirmed the theoretical
properties of both losses and showed that the reverse KL-divergence loss empirically yields
the desired set of behaviours.

Section 4.3 investigated the construction of Prior Networks for regression by parameter-
izing the Normal-inverse-Wishart distribution, the conjugate prior to the multivariate Normal
distribution. By analogy with classification Prior Networks, section 4.3.2 investigated the
training of regression Prior Networks via the reverse KL-divergence loss and discussed
appropriate construction of target in-domain and out-of-domain Normal-inverse-Wishart
distributions.

Chapter 5

Experimental Evaluation of Prior
Networks

The previous chapter introduced a new class of models called Prior Networks which combined
aspects of single model and ensemble approaches to uncertainty estimation. Prior Networks
allow both data and knowledge uncertainty to be modeled within a consistent probabilistic
framework using a single neural network. The previous chapter examined a range of different
loss functions for Prior Networks and determined that the reverse KL-divergence between
the Prior Network and a target Dirichlet distribution is an appropriate loss. It was shown
that by using this loss, Prior Networks can be successfully trained on the artificial datasets
introduced in chapter 3 to yield the desired set of behaviours described in section 4.1,
providing interpretable measures of uncertainty.

The current chapter aims to evaluate the performance of Prior Networks on a range of
increasingly complex image classification datasets, specifically the MNIST [70], SVHN [41]
and CIFAR-10 [65] datasets, and compare them to previous methods for uncertainty estima-
tion. Prior Networks will be evaluated on two related practical applications of uncertainty
estimation - misclassification detection and out-of-distribution (OOD) sample detection.
Both of these tasks are binary classification tasks based on measures of uncertainty - if the
uncertainty is higher than a threshold, then the input is considered a misclassification or
out-of-distribution sample.

In these experiments Prior Networks were compared to a standard DNN, an ensemble
derived via Monte-Carlo Dropout (MCDP) [35, 36] from a standard DNN and an explicit
ensemble of standard DNNs obtained by using different random initializations [68]. Prior
Networks are not compared to single-model approaches described in section 3.3.1 because
they are a generalization of these approaches, as discussed in the previous chapter.

90 Experimental Evaluation of Prior Networks

The structure of the current chapter is as follows: section 5.1 describes the datasets and
details the construction of the models used in the following experiments; the evaluation of
the quality of uncertainty estimates and the metrics of performance on misclassification and
OOD sample detection tasks are described in section 5.2; missclassification and OOD sample
detection experiments are described in sections 5.3 and 5.4, respectively.

5.1 Datasets and Experimental Setup

In this chapter Prior Networks are trained on the MNIST [70], SVHN [41] and CIFAR-
10 [65] datasets, described in table 5.1. These datasets are consider ‘in-domain’ for the
models trained on them. MNIST is a dataset of 28 × 28 images of black-and-white hand-
written digits; SVHN is a color dataset of 32 × 32 images of house numbers in Google
Street-view, where the target class is the middle digit; finally, CIFAR-10 is a color dataset
of 32× 32 images of 10 real object categories. These datasets are increasingly challenging
image classification tasks as the degree of variation of each class increases, which can be
seen from samples of each dataset shown in figure 5.1. All datasets have roughly the same
number of training examples (between 50K and 70K), though the SVHN dataset has an
additional set of 531K ‘extra’ training images which is not used in the current experiments.

Domain Dataset Train Valid Test Extra Classes

In-Domain
MNIST 55000 5000 10000 -

10SVHN 73257 - 26032 531131
CIFAR-10 50000 - 10000 -

Out-of-Domain

Semeion 1593 10
Omniglot 32460 1623

LSUN - - 10000 - 10
CIFAR-100 50000 - 10000 - 100
TinyImagenet 100000 10000 10000 - 200

Table 5.1 Description of in-domain and out-of-domain datasets in terms of number of images
and classes.

In addition to the in-domain datasets described above, a series of out-of-distribution
datasets are used for training Prior Networks and as evaluation data for out-of-distribution
detection experiments. Images from these datasets are shown in figure 5.1 and described
in table 5.1. The Omniglot [67] and Semeion [16] datasets are used as OOD data for
Prior Networks trained on MNIST. Like MNIST, Semeion is a dataset of black-and-white

5.1 Datasets and Experimental Setup 91

(a) MNIST (b) Semeion

(c) Omniglot (d) SVHN

(e) CIFAR-10 (f) LSUN

(g) CIFAR-100 (h) TinyImagenet

Figure 5.1 Samples of images from all datasets

92 Experimental Evaluation of Prior Networks

handwritten digits, but with a different style. Omniglot is a dataset of 1623 unique 92× 92

black-and-white handwritten characters from 50 different alphabets. Omniglot images are
resized down to 28x28 for comparison to MNIST. This corresponds to images which are in a
similar ‘style’ to MNIST, but which describe completely different classes. A more detailed
breakdown of Omniglot into subsets is described in table 5.2. The Omniglot BG set contains
different alphabets and therefore characters from the EVAL set. BGS1 and BGS2 are subsets
of the large BG set. The LSUN [135], CIFAR-100 [65] and TinyImagenet [24] datasets are
used as OOD data for Prior Networks trained on SVHN and CIFAR-10. LSUN is a 32× 32

color dataset of 10 different scene categories, such as bedrooms and so on. CIFAR-100 is a
32× 32 color dataset similar to CIFAR-10, but which describes 100 object categories which
are not present in CIFAR-10. Finally, TinyImagenet is a 200-class subset of the ImageNet
[27] dataset of real objects. TinyImagenet was resized down to 32× 32 from 64× 64. For
all datasets the input features were re-scaled the range -1 to 1 from the range 0 to 255.

Subset Alphabets Size Classes

BGS1 5 2720 136
BGS2 5 3120 156
BG 30 19280 964
EVAL 20 13180 659

Table 5.2 Detailed description of Omniglot dataset in terms of number of alphabets, images
and classes. BGS1 and BGS2 are non-overlapping subsets of BG. BG and EVAL are also
non-overlapping datasets.

5.1.1 Model architecture and training

All models considered in this chapter were implemented in Tensorflow [4] using variants
on the VGG [113] architecture for image classification. DNN models were trained using
the negative log-likelihood loss. Prior Networks were trained using both the KL-divergence
(PN-KL) and reverse KL-divergence (PN-RKL) losses introduced in section 4.2.2 to compare
their behaviour on more challenging datasets. Identical target concentration parameters
β(c) were used for both the forward and reverse KL-divergence losses. All models were
trained using the Adam [62] optimizer, described in section 2.3, with a 1-cycle learning rate
policy and dropout regularization. In additional, data augmentation was done when training
models on the CIFAR-10 dataset via random left-right flips, random shifts up to ±4 pixels
and random rotations by up to ± 15 degrees. The details of the training configurations for
all models and each dataset can be found in table 5.3. 10 models of each type were trained

5.1 Datasets and Experimental Setup 93

Training
Model

General Prior Network Only
Dataset η0 Epochs Cycle len. Dropout γ β OOD data

MNIST

DNN
1e-3 20

10
0.5 -

PN-KL 0.9 1.0 1e3 MNIST FA

PN-RKL 1e-3 20 10 0.9 10.0 1e3

MNIST FA
Omni-BGS1
Omni-BGS1+2
Omni-BG

SVHN
DNN 1e-3

40 30
0.5 -

PN-KL 5e-4 0.7 1.0
1e3 CIFAR-10

PN-RKL 5e-4 0.7 10.0

CIFAR-10
DNN 1e-3

45 30
0.5 -

PN-KL 5e-4 0.7 1.0
1e2 CIFAR-100

PN-RKL 5e-4 0.7 10.0

Table 5.3 Training Configurations. η0 is the initial learning rate, γ is the out-of-distribution
loss weight and β is the concentration of the target class. The batch size for all models was
128. Dropout rate is quoted in terms of probability of not dropping out a unit.

starting from different random seeds. The 10 DNN models were evaluated both individually
(DNN) and as an explicit ensemble of models (ENS). Additionally, each of the DNN models
was also used to construct an ensemble via Monte-Carlo dropout (MCDP).

5.1.2 Out-of-distribution training data

As discussed in the previous chapter, out-of-distribution training data is necessary to train
Prior Networks so that they yield high-entropy distributions over distributions out-of-domain.
In this chapter Prior Networks trained on SVHN and CIFAR-10 use the CIFAR-10 and
CIFAR-100 training datasets, described in table 5.1 as OOD training data, respectively. This
OOD training data is augmented by random left-right and up-down flips, random shifts by up
to ±4 pixels and random rotations by up to ± 15 degrees. On the MNIST dataset, however,
generation of OOD training data was investigated. Priors Network trained on MNIST use
out-of-distribution training data synthesized using Factor Analysis [92], which is a linear
generative model.

94 Experimental Evaluation of Prior Networks

A standard factor analysis model is described below:

z ∼ N (0, I)

x ∼ N (Wz + µ,Σ)
(5.1)

where W is the loading matrix, µ is the global mean, Σ is a diagonal covariance matrix and
z is a latent vector sampled from an isotropic standard normal distribution. The idea is to
model the covariances via z and the loading matrix. Here, a factor analysis model with a
50-dimensional latent space was trained on the MNIST data.

As described in section 3.3, out-of-distribution training data should lie close to the
boundary of the in-domain region so that a model trained in a multi-task fashion may learn
a tight decision boundary to separate the in-domain region from everything else. Thus, to
push the factor analysis model to produce data at the ‘boundary’ of the in-domain region
the variance on the latent distribution and the global covariance matrix were increased by a
factor λ:

z ∼ N (0, λ · I)
x ∼ N (Wz + µ, λ ·Σ)

(5.2)

The synthetic data generated using this factor analysis model for a λ = 3 is visualized
alongside MNIST data in figure 5.2. Clearly, this data is quite different from the MNIST
data, though it is possible to see shapes reminiscent of the MNIST data. As was previous

(a) MNIST (b) Samples from Factor Analysis model

Figure 5.2 Comparison of MNIST and Factor Analysis generated images. Factor Analysis
images were samples using equation 5.2 with λ = 3.

stated in chapter 4, a proper, in-depth investigation of out-of-distribution data generation
using state-of-the-art generative models is beyond the scope of this thesis. However, using
the Omniglot BGS1, BGS2 and BG datasets, described in table 5.2, as OOD training data for
Prior Networks is explored.

5.2 Evaluation Metrics 95

5.2 Evaluation Metrics

In this chapter two practical applications of uncertainty estimation are considered - misclassi-
fication detection and out-of-distribution sample detection. Both can be seen as an outlier
detection task based on measures of uncertainty, where misclassifications are one form of
outlier and out-of-distribution inputs are another form of outlier. Both of these tasks can
be formulated as threshold-based binary classification [49]. Here a detector IT (x) assigns
the label 1 (uncertain prediction) if an uncertainty measure H(x) is above a threshold T ,
and label 0 (confident prediction) otherwise. This uncertainty measure can be any of the
measures discussed in chapters 3 and 4.

IT (x) =

1, H(x) > T

0, H(x) ≤ T
(5.3)

Given a set of true positive examples Dp = {x(i)
p }Np

i=1 and a set of true negative examples
Dn = {x(j)

n }Nn
j=1 the performance of such a detection scheme can be evaluated at a particular

threshold value T using the true positive rate tp(T) and the false positive rate fp(T):

tp(T) =
1

Np

Np∑
i=1

IT (x(i)
p) fp(T) =

1

Nn

Nn∑
j=1

IT (x(j)
n) (5.4)

The range of trade-offs between the true positive and the false positive rates can be visualized
using a Receiver-Operating-Characteristic (ROC) and the quality of the possible trade-offs can
be summarized using the area under the ROC curve (AUROC) [92]. If there are significantly
more negatives than positives, however, this measure will over-estimate the performance
of the model and yield a high AUROC value [92]. In this situation it is better to calculate
the precision and recall of this detection scheme at every threshold value and plot them
against each other on a Precision-Recall (PR) curve [92]. The recall R(T) is equal to the true
positive rate tp(T), while precision measures the number of true positives among all samples
labelled as positive:

P (T) =

∑Np

i=1 IT (x
(i)
p)∑Np

i=1 IT (x
(i)
p) +

∑Nn

j=1 IT (x
(j)
n)

R(T) =
1

Np

Np∑
i=1

IT (x(i)
p) (5.5)

The quality of the trade-offs can again be summarized via the area under the PR curve
(AUPR). For both the ROC and the PR curves an ideal detection scheme will achieve an
AUC of 100%. A completely random detection scheme will have an AUROC of 50% and

96 Experimental Evaluation of Prior Networks

the AUPR will be the ratio of the number of positive examples to the total size of the dataset
(positive and negative) [92].

A crucial difference between the ROC curve and the PR curve is that the ROC curve
is not sensitive to the balance of positive and negative examples in the dataset and returns
overall classification performance, unlike the PR curve, which will be more sensitive to
the performance on the positive class [92]. If the number of positives and negatives is the
same, the ROC and PR curves yield the same information. However, if the number of
positives and negatives is heavily skewed, the AUPR will be a more informative metric
of performance. Alternative metrics, like F-scores [92], can also be used to summarize
detection performance, but they report performance only at a particular threshold value, while
AUROC and AUPR summarize the entire range of possible operating points. In this work the
positive class is chosen to correspond to either misclassifications or OOD inputs, depending
on the task. This is because on the MNIST, SVHN and CIFAR-10 datasets examined in this
work a typical DNN classifier will have a lower number of misclassifications than correct
predictions, and we are are specifically interested in how well measures of uncertainty can
detect misclassifications.

Consider the task of misclassification detection - ideally we would like to detect all
of the inputs which the model has misclassified based on a measure of uncertainty. Then,
the model can either choose to not provide any prediction for these inputs, or they can be
passed over or ‘rejected’ to an oracle (ie: human) to obtain the correct prediction. The latter
process can be visualized using a rejection curve depicted in figure 5.3, where the predictions
of the model are replaced with predictions provided by an oracle in some particular order
based on estimates of uncertainty. If the estimates of uncertainty are ‘useless’, then, in
expectation, the rejection curve would be a straight line from base error rate to the lower
right corner. However, if the estimates of uncertainty are ‘perfect’ and always bigger for
a misclassification than for a correct classification, then they would produce the ‘oracle’
rejection curve. A rejection curve produced by estimates of uncertainty which are not perfect,
but still informative, will sit between the ‘random’ and ‘oracle’ curves. The quality of the
rejection curve can be assessed by considering the ratio of the area between the ‘uncertainty’
and ‘random’ curves ARuns (orange in figure 5.3) and the area between the ‘oracle’ and
‘random’ curves ARorc (blue in figure 5.3). This yields the rejection area ratio RR:

RR =
ARuns

ARorc

(5.6)

A rejection area ratio of 1.0 indicates optimal rejection, a ratio of 0.0 indicates ‘random’
rejection. A negative rejection ratio indicates that the estimates of uncertainty are ‘perverse’

5.3 Misclassification Detection 97

(a) Shaded area is ARorc. (b) Shaded area is ARuns.

Figure 5.3 Prediction Rejection Curves

are higher for accurate predictions than for misclassifications. An important property of this
performance metric is that it is independent of classification performance, unlike AUPR.

5.3 Misclassification Detection

This section considers the use of measures of uncertainty to detect images which are mis-
classified by a model. These images, which will be referred to as misclassifications, can be
considered a form of outlier and may occur for a variety of reasons. One possible reason
is that they are unseen versions of seen classes, and therefore out-of-distribution relative to
the training data. Alternatively, the image may be located in an in-domain region which the
model does not understand well and where it has learned poor decision boundaries. In each
of these situations it is desirable for the model to yield a higher uncertainty score, allowing
such inputs to be detected. The current section is structured as follows: the classification
performance of each model is assessed in section 5.3.1, misclassification detection is assessed
as a binary classification problem in section 5.3.2 and via rejection curves in section 5.3.3.

5.3.1 Classification Performance

Firstly the classification error rate of each model trained on each data is assessed on the
datasets’ corresponding test set. The results are presented in table 5.4 below:

Several trends are noticeable. Firstly, MNIST, SVHN and CIFAR-10 are progressively
more challenging tasks, as the error rates of all models considered consistently rise. Secondly,
as the datasets become more challenging, the Prior Networks trained using the forward
KL-divergence (PN-KL) yield an increasingly greater error rate than any of the other models,

98 Experimental Evaluation of Prior Networks

Dataset
Single Model Ensemble

DNN PN-KL PN-RKL MCDP ENS

MNIST 0.5 ±0.1 0.6 ±0.1 0.5 ±0.1 0.5 ±0.1 0.5 ± NA

SVHN 4.3 ±0.3 5.7 ±0.2 4.2 ±0.2 4.3 ±0.3 3.3 ± NA

CIFAR-10 8.0 ±0.4 14.7 ±0.4 7.5 ±0.3 8.0 ±0.4 6.6 ± NA

Table 5.4 Mean classification performance (% Error) ±2σ across 10 random initializations.
Note, performance of explicit ensemble (ENS) is not a mean, as it represents the performance
of ensembling the predictions of each DNN model. PN-KL and PN-RKL trained on MNIST
use the MNIST-FA out-of-distribution training data.

while Prior Networks trained using the reverse KL-divergence achieve the best single-model
performance. These results show that on challenging tasks the forward KL-divergence loss
yields increasingly poor classification performance. Due to this, as well as the theoretical
and experimental results from the previous chapter, Prior Networks trained with forward
KL-divergence will not be considered throughout the remained of this chapter. The final
trend is that the best overall performance is always achieved using an explicit ensemble of
models, which is consistent with previous work [68], while Monte-Carlo dropout ensembles
do not seem to yield improvements in classification performance.

5.3.2 Assessing misclassification detection via AUPR

As described in section 5.2, misclassification detection can be seen as a threshold-based
binary classification task. The performance of a model on this task can be assessed via area
under an ROC curve (AUROC) or area under a Precision-Recall curve (AUPR). AUPR will
be more sensitive to the performance of detecting the positive class in cases of severe class
mis-balance. Given the results in table 5.4, which show that all models considered in this
chapter achieve an error rate below 10%, in the following experiments misclassification
detection performance is assessed only using AUPR, where misclassifications are chosen as
the positive class.

The use of all uncertainty measures described in sections 3.2.1 and 3.3.1 for misclas-
sification detection is explored. Specifically, the confidence and entropy of the predictive
posterior, given in equations 3.19 and 3.18, are derived from a DNN. Both measures represent
data uncertainty. The same measures are also derived from the predictive posterior of an
explicit ensemble of DNNs, Monte-Carlo dropout ensembles and Prior Networks, where they
represent total uncertainty. Finally, mutual information and expected pairwise KL-divergence
will be derived from ensembles via equations 3.31 and 3.32 and from Prior Networks using
equations 4.4 and 4.5, respectively. Furthermore, the differential entropy of a Prior Network,

5.3 Misclassification Detection 99

given in equation 4.6, is also considered. All of these measures of uncertainty represent
knowledge uncertainty.

The results of the misclassification detection experiment using models trained on the
MNIST, SVHN and CIFAR-10 datasets are described in table 5.1, ordered by dataset com-
plexity. There are several notable trends in the results shown in table 5.5. Firstly, the best
measure of uncertainty for misclassification detection is the confidence, while second best
measure of uncertainty is always the entropy of the predictive distribution. This shows that
estimates of total uncertainty are more useful for misclassification detection than measures
of knowledge uncertainty, which means that it is not necessary to separate out the sources of
uncertainty for this task. The reason that the confidence is a better measure of uncertainty
than the entropy is because the former is directly related to the predicted class, while the
latter is sensitive to changes in the entire distribution, which may be irrelevant to the given
prediction. In contrast, by far the worst measures of uncertainty for this task are the expected
pairwise KL-divergence and differential entropy of Prior Networks. Consequently, further
analysis will only consider misclassification detection based on the confidence.

Secondly, the results show that on MNIST and SVHN all models yield similar perfor-
mance. However, on CIFAR-10 Prior Networks yield the worst misclassification detection

Dataset Model
Total Uncertainty Knowledge Uncertainty

% Error
Conf. Ent. M.I. EPKL D.Ent.

MNIST

DNN 33.7 ±8.1 33.2 ±5.5 - - - 0.5
MCDP 33.2 ±7.3 30.6 ±6.0 23.7 ±7.6 21.5 ±7.3 - 0.5
ENS 37.8 ± NA 35.5 ± NA 34.8 ± NA 34.7 ± NA - 0.5
PN-RKL 36.1 ±6.4 31.1 ±6.0 20.5 ±4.5 20.5 ±4.1 20.7 ±5.7 0.5

SVHN

DNN 43.4 ±3.2 43.8 ±3.5 - - - 4.3
MCDP 43.3 ±3.9 43.9 ±3.7 40.9 ±2.9 40.4 ±2.7 - 4.3
ENS 42.7 ± NA 40.1 ± NA 37.4 ± NA 32.4 ± NA - 3.3
PN-RKL 43.8 ±4.5 43.0 ±4.4 34.9 ±3.5 34.7 ±3.5 37.1 ±3.7 4.2

CIFAR-10

DNN 48.2 ±2.7 47.0 ±3.4 - - - 8.0
MCDP 48.4 ±3.2 47.4 ±3.6 36.6 ±3.2 36.5 ±3.2 - 8.0
ENS 48.0 ± NA 44.7 ± NA 38.6 ± NA 35.4 ± NA - 6.6
PN-RKL 40.5 ±3.0 38.5 ±2.7 35.0 ±2.3 34.8 ±2.3 36.9 ±2.6 7.5

Table 5.5 Misclassification detection results on MNIST, SVHN and CIFAR-10 test datasets
in terms of mean % AUPR ± 2σ across 10 random initializations. Note, % AUPR of explicit
ensemble (ENS) is not a mean, as it represents the performance of ensembling the predictions
of each DNN model. MNIST Prior Network used MNIST-FA data as out-of-distribution
training data.

100 Experimental Evaluation of Prior Networks

(a) MNIST (b) SVHN

(c) CIFAR-10

Figure 5.4 Misclassification detection Precision-Recall Curves on MNIST, SVHN and CIFAR-
10 test sets. Constructed using confidence as a measure of (inverse) uncertainty. The
predictions of models from 10 different initializations were concatenated together as a way
of combining predictions. The exception to this is the explicit ensemble (ENS), where only a
single set of predictions is available.

performance by a large margin. This can be further analyzed by considering the PR-curves
depicted in figure 5.4. The PR curves derived from all models on the MNIST and SVHN
are similar, though the PR curves on MNIST are noisy as there are so few misclassifications.
However, the PR curves for models trained on CIFAR-10, depicted in figure 5.4c, show that
Prior Networks yield consistently lower precision, especially as the uncertainty threshold is
increased.

Let’s consider the histograms of the confidence scores for correct and misclassified inputs
of an explicit ensemble and a Prior Network trained on CIFAR-10, shown in figure 5.5.
By comparing figures 5.5a and 5.5b it is clear that Prior Networks tend to make more
classification with a low confidence than ensembles. These result suggest that due to overall
similarity between the CIFAR-10 and CIFAR-100 data, the out-of-distribution loss decreases

5.3 Misclassification Detection 101

(a) Explicit Ensemble (b) Prior Network

Figure 5.5 Histograms of confidence scores of explicit ensemble (ENS) and Prior Network
(PN-RKL) on CIFAR-10 test set. The predictions of models from 10 PN-RKL models trained
form different initializations were concatenated together as a way of combining predictions.
Only a single set of predictions is available from ENS.

the confidence the model assigns to inputs which are close to the CIFAR-10 region. However,
considering that the overall error rate goes down, it is possible there are two separate effects
occurring. Firstly, the model makes more low-confidence predictions overall due to the
effect of CIFAR-100 data. Secondly, low-confidence misclassifications have now become
low-confidence correct predictions. As a result, there is a greater number of misclassification
and correct predictions which have a low confidence, which will bring down the precision,
decreasing overall AUPR, as shown in figure 5.4c. In contrast, models trained on MNIST and
SVHN used out-of-distribution training data which was quite different from the in-domain
data and which therefore had little effect on in-domain performance.

These results show that in general, Prior Networks do not provide a significant advantage
to misclassification detection over standard models like DNN and ensemble of DNNs. How-
ever, the out-of-distribution data can act as a regularizer and improves overall classification
performance. Finally, if there are similarities between the out-of-distribution training data and
the in-domain data, then it can actually decrease the precision with which misclassifications
can be detected and shift the overall level of confidence down.

5.3.3 Assessing misclassification detection via rejection curves

As discussed in section 5.2, an alternative way to assess misclassification detection per-
formance is via rejection curves, which represent a realistic downstream application of
uncertainty estimates. Here, the predictions a model makes are replaced by the predictions of
an ‘oracle’, for example a human, in order of decreasing uncertainty. The rejection curves

102 Experimental Evaluation of Prior Networks

Dataset
Single Model Ensemble

DNN PN-RKL MCDP ENS

MNIST 98.2 ±0.3 95.8 ±1.5 97.9 ±0.5 98.4 ± NA

SVHN 80.7 ±2.1 77.8 ±2.0 81.6 ±2.1 84.4 ± NA

CIFAR-10 84.4 ±1.1 82.0 ±1.4 84.4 ±1.1 86.9 ± NA

Table 5.6 Mean rejection ratios ±2σ across 10 random initializations on MNIST, SVHN and
CIFAR-10 test sets. Constructed using confidence as a measures of (inverse) uncertainty.
Performance is evaluated on the test sets of MNIST, SVHN and CIFAR-10.

for all models trained on the MNIST, SVHN and CIFAR-10 datasets are shown in figure 5.6.
Predictions are rejected in order of decreasing confidence. The rejection performance can be
summarized by the rejection area ratio, introduced in section 5.2. These ratios are provided
in table 5.6. The results show that the best model at rejection is an explicit ensemble, while
Prior Networks consistently yield the worst rejection performance. This essentially reflects
the same trends as the analysis based on precision-recall curves above. Analyzing precision-
recall curves is more informative than rejection curves. However, rejection curves provide
more information about performance on a downstream application. Furthermore, it may not
be possible to use precision-recall curves to analyze the quality of uncertainty estimates on
certain tasks, like regression. In these situations it is possible to use rejection curves and
rejection area ratios instead.

5.4 Out-of-Distribution sample Detection

The previous section investigates using measures of uncertainty to detect misclassifications,
which were considered to be a form of outlier. Another form of outlier are out-of-distribution
or out-of-domain inputs, which come from a different distribution than the one which
the model was trained on. As discussed in section 3.1.1, in the context of classification
out-of-distribution inputs can either be unseen variations for known classes or examples
of completely unknown classes. Given an out-of-distribution input the model may yield
nonsensical predictions and have generally undefined behaviour. Consequently, it is desired
that a model understands that it has been exposed to out-of-distribution inputs and indicates
this by producing a high estimate of uncertainty in predictions. This allows the model to able
to detect out-of-distribution inputs and appropriate actions to be taken. Thus, the detection of
out-of-distribution inputs based on measures of uncertainty is investigated in this section.

5.4 Out-of-Distribution sample Detection 103

In the experiments described here in-domain test images are paired with an equal number1

of out-of-distribution images taken from a different dataset. Given this combined dataset, the
goal is to detect which images are out-of-distribution based on uncertainty estimates. The
performance on this binary classification task can be assessed both via area under the ROC
curve or area under Precision-Recall curve. However, as the experiment is designed such that
there is equal number of out-of-distribution and in-domain images, area under an ROC curve
(AUROC) is used as a metric of performance. The measures of uncertainty considered for
misclassification detection in the previous sections are also explored for out-of-distribution
input detection.

This section is structured as follow: out-of-distribution detection using models trained on
MNIST is investigated in section 5.4.1. Out-of-distribution detection using models trained

1With one exception.

(a) MNIST (b) SVHN

(c) CIFAR

Figure 5.6 Mean rejection curves across 10 random initializations on MNIST, SVHN and
CIFAR-10. Constructed using confidence as a measures of (inverse) uncertainty. Note, only
a single set of predictions is obtained from explicit ensemble ENS.

104 Experimental Evaluation of Prior Networks

on CIFAR-10 is investigated in section 5.4.2. Experiments on models trained on SVHN are
presented in appendix C.

5.4.1 MNIST out-of-distribution input detection

In this section the estimates of uncertainty provided by models trained on the MNIST dataset
are evaluated on the task of discriminating between the in-domain MNIST dataset and the
out-of-distribution Semeion and Omniglot datasets. These out of-distribution datasets are
described in tables 5.1 and 5.2 and depicted in figure 5.1. Semeion is a dataset of black-and-
white handwritten digits whose primary difference from MNIST is that there is no padding
between the edge of the image and the digit, while Omniglot is a dataset of black-and-white
handwritten characters from a range of different alphabets. Note, as Semeion is a very small
dataset it was not possible to get a balanced set of MNIST and Semeion images. Thus, AUPR
is used instead of AUROC as a metric of performance when discriminating between MNIST
and Semeion. The results of these experiments are presented in table 5.7.

There are several notable trends. Firstly, measures of knowledge uncertainty are usually
better at detecting OOD images than measures of total uncertainty, though the difference
is small. This makes sense, as MNIST is a low data uncertainty dataset, indicated by
the low classification error rate, and it was shown in section 4.2.3 that all measures of
uncertainty yield similar behaviour on a low data uncertainty dataset. Curiously, it seems
that expected pairwise KL-divergence of an ensemble yields marginally better performance
than mutual information. At the same time, the overall worst measure of uncertainty for

OOD Data Model
Total Uncertainty Knowledge Uncertainty
Conf. Ent. M.I. EPKL D.Ent.

Semeion*

DNN 77.3 ±3.7 78.2 ±3.7 - - -
MCDP 83.7 ±1.9 84.8 ±2.1 88.0 ±1.3 88.6 ±1.2 -
ENS 83.6 ± NA 84.5 ± NA 90.2 ± NA 90.7 ± NA -
PN-RKL 96.5 ±0.6 97.6 ±0.6 99.2 ±0.4 99.3 ±0.4 95.4 ±3.9

Omni-EVAL

DNN 97.8 ±0.3 97.9 ±0.3 - - -
MCDP 97.9 ±0.2 98.0 ±0.2 97.8 ±0.2 97.7 ±0.2 -
ENS 98.2 ± NA 98.3 ± NA 98.5 ± NA 98.6 ± NA -
PN-RKL 97.7 ±0.5 97.7 ±0.5 94.1 ±1.3 94.1 ±1.3 92.4 ±2.0

Table 5.7 MNIST out-of-domain detection results. Results against Semeion are quoted in
terms of mean % AUPR ±2σ across 10 random initializations, as there are few Semeion
images. Results against Omniglot eval dataset are quoted in terms of mean % AUROC ±2σ,
as there are roughly equal amounts of MNIST (test+valid) and Omniglot images.

5.4 Out-of-Distribution sample Detection 105

OOD detection is the confidence in the prediction. This is the exact opposite behaviour to
misclassification detection, where confidence yielded the best performance and measures of
knowledge uncertainty the worst performance. Secondly, Prior Networks yield the highest
performance by a large margin on the Semeion dataset in comparison to the baselines.
However, on the Omniglot dataset all model yield similar, high levels of performance, though
Prior Networks do worst. Finally, explicit ensembles of DNNs are consistently the strongest
baseline and outperform ensembles generated via Monte-Carlo dropout, which is consistent
with previous work [68].

These results can be further analyzed by visualizing the highest uncertainty in-domain
(MNIST) images and the lowest uncertainty out-of-distribution (Semeion/Omniglot) images.
Figure 5.7 shows that Semeion digits are much more ‘chunky’ than MNIST images, while the
lowest uncertainty Omniglot images has a style much closer to that of MNIST. Furthermore,
the lowest uncertainty Omniglot images are characters which are similar to the digits 0-9.
Clearly, a model trained on MNIST would find it difficult to consider characters which look
like digits as out-of-distribution. This suggests that the out-of-distribution training data,
generated via Factor analysis, is too crude to capture the difference between these Omniglot
images and MNIST.

(a) High uncertainty MNIST (b) Low uncertainty Semeion

(c) Low uncertainty Omniglot

Figure 5.7 Highest mutual information in-domain (MNIST test set) images and lowest mutual
information out-of-domain Semeion and Omniglot images.

106 Experimental Evaluation of Prior Networks

Thus, it is interesting to investigate the performance of a Prior Network trained on
the Omniglot ‘background’ datasets BGS1, BGS2 and BG, which contains different, non-
overlapping sets of characters than the Omniglot evaluation dataset. There are several trends
in the results presented in table 5.8. Firstly, OOD training data generated via Factor analysis
drives the Prior Networks to better discriminate between MNIST and Semeion images,
although Omniglot data does not do much worse. Furthermore, increasing the size of the
Omniglot OOD training data from BGS1 to BGS1+2 to finally the entire background set
BG improves this performance. Secondly, training a Prior Network using even the smaller
Omniglot background dataset BGS1 allows it to perfectly discriminate between MNIST and
Omniglot images. It is important to stress that the characters and alphabets in the Omniglot
background and evaluation dataset are different and non-overlapping. These results show that
given the ability of Prior Networks to discriminate between in-domain and out-of-distribution
images strongly depends on the out-of-distribution training data. Appropriate choice of this
data can allow Prior Networks to achieve very high performance.

Out-of-Domain Data Total Uncertainty Knowledge Uncertainty
Test Training Conf Ent. M.I. EPKL D.Ent.

Semeion*

MNIST-FA 96.5 ±0.6 97.6 ±0.6 99.2 ±0.4 99.3 ±0.4 95.4 ±3.9

Omni-BG1 95.1 ±1.5 96.2 ±1.3 98.0 ±1.0 98.2 ±0.9 92.9 ±3.5

Omni-BG1+2 95.2 ±1.2 96.3 ±1.2 98.1 ±0.9 98.3 ±0.8 92.7 ±3.4

Omni-BG 95.4 ±1.3 96.5 ±1.2 98.1 ±0.8 98.3 ±0.7 93.1 ±3.3

Omni-EVAL

MNIST-FA 97.7 ±0.5 97.7 ±0.5 94.1 ±1.3 94.1 ±1.3 92.4 ±2.0

Omni-BGS1
100.0 ±0.0 100.0 ±0.0 100.0 ±0.0 100.0 ±0.0 100.0 ±0.0Omni-BGS1+2

Omni-BG

Table 5.8 Investigation of effect of out-of-distribution training data on out-of-domain detec-
tion performance of Prior Networks. Results against SEMEION are quoted in terms of mean
% AUPR ±2σ across 10 random initializations, as there are few SEMEION images. Results
against Omniglot eval dataset are quoted in terms of mean % AUROC ±2σ, as there are
roughly equal amounts of MNIST (test+valid) and Omniglot images.

5.4.2 CIFAR-10 out-of-distribution input detection

In the previous section it was shown that Prior Networks trained on MNIST can successfully
detect out-of-distribution images. However, MNIST is a very easy task, and it is necessary to
investigate whether the Prior Networks scale to more complex tasks, such as CIFAR-10. The
experiments described in this section evaluate the ability of models trained on CIFAR-10 to

5.4 Out-of-Distribution sample Detection 107

discriminate between in-domain images from the CIFAR-10 test set and out-of-distribution
images from the test sets of SVHN, LSUN and TinyImageNet. This is a more challenging
task, as there are far more possible factor of variation in 32× 32 color images of real objects
than in black-and-white images of handwritten characters. The result of these experiments
are presented in table 5.9.

OOD Data Model
Total Uncertainty Knowledge Uncertainty
Conf. Ent. M.I. EPKL D.Ent.

SVHN

DNN 90.3 ±1.9 91.0 ±2.1 - - -
MCDP 90.2 ±1.9 91.0 ±2.1 88.9 ±1.8 88.9 ±1.8 -
ENS 92.0 ± NA 92.9 ± NA 89.5 ± NA 89.0 ± NA -
PN-RKL 98.1 ±1.2 98.2 ±1.1 98.3 ±0.9 98.3 ±0.9 98.2 ±1.1

LSUN

DNN 89.8 ±0.9 91.4 ±0.9 - - -
MCDP 89.7 ±0.9 91.2 ±0.9 89.9 ±1.2 89.9 ±1.2 -
ENS 92.5 ± NA 94.3 ± NA 93.2 ± NA 92.5 ± NA -
PN-RKL 95.6 ±0.9 95.7 ±0.9 95.8 ±0.8 95.8 ±0.8 95.8 ±0.8

TIM

DNN 87.6 ±2.2 88.8 ±2.3 - - -
MCDP 87.4 ±2.2 88.6 ±2.3 87.2 ±1.5 87.2 ±1.5 -
ENS 90.0 ± NA 91.5 ± NA 90.3 ± NA 89.7 ± NA -
PN-RKL 95.6 ±0.7 95.7 ±0.7 95.8 ±0.7 95.8 ±0.7 95.8 ±0.7

Table 5.9 CIFAR-10 out-of-domain detection results in terms of mean % AUROC±2σ across
10 random initializations (except ENS). CIFAR-10 test set is used as in-domain data and the
test sets of SVHN (10,000 image subset), LSUN and TIM as out-of-domain data.

There are several trends in the results. Firstly, the results show that Prior Networks
consistently outperform the baselines approaches on all tasks and using all measures of
uncertainty. The best baseline approach, as in previous experiments, is an explicit ensemble
of DNNs. At the same time, ensembles generated via Monte-Carlo dropout yield the same
level of performance as standard DNNs trained with maximum likelihood. The results
show that, based on the performance of baseline approaches, the most challenging out-of-
distribution dataset is TinyImageNet. This is expected, as it contains images of a wide
variety of real object categories and is the most similar to CIFAR-10. As before, measures
of knowledge uncertainty derived from a Prior Network, specifically the expected pairwise
KL-divergence and differential entropy, yield the best results. However, the advantage over
the other measures is small as CIFAR-10, like MNIST, is also a low data uncertainty dataset.
Curiously, the best measure of uncertainty derived from ensembles is the entropy of the
predictive posterior, a measure of total uncertainty. It is not clear why this is the case, but

108 Experimental Evaluation of Prior Networks

(a) ENS (b) PN-RKL

Figure 5.8 Histogram of mutual information for in-domain (CIFAR-10 test set) and out-of-
domain (TinyImageNet test set) images derived from explicit ensemble (ENS) and Prior
Network (PN-RKL). Predictions of 10 PN-RKL models trained from different random
initializations are concatenated together.

supports the assertion that it is difficult to control the behaviour of ensembles such that they
are diverse out-of-domain.

It is interesting to analyze the difference in the behaviour of ensembles and Prior Networks
in greater detail. Consider figure 5.8, which depicts the histograms of estimates of mutual
information derived from an ensemble and Prior Networks for CIFAR-10 and TinyImageNet
images. Figure 5.8 shows that the ensemble yields a much tighter distribution of mutual
information and is less ‘diverse’ than a Prior Network. There is also a greater region of
overlap between in-domain images and out-of-domain images. At the same time, the Prior
Network clearly separates out the in-domain and out-of-distribution images. However, there
are a small number of out-of-distributions images for which the Prior Network yields low
uncertainty and a set of in-domain images for which the Prior Network yields maximum
uncertainty.

These images are depicted in figure 5.9. Figure 5.9a shows that the high-uncertainty
in-domain images are ‘odd’ images with obstructions, strange backgrounds, etc, making
it difficult to actually determine what they represent. As discussed in section 5.3.2, Prior
Networks make more low-confidence predictions than ensembles, which is likely a result of
out-of-distribution data, in this case CIFAR-100, being close to the in-domain data in certain
regions. Improving the performance of the classifier and better choice of out-of-distribution
training data could possibly decrease the number of high uncertainty in-domain images
which are not misclassified. At the same time, figure 5.9b shows that the low uncertainty
out-of-distribution images are images of dogs, cats and cars, which are classes present in the

5.5 Chapter Summary 109

CIFAR-10 dataset. Thus, there is a partial overlap between TinyImageNet and CIFAR-10
classes.

5.5 Chapter Summary

In this chapter the construction of Prior Networks on the MNIST, SVHN and CIFAR-10
image classification datasets was investigated. Measures of uncertainty derived from Prior
Networks trained on these datasets were evaluated on the tasks of misclassification detection
and out-of-distribution sample detection. Measures of uncertainty derived from standard
DNNs, a Monte-Carlo dropout ensemble and an explicit ensemble of models were used as
baselines.

In section 5.3 it was shown that Prior Networks do not provide a performance gain over
baseline approaches on the tasks on misclassification detection. Furthermore, misclassifi-
cation detection performance of Prior Networks can be degraded if the out-of-distribution
training data is too close to the in-domain region. At the same time, the out-of-distribution
training data can also act as a regularizer and improve classification performance of Prior
Networks. The results in section show that an explicit ensemble of models yields both the
lowest classification error rates and the best misclassification detection performance. It
was determined that the confidence in the predictions (the probability of the mode of the
predictive distribution) is consistently the best measure of uncertainty for misclassification
detection.

Results in section 5.4 show that Prior Networks are able to outperform baseline ap-
proaches on the task of out-of-distribution input detection on both the MNIST and CIFAR-10
dataset. Results on the SVHN dataset, available in appendix C, also show that a Prior
Network is capable outperforming baseline approaches by a large margin. The best baseline

(a) High Uncertainty CIFAR-10 images (b) Low Uncertainty TinyImagenet images

Figure 5.9 Highest mutual information in-domain (CIFAR-10 test set) images and lowest
mutual information out-of-domain TinyImageNet images.

110 Experimental Evaluation of Prior Networks

approach to uncertainty estimation throughout all experiments was an explicit ensemble of
DNNs. The results in this section also show that measures of knowledge uncertainty, such as
mutual information, expected pairwise KL-divergence and differential entropy, yield better
out-of-distribution detection results, which illustrates the benefit of being able to decompose
total uncertainty into data and knowledge uncertainty.

The superior out-of-distribution detection performance of Prior Networks supports the
assertion that it is easier to control the out-of-distribution behaviour of a distribution over
distributions via choice of training data, rather than by appropriate choice of prior and
approximate inference method. However, the choice of out-of-distribution training data is
non-trivial and needs to be further explored in detail. Furthermore, the low classification
error rates and superior misclassification detection performance of explicit ensembles of
models indicates that appropriate choice of ‘out-of-distribution’ data which represents other
forms of dataset shift also needs to be explored. As a Prior Network represents a distribution
over distributions and is theoretically capable of emulating an ensemble, a possible avenue of
future work would be to distill an ensemble into a Prior Network, combining the advantages
of both. Additionally, future work should investigate the application of Prior Networks to
more complex datasets, such as ImageNet [27], which have more than 10 classes, and to
structured data, such as language and speech. Active learning applications of Prior Networks
should also be investigated in order to further evaluate the practical benefit of separating out
the sources of uncertainty. Finally, Prior Networks should also be evaluated on a range of
regressions tasks.

This chapter concludes the first part of this thesis, which focused on uncertainty estimation.
The next three chapters will consider the application of uncertainty estimation to the areas of
spoken language proficiency assessment.

Chapter 6

Spoken Language Proficiency
Assessment

The first part of this thesis explored the area of predictive uncertainty estimation, discussed
single model and ensemble based approaches in chapter 3, proposed a new class of models
called Prior Networks in chapter 4 and compared them to previous approaches in chapter 5.
This chapter begins the second part of this thesis, which investigates the application of deep
learning and uncertainty estimation to the area of automatic spoken language assessment,
specifically automatic grading of spoken proficiency examinations and automatic assessment
of relevance of spoken responses to open-ended exam prompts.

The increasing demand for language learning and for practice tests available at any time
make the development of automatic assessment systems an attractive proposition [110]. The
goal of an automatic grader is to assess language competence of an examination candidate
with an accuracy matching that of a human grader, but faster, with greater consistency and at
a fraction of the cost. As mentioned in the introduction of this thesis, automatic assessment,
especially high-stakes automatic assessment, requires that models provide measures of
uncertainty in their predictions in order to avoid making mistakes which can adversely
affect the course of peoples’ lives, as was the case with the Irish veterinarian who failed
an automatically assessed spoken English exam in Australia due to her accent [1]. This
motivates the application of the approaches to uncertainty estimation, discussed in the first
part of this thesis, to the tasks of automatic grading and automatic relevance assessment,
which is considered the second part of this thesis.

The current chapter introduces the area of automatic assessment of non-native spoken
language proficiency and discusses the attributes and challenges associated with this task.
This chapter is structured as follows: section 6.1 describes the overall task of spoken language
assessment, grade levels and attributes of the BULATS and LinguaSkill exams, provided by

112 Spoken Language Proficiency Assessment

Cambridge English Language Assessment. Section 6.2 describes the automatic assessment
pipeline used in this work as well the tasks of automatic grading and automatic prompt-
response relevance assessment.

6.1 Spoken Language Proficiency

There is a high demand around the world for learning English as a second language and,
therefore, a need to assess the proficiency level of learners both during their studies and
for formal qualifications. Language proficiency is assessed using standardized, universally
accepted, examinations, such as International English Language Testing System (IELTS) and
Test of English as a Foreign Language (TOEFL), which aim to provide a holistic assessment
of a candidate’s language proficiency. These tests often include listening, speaking, reading
and writing sections that are graded by well-trained human examiners who assign a score
based on a set of guidelines.

A key part of learning a language is learning how to speak fluently and with confidence.
The level reached can be assessed through spoken language proficiency exams, where
candidates are prompted to respond to a series of open-ended questions, such as "describe a
difficult situation at work, why was it difficult and how did you resolve it?". Traditionally,
human examiners assess the candidate’s spontaneous speech replies in terms of pronunciation,
hesitations/extent, use of grammar and vocabulary, and coherency of discourse. Spoken
language proficiency is typically assessed according to the Common European Framework of
Reference for Languages (CEFR), which is designed to provide a basis for the elaboration of
language syllabi, the design of teaching and learning materials, and the assessment of foreign
language proficiency [96, 124]. The CEFR framework separates learners into three broad
categories which can be divided into six proficiency levels detailed in table 6.1:

Level Group Group Name Level Level Description

A
Basic
User

A1 Breakthrough or beginner
A2 Waystage or elementary

B
Independent
User

B1 Threshold or intermediate
B2 Vantage or upper intermediate

C
Proficient
User

C1 Effective Operational Proficiency
C2 Mastery or Advanced Proficiency

Table 6.1 CEFR Foreign Language Proficiency Levels

The CEFR framework provides qualitative measures for reception, interaction and produc-
tion to distinguish between the different levels. A C1 level learner can understand extended

6.1 Spoken Language Proficiency 113

speech even when it is not clearly structured, and when relationships are only implied and
not signalled explicitly. A B1 learner can only understand the main points of clear standard
speech on familiar matters regularly encountered in work, school or leisure, for example.
Similarly for speech production, an A1 user can use simple phrases and sentences to de-
scribe their surroundings whereas a C2 learner is able to present a clear, smoothly-flowing
description or an argument with an effective logical structure.

This work considers the assessment of spoken language proficiency of candidates taking
the Business Language Testing Service (BULATS) and LinguaSkill exams provided by
Cambridge English Language Assessment. The BULATS exam is a set of workplace language
assessment, training and bench-marking tools that is used internationally: for business and
industry recruitment; to identify and deliver training; for admission to study business-related
courses; and for assessing the effectiveness of language courses [15]. Linguaskill is an
online, multi-level test which is designed to offer a complete picture of a candidates’ English
abilities, with fast and accurate testing of all four language skills: reading, listening, writing,
and speaking. The primary difference between BULATS and LinguaSkill is that BULATS is
focused on prompts related to business, industry and commerce while LinguaSkill covers a
broad range of subjects including, but not limited to: family and friends, travel and holidays,
places and sights, studying and working, shopping, sport and music. The overall structure of
both the BULATS and LinguaSkill exams is similar - both exams have five sections:

1. the candidate answers eight questions about themselves (e.g. what is your name, where
do you come from?);

2. candidates read aloud six (or eight) short texts;

3. the candidate is given a particular topic to talk about (e.g. the perfect office, holiday,
etc...);

4. candidates must describe one or more graphics (such as a diagram or information
sheet) related to a topic (stock prices, demographics, etc..);

5. candidates are asked to respond to five open-ended questions related to a single context
prompt. For example a set of five questions about organizing a stall at a trade fair.

The first section (A) contains eight questions about the candidate (e.g. “How do you use
English in your job?”). The second section (B) is a read-aloud section in which the candidates
are asked to read eight sentences. The last three sections (C, D and E) have longer utterances
of spontaneous speech elicited by prompts. In section C the candidates are asked to talk for
one minute about a prompted topic. In section D, the candidate has one minute to describe a

114 Spoken Language Proficiency Assessment

situation illustrated in graphs or charts, such as pie or bar charts. The prompt for section E
asks the candidate to imagine they are in a specific conversation and to respond to questions
they may be asked in that situation (e.g. advice about planning a conference). Each section
of the BULATS or LinguaSkill exam is manually scored between 0 and 6 by a trained
human examiner; the overall score is therefore between 0 and 30. These can be mapped into
CEFR (Common European Framework of Reference) ability levels, described in table 6.1, as
detailed in table 6.2.

BULATS score range CEFR level

29-30 C2
25-28.5 C1
20-24.5 B2
15-19.5 B1
10-14.5 A2
5-9.5 A1
0-4.5 pre-A1

Table 6.2 Equivalence between BULATS/LinguaSkill scores and CEFR levels.

6.2 Automatic Assessment

To meet demand from English learners, the introduction of automatic graders for spoken
language assessment would be beneficial, especially for practice situations. As previously
stated, the goal of an automatic grader is to assess language competence and provide scores
reflecting the quality of the responses given by the candidates in a manner emulating the
accuracy that could be achieved by a human grader. Compared to human graders, automated
graders potentially perform more consistently and offer faster feedback times at a fraction of
the marginal cost. In comparison, the process of hiring and training new a human grader is
costly and only offers a small increase in throughput.

The pipeline for a typical automatic spoken language proficiency assessment system
[25, 128, 33, 34, 129, 137, 119, 85] is shown in figure 6.1. Similar to a number of other
systems, including [25, 33, 137, 52], the graders considered in this thesis use a series of
features based on the speaker’s audio and fluency. Audio features are extracted directly from
the audio signal. However, audio features alone do not contain sufficient information to
represent the candidates’ English proficiency. Automatic assessment systems additionally
use an automatic speech recognition (ASR) system to obtain automatic transcriptions, or
hypotheses, of the candidates’ responses to exam questions. Features for speaker fluency,

6.2 Automatic Assessment 115

Audio

Grade
Feature

extraction

Speech

recogniser
Text

Features Grader

Figure 6.1 CUED Automatic Spoken Language Assessment Pipeline

such as the speaking rate and mean duration of words and silences are derived from the
ASR hypotheses, time aligned to the audio. A number of the individual features show
high correlation with the scores, the remainder have been found to contribute to grader
performance when used in combination with other features [126]. These statistics are derived
from all responses given by a candidate. Compared to the audio features that are used in
[119], in this work 5 new features were added relating to disfluencies, recording duration and
vowel frequency, leading to a 33-dimensional feature set described in table 6.3. An automatic
grader is trained on these features with grade-targets provided by human examiners. More
diverse features are investigated in [126], however, in this thesis only the features in table 6.3
will be used.

An example of a state-of-the-art grader trained on data derived from candidates’ responses
to the BULATs exam is a Gaussian Process grader [119]. Automatic grading can be treated
both as a classification, where the model predicts a CEFR grade-level for each candidate, and
as a regression task, where the model predicts a real value ‘score’ which can then be mapped
to a CEFR grade. However, due to operational requirements of Cambridge English Language
Assessment, in this thesis automatic grading will only be investigated as a regression task.

Robust automatic assessment is a challenging task for a number of reasons. Human
examiners assign grades based on a holistic assessment of a candidate’s spoken responses
in terms of pronunciation, hesitations and their extent, use of grammar and vocabulary,
coherency of discourse, response content and understanding of the question. Unlike automatic
assessment of written proficiency [132], where an automatic system has access to the same
information as a human grader - the candidate’s written response, automatic assessment
systems for speech do not have direct access to candidate’s spoken response. Instead, they
operate on a set of shallow proxy features derived from the candidate’s spoken response, such
as the ones detailed in table 6.3. While these features correlate well with spoken language
proficiency, they clearly do not capture the semantic content of a spoken response, and

116 Spoken Language Proficiency Assessment

No. Item Statistics

Audio Features

1

f0

mean
2 normalised minimum value
3 normalised maximum value
4 normalised range
5 normalised mean absolute deviation

6

Energy

mean
7 normalised minimum value
8 normalised maximum value
9 normalised standard deviation

10 normalised mean absolute deviation

Text (Fluency) Features

11 mean
12 Long Silence standard deviation
13 Duration median
14 mean absolute deviation

15
disfluencies

number of partial words
16 number all
17 fraction all

18
hesitations

number
19 fraction

20 Long Silences number

21 mean
22 Phone/Grapheme standard deviation
23 Duration median
24 mean absolute deviation

25 mean
26 Silence standard deviation
27 Duration median
28 mean absolute deviation

29 number
30 Words frequency
31 mean duration

32 Time Used fraction

33 Syllables frequency

Table 6.3 CUED Grader Features

6.2 Automatic Assessment 117

therefore cannot holistically assess the candidate’s understanding of the question, sentence
construction, and discourse coherence.

This raises several concerns about the validity of automatic assessment considering
that three out of five sections on the BULATS and LinguaSkill exams, detailed in the
previous section, consist of open-ended questions which elicit unstructured, spontaneous
speech. Crucially, the inability to assess the relevance of a candidate’s response to a question
potentially opens the system to spoofing by malicious candidates who wish to achieve a high
score without actually being proficient - they may memorize some text and deliver it fluently
and with confidence rather than actually responding to the prompts of the exam. This creates
a need to assess the relevance of a response to exam prompts.

Another challenge of automatic assessment is the difficulty of robustly deriving these
audio and fluency features from a candidate’s spoken response. The speech to be scored
should contain spontaneous sections instead of simply be readings of a known text, in order
to be able to assess understanding and sentence coherency. This introduces difficulties to
the ASR system because spontaneous speech normally contains disfluencies such as false
starts, hesitations and partial words, increasing the ASR error rate. Furthermore, non-native
spontaneous speech is accented and contains grammatical and sentence constructions errors
whose the degree and nature are strongly impacted by the first language (L1) and proficiency
level of the candidates. Finally, the levels of background noise and volume levels of the audio
recordings are likely to vary by a large amount due to variation in recording conditions in
across exam centers in different countries. In short, each stage of the automatic assessment
pipeline depicted in figure 6.1, from recording the audio to the derivation of features, adds
a certain amount of noise and distortion which is affected by the nature of the speaker
and recording conditions. As a result, the information contained in the features strongly
depends on multiple variables which are difficult to know at test time. Furthermore, it is
in practice impossible observe all of these variations in a finite training dataset. Thus, the
predicted grade’s validity will decrease the more the candidate is mismatched to the data
used to train the system. This is a clear example of dataset shift [102], a term use to describe
mismatches between training and test dataset, which is difficult to account for. Thus, if these
automatic assessment systems are to be safely deployed to high-stakes tests, it is necessary
to have estimates of the system’s uncertainty in its predictions. Knowing when the system
is uncertain allows the detection of “outlier” candidates who need to be examined by, for
example, human graders. This can allow automatic assessment system to avoid situations
like the one where an Irish veterinarian failed an automatic spoken language proficiency
exam in Australia due to accent mismatch [1].

118 Spoken Language Proficiency Assessment

6.3 Chapter Summary

The current chapter transitioned from the first part of this thesis, which discussed uncertainty
estimation for deep learning, to the second part, which considers the application of deep
learning and uncertainty estimation to the area of automatic assessment of spoken language
proficiency. Section 6.1 discussed assessment of spoken language proficiency and described
the BULATS and LinguaSkill exams, provided by Cambridge English Language Assessment.
Datasets derived from these two exams will be used in the next two chapters. Section 6.2
described the standard pipeline for automatic assessment and the typical features used, and
discussed the challenges of automatic assessment. Specifically, the limited and shallow
nature of the the features, which does not allow the assessment of the relevance of spoken
responses to exam questions, and the difficulty of their robust estimation, which leads to
significant dataset shift, are discussed. This motivates the investigation of deep-learning based
automatic graders which provide estimates of uncertainty and models for the assessment of
the relevance of spoken responses to exam prompts based on ASR transcriptions in chapters 7
and 8, respectively.

Chapter 7

Deep Learning for Automatic Grading

The previous chapter discussed the area of spoken language assessment and the associated
challenges, motivating the tasks of automatic grading and automatic assessment of relevance
of spoken responses to open-ended prompts. The current chapter investigates the construction
of models for automatic grading of spoken language proficiency examinations using neural
networks and compares them to baseline models, such as Gaussian Processes [119]. The
models are evaluated on how well their grades match a set of expert human grades on a test
set.

One of the challenges of automatic assessment is that human examiners assign grades
based on a holistic assessment of the candidates’ spoken responses, while automatic graders
must predict the same grade based a set of shallow proxy features derived from the response.
As discussed in the previous chapter, the recording conditions, as well as the accent, first
language and proficiency level or the candidates can have an immense impact on the feature
extraction process, which affects how well an automatic grader performs. This makes it
highly desirable for automatic graders to yield estimates of uncertainty in their predictions,
especially if they are used for high-stakes examinations. Techniques for deriving uncertainty
estimates discussed in chapter 3 will be applied to the models developed in this chapter.
Specifically, uncertainty estimates provided by standard Density Networks, ensembles of
Density Networks and Density Networks trained in a multi-task fashion to yield high un-
certainty for out-of-domain inputs are evaluated and compared to measures of uncertainty
provided by Gaussian Process graders. These uncertainty estimates will be evaluated in
two ways. Firstly, we consider the scenario where an automatic grader passes over an exam
candidate to a human examiner based on its estimates of uncertainty. The goal is to pass over
the smallest number of candidates on which the automatic grader makes the biggest errors.
Secondly, uncertainty estimates will be used to derive predictive intervals on the models’
predictions. The quality of the predictive intervals will be assessed via calibration curves.

120 Deep Learning for Automatic Grading

This chapter is be structured as follows: section 7.1 discusses the automatic assessment
pipeline used in this chapter and provides a description of Gaussian Process and deep-learning
based models for automatic grading; in section 7.2 these approaches are evaluated on data
from the BULATS spoken language proficiency exams in terms of their grading performance
and the quality of the uncertainty estimates they provide.

7.1 Approaches to Automatic Grading

Audio

Grade
Feature

extraction

Speech

recogniser
Text

Features Grader

Figure 7.1 CUED Automatic Spoken Language Assessment Pipeline. This chapter will focus
on the grader component.

As stated in chapter 6, automatic assessment systems, shown in figure 7.1, operate on
fluency and audio features derived from automatic speech recognition (ASR) transcriptions
and audio of the candidates’ responses, respectively. An automatic grader is trained on these
features with grade-targets provided by human examiners. Automatic grading can be treated
both as a classification, where the model predicts a CEFR grade-level for each candidate, and
as a regression task, where the model predicts a real value ‘score’ which can then be mapped
to a CEFR grade. However, in this thesis automatic grading will only be investigated as a
regression task due to operational requirements of Cambridge English Language Assessment,
who are interested in obtaining a score which can then, if necessary, be mapped to a CEFR
grade level.

As stated previously, the goal of an automatic grader to provide scores with an accuracy
of a human examiner. Furthermore, it is highly desirable for an automatic grader to provide
estimates of uncertainty in its predictions. An example of such a grader which has been
evaluated on data from the BULATS exam is a Gaussian Process grader [119]. The estimates
of uncertainty provided by a Gaussian Process can be used to, for example, back-off to human
examiners [119, 80] or derive bounds on the error in the prediction. However, while Gaussian
Processes are excellent for small datasets, they are difficult to scale to large datasets with

7.1 Approaches to Automatic Grading 121

high-dimensional feature spaces due to their high computational expense [92]. Specifically,
training and inference with a standard Gaussian Process are O(N3) and O(N2) due to
matrix inversion and matrix multiplication, respectively [92], where N is the size of the
training data. Furthermore, the memory requirements of Gaussian Processes also haveO(N2)

scaling. Although there is a range of approaches which can reduce the computational and
memory requirements of Gaussian Processes, such as inducing points [103], sparse Gaussian
Processes still require significant computational resources.

Instead of Gaussian Processes, it is possible to use deep neural networks (DNN), which
can be computationally much cheaper. Unlike Gaussian Processes, which are non-parametric
models, DNNs are parametric models and easily scale to very large datasets. Though
they are not the most common neural network based model for regression, in this chapter
Density Networks are considered, because unlike non probabilistic regression models, they
provides estimates of uncertainty in their predictions. However, as discussed in chapter 3,
standard Density Networks trained using maximum likelihood only provide measures of
data uncertainty, or uncertainty which arises due to noise in the data, and do not capture
knowledge uncertainty, or uncertainty arising due to mismatch between the training and test
data. To be able to obtain estimates of both data and knowledge uncertainty it is necessary
to either construct ensembles of Density Networks or to train them in a multi-task fashion
on training OOD data, in order to explicitly build in an understanding of the limits of their
knowledge. In this chapter the construction of automatic graders using standard Density
Networks, ensembles of Density Networks and Density Networks trained in a multi-task
fashion is investigated. These models are compared to a Gaussian processed based grader
as a baseline. The rest of this section describes Gaussian Processes and Density Networks
models and compares the measures of uncertainty that both types of models provide.

7.1.1 Gaussian Processes

A Gaussian Process (GP) [103] is a non-parametric Bayesian model. Unlike parametric
Bayesian models, where a prior p(θ) is used to derive a posterior p(θ|D) over model parame-
ters, a Gaussian Process can be used to specify a prior and derive a posterior distribution over
functions f(x). Although it seems difficult to represent a distribution over functions, it is only
necessary to define a distribution over a set of function values f = {f(x1), · · · , f(xN)} at a
finite, but arbitrary, set of points X = {x1, · · · ,xN}. A Gaussian Process, therefore, is a
joint Gaussian distribution over the values of functions f at the points X:

f ∼ N (m(X),K (X,X)) (7.1)

122 Deep Learning for Automatic Grading

where m(X) is the mean and K (X,X) the covariance matrix as functions of X . The
observed outputs y = {y1, · · · , yN}1 are assumed to be Gaussian distributed around the real
function values f with homoscedastic (independent of the input) additive Gaussian noise
N (0, σ2):

y ∼ N (f , σ2I) (7.2)

The distribution of observations y as a function of X is jointly Gaussian distributed a follows:

y ∼ N
(
m(X),K (X,X) + σ2I

)
(7.3)

where I is the identity matrix. Sampling y from this distribution correspond to sampling
values of functions from the prior distribution over functions.

A Gaussian Process is fully specified by its meanm(x) and covariance functions k(x,x′).
The covariance matrix K(X,X) is composed of pairwise application of the covariance
function or kernel k (x,x′), a follows:

K (X,X) =

 k (x1,x1) · · · k (xN ,x1)
...

k (x1,xN) · · · k (xN ,xN)

 (7.4)

The mean function is typically chosen to be 0, as it is difficult to a priori know what is an
appropriate mean function, and in practice a Gaussian Process is flexible enough to model the
mean arbitrarily well [92]. A number of covariance functions can be selected, as described in
[103]. In this work radial basis covariance function (RBF):

k (x,x′) = σ2
y exp

(
−||x− x′||2

2l2

)
, (7.5)

is used as the covariance function. The shape of the RBF is parameterised by two parameters,
namely l and σ2

y . l is the length scale, which controls the how the distance between x and x′

influences the covariance. σ2
y is the pre-set output variance which determines the average

distance of the function away from its mean.
In order to make prediction for new values of x∗ given the training data D = {y,X}, a

joint distribution over both the training and test targets is defined:[
y

y∗

]
∼ N

(
0,

[
K(X,X) + σ2I k(x∗,X)

k(x∗,X)T k(x∗,x∗) + σ2

])
(7.6)

1In this chapter all the derivations are for a 1-dimensional real-valued output y

7.1 Approaches to Automatic Grading 123

Input features

G
ra
d
e

Training data

Mean

Variance

Figure 7.2 A Gaussian process trained on a few data points. The mean and variance contours
are indicated. When the test point is further away from the training data, the predicted mean
and variance revert to the prior.

The function k(x∗,X) consist of the following elements by applying the covariance function
k(· , ·) to the inputs:

k(x∗,X) =

 k(x∗,x1)
...

k(x∗,xN)

 (7.7)

The predictive distribution over y∗ is obtained by conditioning on the training data D and
the test input x∗. Because y and y∗ are jointly Gaussian distributed as given in (7.6), the
conditional distribution is also Gaussian [11]:

p(y∗|x∗,D) = N (y∗; µ̂, σ̂2) (7.8)

where the predictive mean and variance are given by the following expression:

µ̂ = k(x∗,X)T(K(X,X) + σ2I)−1y

σ̂2 = k(x∗,x∗) + σ2 − k(x∗,X)T(K(X,X) + σ2I)−1k(x∗,X)
(7.9)

Sampling values of y∗ fromN (µ̂, σ̂2) corresponds to sampling from the posterior distribution
over functions given the data.

Figure 7.2 illustrates a toy 1-dimensional Gaussian Process trained on five data points.
The horizontal and vertical axes represent the input and target values, respectively. The bands
show the predicted Gaussian distribution for any input point. The middle line indicates the
mean, and the coloured band the variance contours at 1

2
, 1 and 2 times the variance around

124 Deep Learning for Automatic Grading

the means. The predictions have a low variance when close to data points and the mean
interpolates between the points and to some degree extrapolates beyond. The data is assumed
to be observed with noise, so the mean does not exactly go through the training points. When
the prediction is requested for points further away from the training data points, the predicted
distribution increases in variance. The predicted Gaussian will revert to the prior probability
distribution, as when there are no training data points in the vicinity of the test point there is
little to base a prediction on leading to greater uncertainty.

The predictive variance is a measure of model uncertainty plus a constant homoscedastic
uncertainty term. As described in chapter 3 section 3.4, given an appropriate choice of
prior, estimates of model uncertainty will capture knowledge uncertainty. In a Gaussian
Process, the prior is chosen via choice of covariance function. Given an appropriate choice of
covariance function, the predictive variance will increase the further the input x∗ is away from
the training data, as shown in figure 7.2. This represents the model having higher knowledge
uncertainty in its predictions further away from the training data, where it has to do a lot of
extrapolation. Note, that unlike for parametric Bayesian methods discussed in section 3.4, it
is easier to obtain good estimates of knowledge uncertainty using non-parametric models,
such as Gaussian Processes, which can explicitly measure the distance of the test input x∗

from the training inputs X .

7.1.2 Density Networks

Figure 7.3 Density Network which parameterizes univariate normal distribution.

As discussed in section 2.2.2 standard parametric regression models, called regressors,
are non-probabilistic, unlike standard classification models, and directly predict the target
value ŷ without yielding any estimates of uncertainty:

ŷ = f(x∗; θ̂) (7.10)

However, as we have a need to obtain measures of uncertainty in predictions, this thesis has
instead considered a class of probabilistic regression models called Density Networks, which

7.1 Approaches to Automatic Grading 125

parameterize a continuous output density function over the targets y. Furthermore, it was
shown in section 2.2.2 that regressors are actually a special case of Density Networks which
predict a constant, fixed variance.

Given an appropriate choice of output density function and sufficient training data, a
Density Network trained via maximum likelihood can capture data uncertainty - uncertainty
which, for regression tasks, arises due to additive homoscedastic (input independent) and
heteroscedastic (input dependent) noise. While it is possible to consider a wide range of
different output distributions [26], such as the Normal, Student’s T, Generalized Normal
or Beta distributions, in here we only consider Density Networks which parameterize a
univariate Normal distribution (figure 7.3b):

p(y|x∗; θ̂) = N (y|µ̂, σ̂)
{µ̂, σ̂} = f(x∗; θ̂)

(7.11)

Given a Density Network train using maximum likelihood, the differential entropy (eqn 3.21)
will be the model’s estimate of heteroscedastic and homoscedastic data uncertainty. However,
we are only considering a univariate normal distribution, differential entropy is a monotonic
function of the predicted variance σ̂2, which is why in this chapter the variance will be used a
the model’s estimate of uncertainty. Note that, while both the Gaussian Process and Density
networks assume a univariate Gaussian distribution over the target y, the predictive variance
of the Gaussian Process will be an estimate of model uncertainty plus homoscedastic data
uncertainty, rather than heteroscedastic data uncertainty. Given an appropriate choice of
covariance function for the Gaussian Process, the predictive variance will be an estimate
of knowledge uncertainty. However, maximum likelihood estimation does not contain any
mechanism for a model to capture knowledge uncertainty - uncertainty due to mismatch of
the training and test distributions. Density Networks can be constructed to capture knowledge
uncertainty in two ways, both of which are considered in this work.

Firstly, Density Networks can be trained in a multi-task fashion to yield a low entropy
distribution p(y|x∗; θ̂) in domain and a high entropy output distribution further away from
training data. This requires out-of-distribution (OOD) training data which is used to explicitly
build in the knowledge about the limits of the model’s understanding. This OOD training
data can either be obtained by using a different dataset or it can be synthesized using a
generative model. In this chapter we use a factor analysis model trained on the in-domain
training data to synthesize out-of-distribution training data for Density Networks. To sample
features which are near the edge of the training data region the variance of the latent variable

126 Deep Learning for Automatic Grading

distribution and the data covariance were both multiplied by a factor λ:

z ∼ N (0, λ · I)
x ∼ N (Wz + µ, λ ·Σ)

(7.12)

Density Networks can be trained using several multi-task loss functions, as discussed in
section 3.3.2. In this work, based on [80], we consider the loss function which minimizes
the KL-divergence between the model and a ‘teacher’ distribution p(y|x; θ̃) for in-domain
data and the KL-divergence between the model and a target high-entropy normal distribution
pout(y|x) for out-of-distribution data:

L(θ) = Eptr(y,x)

[
KL[p(y|x; θ̃)||p(y|x;θ)]

]︸ ︷︷ ︸
In−Domain Loss

+γ · Epout(x)

[
KL[pout(y|x)||p(y|x;θ)]

]︸ ︷︷ ︸
Out−of−Distribution Loss

(7.13)

A standard Density Network trained using maximum likelihood will be used as the target
in-domain distribution p(y|x; θ̃) while the target OOD distribution pout(y|x) is constructed
by the manually setting the target OOD mean µOOD and variance σ2

OOD. Since we are not
interested in the model’s predictions for OOD data, µOOD is set to be whatever the model
predicts for OOD data (µ̂). The target variance σ2

OOD for the OOD data is chosen to be a
function of the distance of the sampled latent variable z from the mean of the latent space
(0):

σ2
OOD = dsigma · ||z||2 + dbias (7.14)

where dsigma and dbias are hyper-parameters. Given a density network trained in this fashion
the predicted variance σ̂2 will be an estimate of total uncertainty - the sum of data uncer-
tainty and knowledge uncertainty. In this case, a Density Network essentially emulates the
behaviour of a Gaussian Process.

The second approach to modelling knowledge uncertainty using Density Networks is to
construct an ensemble of M density networks {p(y|x∗;θ(m))}Mm=1 which yields consistent
predictions in-domain and diverse predictions out-of-distribution, as described in section 3.4.
In this chapter ensembles are constructed via Monte-Carlo Dropout and training M Density
Networks via maximum likelihood starting from different random initializations. These are
the same approaches as considered in chapter 5.

Given an ensemble of Density Networks which parameterize a univariate Gaussian
distribution, it is possible to obtain estimates of uncertainty via measures of spread of the
ensemble, such as the total variance (equation 3.36). The expression for the total variance
of an ensemble of Density Networks which parameterize univariate normal distributions is

7.2 Experimental Evaluation 127

given below:

V[y|x∗]︸ ︷︷ ︸
Total Uncertainty

= Vp(θ|D)

[
Ep(y|x∗,θ)[y]

]︸ ︷︷ ︸
Model Uncertainty

+ Ep(θ|D)

[
Vp(y|x∗,θ)[y]

]︸ ︷︷ ︸
Expected Data Uncertainty

=
1

M

M∑
m=1

(
µ̂(m) −

(1

M

M∑
l=1

µ̂(l)
)2)2

+
1

M

M∑
m=1

(σ̂(m))2
(7.15)

The expression for total variance allows total uncertainty to be decomposed into data and
knowledge uncertainty. The first term in equation 7.15 is the variance of the mean, which
captures knowledge uncertainty, and the second term is the mean variance, which captures
the average data uncertainty of each member of the ensemble. Alternatively, it is possible to
calculate expected pairwise KL-divergence (EPKL) between each member of the ensemble
(equation 3.35). As discussed in section 3.4, the EPKL is an upper bound of the mutual
information and is a measure of knowledge uncertainty.

Finally, it is possible to combine single-model and ensemble approaches, and consider
explicit ensembles of Density Networks trained in a multi-task fashion from different random
initializations. Measures of uncertainty can be derived from them in the same way as from
an ensemble of standard Density Networks.

7.2 Experimental Evaluation

The previous sections discussed construction of automatic graders using both Gaussian
Processes, the baseline grader considered in this chapter, and Density Networks. In this
section these approaches are evaluated on data from the BULATS [18, 15] spoken language
proficiency exam provided by Cambridge English Language Assessment. Models are evalu-
ated on their ability to assign accurate grades, their ability to reject and pass over a candidate
for assessment by a human examiner based on their uncertainty estimates and on the quality
of the predictive intervals which the models provide. The evaluation metrics are discussed in
subsection 7.2.1, the details of the datasets are described in subsection 7.2.2 and the details
of model construction are found in subsection 7.2.3. Evaluation of predictive performance,
use of uncertainty estimates for prediction rejection and derivation of predictive intervals are
discussed in sections 7.2.4-7.2.6.

7.2.1 Assessment Criteria

In this set of experiments, the automatic graders will be assessed using several metrics of
performance. Firstly, given a test set Dtest = {x∗

i , y
∗
i }Ni=1 an automatic grader’s predictions

128 Deep Learning for Automatic Grading

{µ̂i}Ni=1 will be assessed via mean square error (MSE) and mean absolute error (MAE):

LMSE(θ,Dtest) =
1

N

N∑
i=1

(µ̂i − y∗i)2

LMAE(θ,Dtest) =
1

N

N∑
i=1

|µ̂i − y∗i |

(7.16)

which measure the average square deviation and the average absolute deviation of the
predictions from the targets, respectively. The difference between square and absolute error is
that the former is more sensitive to outliers, while the latter is more robust to them. Another
measure of predictive performance is the Pearson correlation coefficient ρ [92]:

ρ =

∑N
i=1(µ̂i − µ̄)(yi − ȳ)√∑N

i=1(µ̂i − µ̄)2)
√∑N

i=1(yi − ȳ)2

ȳ =
1

N

N∑
i=1

yi, µ̄ =
1

N

N∑
i=1

µ̂i

(7.17)

where ȳ is the target sample mean and µ̄ is the prediction sample mean. Pearson correlation
coefficient measures how strong a linear relationship exists between the predictions and the
targets. A ρ = 1 implies there is a perfectly linear correlation and ρ = −1 means there is a
perfectly linear inverse correlation. A ρ = 0 means that the data is not linearly correlated.
However, the data may have a complex, non-linear relationship, which will not be reflected
in a PCC2 value. Unlike MSE and MAE, which give the average square or absolute deviation,
PCC assesses whether there is a linear relationship between the predictions and the targets. A
situation were PCC is very high, for example 99.0, while MSE or MAE are non zero, implies
that MSE and MAE can be reduced to zero by using an appropriate affine transformation.

An operational requirement of Cambridge English is that 50% of the predictions must fall
within half and 90% must fall within a single CEFR [96] grade level. In terms of BULATS
scores which range 0-30, this means that 50% of the predictions must have an absolute error
less than 2.5, and 90% of the predictions an absolute error less than 5.0, according to the
BULATS-CEFR mapping in table 6.2.

Having discussed how to assess predictive performance, let’s now consider how to assess
the quality of uncertainty estimates. Unlike classification tasks, where it is possible to assess
misclassification using Precision-Recall curves, the same is not possible for regression tasks,
as the prediction are real-valued. However, it is possible to use prediction rejection curves,

2In this work, ρ · 100 is reported in order to keep tables compact.

7.2 Experimental Evaluation 129

introduced in chapter 5, to assess whether the uncertainty correlates well with the MSE/MAE.
As stated in the beginning of this chapter, the operating scenario of interest is to use an
automatic grader’s estimates of the uncertainty to reject and pass over candidates to be
assessed by human graders for high-stakes tests. The goal is to maximize the increase in
average performance on the remaining set of candidates while rejecting the least number of
candidates. This represents the same scenario as the rejection curves. The rejection curves for
regression are shown in figure 7.4. As the fraction of predictions rejected is increased, model
predictions are replaced with oracle (human) scores in some particular order, decreasing the
MSE. Figure 7.4 depicts 3 curves representing different orders of rejection: expected random

(a) Shaded area is ARorc (b) Shaded area is ARuns

Figure 7.4 Example prediction rejection curves for regression.

rejection order, oracle rejection order and uncertainty-based rejection order. The expected
random performance curve is a straight line from the base predictive performance (MSE)
to 0, representing rejection in a random order. The oracle rejection curve is constructed by
rejecting predictions in order of decreasing mean square error relative to human graders. A
rejection curve generated by rejecting candidates in order of decreasing uncertainty should
sit between the random and oracle curves.

As before, the rejection curve can be summarized using the rejection ratio RR (eqn. 7.18),
which is the ratio of the areas between the uncertainty-based (ARuns) and oracle (ARorc)
rejection curves relative to the random rejection curve. Ratios of 1.0 and 0.0 correspond
to perfect and random rejection, respectively. A rejection ratio less than 0 indicates the
‘perverse’ situation where reported uncertainty is greater for candidates with smaller actual
error.

RR =
ARuns

ARorc
(7.18)

130 Deep Learning for Automatic Grading

However, there is a limitation to rejection curves when applied to regression tasks. Using
bias-variance decomposition [92], it is possible to show that MSE is composed of reducible
error (given by bias and variance), and heteroscedastic or homoscedastic target noise:

Eptr(x,y)

[
(y − µ̂)2

]
= Eptr(x)

[
(µ̂− Eptr(y|x)[y])

2
]︸ ︷︷ ︸

Reducible Error

+Eptr(x)

[
Vptr(y|x)[y]

]︸ ︷︷ ︸
Irreducible Error

(7.19)

Even if systematic error is eliminated there will still be random errors due to heteroscedastic
or homoscedastic noise on the targets. This means that when a model is very high-performing,
then MSE will be composed only of random error and the oracle ordering will be completely
determined by the noise. If the noise is homoscedastic, then oracle rank-ordering is in fact
random rank ordering. However, as an ‘oracle’ rejection curve can still be drawn based on
the actual random errors made, it is possible to obtain a very low AUCRR in this situation. This
means that AUCRR numbers for high performance models are meaningless when there is only
homoscedastic noise, as the oracle rejection curve is an over-estimation. On the other hand,
if the noise on the targets is heteroscedastic, then it may be possible to obtain a rank ordering,
but the oracle ordering will still be over-estimated to some degree, as it is only noise which
determines the rank-order between two points who have equal heteroscedastic uncertainty.

Another approach to assessing the quality of uncertainty estimates which does not depend
on rank ordering the predictions is via calibration, which assesses how well the errors made
are captured by the model’s predictive intervals δ. Consider a model which parameterizes a
univariate normal distribution and yields a set of means and variances {µ̂i, σ̂

2
i }Ni=1. The goal

is to assess what fraction of the predictions µ̂i are within a certain predictive interval δ of the
targets yi. Using the variance σ̂2

i the theoretical fraction ft of predictions within a interval δ
of the target can be calculated via the cumulative distribution function (CDF) F :

ft = P(µ̂− δ ≤ y < µ̂+ δ; σ̂)

= F (
µ̂+ δ

σ̂
)− F (µ̂− δ

σ̂
)

(7.20)

In the case of a normal output density function 68% of the predictions µ̂i should be within
1 standard deviation σ̂i of the targets yi, 95% within 2 standard deviations, etc... Using the
inverse CDF, a predictive interval δi can be calculated as a function of the desired theoretical
fraction and the predicted variances for each prediction:

δi = σ̂i · F−1(1− ft

2
)− µ̂i (7.21)

7.2 Experimental Evaluation 131

It is then possible to calculate the empirical fraction fe of predictions within the predictive
intervals:

fe =
1

N

N∑
i=1

I(|µi − yi| ≤ δi) (7.22)

The theoretical and empirical fractions can then be plotted on a calibration curve as the
theoretical fraction goes form 0.0 to 1.0, as shown in figure 7.5. A calibration curve assesses
whether the empirical fraction fe of the predictions within a certain interval δ matches the
probability ft given by cumulative density function at that interval. If the curve is above
the line, then the model is under confident and its predictive intervals are bigger than the
errors made, and if the curve is below the line, the model is over confident and yields
predictive intervals which are smaller than the errors made. A well calibrated model should
yield predictive intervals such that the empirical and theoretical fractions are equal. This
means that the model captures the uncertainty in the prediction well. Note, calibration is an
average across a dataset, with predictions on certain subsets of the data being better or worse
calibrated.

Figure 7.5 Calibration Curves

7.2.2 Datasets

In this chapter automatic graders are trained on datasets derived form real candidates’
responses to questions on the BULATS spoken language proficiency exam provided by

132 Deep Learning for Automatic Grading

Dataset Num.Spks ASR % WER

BLT-TRAIN 4299 -
BLT-EVAL 224 48.6

Table 7.1 Description of datasets in terms of number of training samples and ASR word error
rate (% WER) relative to crowdsource transcriptions.

Cambridge English Language Assessment. As described in section 6.1, the BULATS
exam has a simple question section, a read-aloud section and three sections which elicit
spontaneous, unstructured responses to open-ended questions. In this work one training
dataset BLT-TRAIN and one evaluation dataset BLT-EVAL, described in table 7.1, are
considered. BLT-TRAIN contains grade-targets provided by ‘standard’ BULATS examiners,
while BLT-EVAL contains grade targets provided by ‘expert’ examiners, who train the
standard examiners. However, the effect of this mismatch is likely to be minimal, as the
primary difference between grade-targets assigned by standard and expert examiners is the
level of noise, rather than a systematic shift in assignment of grades.

Figure 7.6 CEFR grade distribution of datasets. Here grades C1 and C2 are combined into
one, because there are so few C2 speakers.

A set of 10 audio features and 23 fluency features, described in chapter 6 table 6.3, is
derived from all responses of a candidate’s responses to questions on the BULATS. The
ASR system has a word error rate (WER) of 48.6 on the BLT-EVAL dataset relative to
crowd-sourced transcriptions [120]. Despite this high word error rate, previous work [119]
has shown that the current feature set is not sensitive to the ASR performance. As shown
in figure 7.6, the evaluation dataset has a roughly equal distribution across all grade levels.
The training dataset BLT-TRAIN is also roughly balanced across the all grade levels except
C, which only makes up 5% of the dataset. Figure 7.7 details the L1 breakdown of each

7.2 Experimental Evaluation 133

dataset. BLT-TRAIN and BLT-EVAL contain candidates from the sames L1 languages,
except Spanish. However, while BLT-EVAL is evenly distributed across L1 languages,
BLT-TRAIN is biased towards Thai, Spanish and Arabic speakers.

Figure 7.7 L1 language distribution of datasets. Note, there are no Spanish L1 candidates in
the evaluation set.

7.2.3 Model Details

In the following experiments Gaussian Process and a range of Density Network graders are
constructed on the BLT-TRAIN dataset. For all models, the input features are whitened
by subtracting the mean and dividing by the standard deviation of each feature computed
on the training data. The Gaussian Process (GP) uses an RBF kernel with homoscedastic
Gaussian noise and is trained using the scikit-learn [100] version 17.0 Gaussian Process
implementation.

Several types of Density Networks are trained in the following experiments. Firstly,
standard Density Networks (DDN) are trained via maximum likelihood. The Density Net-
works with 2 hidden layers with 180 Leaky ReLU units in each layer were trained using the
ADAM [62] optimizer. An exponentially decaying learning rate with decay factor of 0.95
per epoch and an initial learning rate of 1e-2 was used. Dropout [117] regularization was
used for training with a keep probability of 0.8. Additionally, L2 regularization was used
with a weight of 4e-7. Models were trained for 100 epochs.

To evaluate sensitivity to random initialization, 10 density networks were constructed
using different random seeds. These 10 Density Networks were also evaluated as an ensemble
(ENS). Additionally, a Monte Carlo Dropout Ensemble (MCDP) was constructed from each

134 Deep Learning for Automatic Grading

Density Network using test-time dropout on each Density Network with a keep probability
of 0.8.

Density Networks trained in a multi-task fashion (DDN-MT) on in-domain and out-of-
distribution data were also constructed. 10 networks were constructed evaluated sensitivity to
initialization. Each DDN-MT model was initialized from a standard DDN model and trained
for a further 100 epochs with a learning rate of 1e-4 using OOD data generated via factor
analysis. The predictions of the standard DDN models were used as the targets of the DDN-
MT models. Out-of-distribution training data was synthesized using a factor analysis model
with a 10-dimensional latent space and hyper-parameters λ = 1.1, dsigma = 6, dbias = 20.
These hyper parameters were chosen such that the target OOD variances are of the same
order but larger than the variance of the real data. Density Networks trained in a multi-task
fashion were also evaluated jointly as an ensemble (ENS-MT).

7.2.4 Evaluation of Predictive Performance

In the current subsection the predictive performance of all models is evaluated using MSE,
MAE and PCC as well as percentage of predictions within one-half and one-whole CEFR-
grade deviation. Results are presented in table tables 7.2, which shows that all models
comparable performance, with the ensemble of 10 multi-task trained Density Networks
(ENS-MT) achieving the best results, while ensembles generated via Monte-Carlo dropout
yield the worst predictive performance in term of MSE and MAE. All models achieve a
performance of 87.0 % PCC or above. Notably, Density Networks trained in a multi-task
fashion yields more accurate results than standard Density Networks in terms of MSE and
MAE. All models achieve results comparable to a standard human examiner in terms of
pearson correlation, as the PCC of standard examiners with expert examiners is 87.5. In terms
of MSE all models achieve super-human performance, as the MSE of standard examiners
relative to expert examiners is 14.20 . This shows that automatic assessment systems already
better, faster and more consistent than standard humans examiners, despite the limited nature
of the features.

7.2.5 Evaluation of Rejection Performance

Having established that all models are able to achieve high predictive performance, it is now
necessary to assess the quality of the uncertainty estimates provided by each model. In this
section, the uncertainty estimates derived on Density Networks, Density Networks trained
in a multi-task fashion and Ensembles are compared to uncertainty estimates derived from
a Gaussian Process on the task of prediction rejection. Table 7.3 shows the performance,

7.2 Experimental Evaluation 135

Model GP
Single Model Ensemble

DDN DDN-MT MCDP ENS ENS-MT

MSE 8.66 ± NA 8.80 ±0.26 8.66 ±0.19 8.91 ±0.25 8.62 ± NA 8.58 ± NA

MAE 2.30 ± NA 2.32 ±0.05 2.28 ±0.03 2.34 ±0.05 2.29 ± NA 2.27 ± NA

PCC 87.5 ± NA 87.1 ±0.1 87.0 ±0.1 87.1 ±0.1 87.4 ± NA 87.1 ± NA

% AE < 2.5 62.1 ± NA 52.2 ±0.0 62.6 ±0.0 53.0 ±0.0 53.1 ± NA 61.1 ± NA

% AE < 5.0 90.6 ± NA 82.2 ±0.0 91.7 ±0.0 82.2 ±0.0 81.7 ± NA 92.0 ± NA

Table 7.2 Grading performance on BLT-EVAL. Results for DDN, DDN-MT and MCDP are
means ±2σ across 10 model trained from different random initializations.

in rejection ration RR, of rejection for all models using a range of uncertainty measures.
The best rejection performance is achieved using an explicit ensemble of Density Networks
trained in a multi-task fashion (ENS-MT), while the Gaussian Process yields the second-best
results. Notable, the best measures of uncertainty for rejection are based on knowledge
uncertainty, while rejecting based on estimates of data uncertainty seems to perform worse.
The exception is ENS-MT, where the distinction between knowledge uncertainty and data
uncertainty is not so clear, as each DDN-MT model in the ensemble yields an estimate of
total uncertainty. Firstly, it suggests that the largest errors occur on outlier candidates who are
somehow mismatched to the training data, which is why measures of knowledge uncertainty
yield better rejection performance. In section 7.2.2 is it shown that there are several levels of
mismatch between the training and evaluation data, which may be detected using measures
of knowledge uncertainty. Secondly, it suggests that there is little heteroscedastic data
uncertainty, and most data uncertainty is homoscedastic. The low rejection ratios using
measures of data uncertainty and the large variation (indicated via ±2σ) across different
initializations supports this assertion.

Model GP
Single Model Ensemble

DDN DDN-MT MCDP ENS ENS-MT

Total Variance - - 22.7 ± 5.8 9.8 ±5.0 13.1 ± NA 23.8 ± NA

Mean Variance - 10.1 ±7.2 - 10.5 ±6.8 9.9 ± NA 23.7 ± NA

Variance of Mean 22.8 ± NA - - 4.7 ±6.6 22.7 ± NA 17.1 ± NA

EPKL - - - 3.8 ±9.6 21.4± NA 27.4 ± NA

Table 7.3 Prediction rejection performance using Rejection Ratio RR on BLT-EVAL dataset.
Results for DDN, DDN-MT and MCDP models are mean rejection ratios±2σ across random
initializations.

136 Deep Learning for Automatic Grading

The rejection ratios on this task are far lower than the rejection ratios achieveable on the
classification tasks considered in chapter 5. It is not clear whether this is due to the limitation
of rejection curves for regression tasks (being dominated by homoscedastic noise), or due to
the models failing to detect dataset shift. However, the fact that Gaussian Process, multi-task
trained Density Networks and ensembles operated on different principles (non-parametric
model, single parametric model, ensemble of parametric models), but achieve comparable
rejection performance, suggests that the limitation lies in the features, which do not properly
reflect certainty types of dataset shift. It is likely that a richer and more robust set of features
may allow all models to extract better estimates of uncertainty. Alternatively, investigation of
grading as a classification task may be able to answer whether it is in fact the features which
are limited, or whether the errors are dominated by homoscedastic noise.

7.2.6 Evaluation of Calibration Performance

Instead of assessing whether it is possible to rank-order errors based on predicted uncertainty,
it is possible to evaluate whether the error falls within predicted error bounds or predictive
interval. This is done by constructing a calibration curves, as discussed in section 7.2.1. The
calibration curves for all models are presented in figure 7.8. The calibration curves show
that all models are generally well-calibrated, with DDN models yielding the most calibrated
estimates of uncertainty. DDN-MT, ENS-MT and Gaussian Processes tend to produce the
most under-confident predictions. This makes sense, as multi-task trained Density Networks
are biased, while Gaussian Processes do not capture heteroscedastic data uncertainty. 3

7.3 Chapter Summary

The current chapter discussed the application of Deep Learning and uncertainty estimation
to the task of automatic grading of spoken language proficiency exams based on features
derived from audio and ASR transcriptions. Automatic graders based on Gaussian Processes
and Density Networks were explored. Models were evaluated on their predictive performance
as well as on the quality of their uncertainty estimates.

In section 7.2.4, it was shown that the best predictive performance in terms of mean
absolute and mean square deviation from the targets was the ensemble of Density Networks
trained in a multi-task fashion. At the same time, the best performance in terms of Pearson
correlation was demonstrated by the Gaussian Process. However, all models are able to
outperform standard human examiners when assessed against expert human examiners using

3Though it is possible to consider heteroscedastic Gaussian Processes.

7.3 Chapter Summary 137

Figure 7.8 Mean calibration curves of models across 10 different random initializations
(except ENS, ENS-MT and GP) with ±2σ error bounds.

the metrics considered in this chapter. This shows that automatic assessment systems are
already reaching human-level performance, despite the limited nature of the features and size
of training data. At the same time, future work should explore new ways of assessing these
models in order to reveal hidden biases and vulnerabilities. Additionally, the comparable
performance of models based on Density Networks and Gaussian Processes suggests that it
is possible to achieve the same predictive performance at a lower computational and memory
cost. Thus, future work should explore training these models on far larger datasets.

In section 7.2.5, estimates of uncertainty in predictions provided by all models were eval-
uated on the task of rejecting predictions in the order of decreasing uncertainty. The results
showed that standard Density Networks trained via maximum likelihood and Monte-Carlo
dropout ensembles fail to meaningfully reject predictions. Explicit ensembles of Density
Networks, both standard and trained in a multi-task fashion, as well as the Gaussian Process
are able to successfully reject predictions. Furthermore, it was shown that rejecting based
on measures of knowledge uncertainty yields better performance than based on measures
of either total uncertainty or data uncertainty. This suggests that applying regression Prior
Networks, developed in chapter 4, to this task is an interesting avenue of future research.
Additionally, construction of classification models for grading should also be investigated.

Finally, uncertainty estimates were also assessed on the quality of predictive intervals
that they yield in section 7.2.6. It was shown that explicit ensembles, Monte-Carlo dropout

138 Deep Learning for Automatic Grading

ensembles and Density Networks are well calibrated, but Density Networks trained in a
multi-task fashion to capture knowledge uncertainty, explicit ensembles derived from them
and Gaussian Processes are under-confident.

Chapter 8

Deep Learning for Prompt-Response
Relevance Assessment

The previous chapter examined deep learning models for constructing automatic graders
for spoken language proficiency assessment. Due to the limited nature of the available
features, these automatic graders primarily focus on pronunciation and fluency, both of
which are highly correlated with proficiency. At the same time content assessment is
minimal. However, reliable and robust assessment of proficiency requires the evaluation
of the semantic content, construction and relevance of a response to the question prompt.
Crucially, an automatic system must assess if the candidate’s response is relevant to the exam
prompt they are answering. Due to the limited nature of the features which they use, current
graders are incapable of detecting when a candidate has given a non-relevant response, either
maliciously, by reciting memorized English text, or non-maliciously, due to misunderstanding
the question. This vulnerability compromises the reliability of an automatic assessment
system and prevents deployment to high-stakes examinations.

Figure 8.1 CUED Automatic Spoken Language Proficiency Pipeline with a Relevance
Assessment Assessment module

140 Deep Learning for Prompt-Response Relevance Assessment

This chapter seeks to develop a solution to this problem by developing a prompt-response
relevance detection module for the automatic assessment pipeline. The goal of this module
will be to assess, based on an automatic transcription of the candidate’s spoken response,
whether the given response is relevant to the question prompt which the candidate was
asked. Two distinct types of approaches to relevance assessment are considered - an indirect
approach based on prompt-topic classification, and a direct approach, where the model yields
a relevance score.

If a relevance assessment module is part of an automatic assessment system deployed
for high states assessment it must also provide estimates of uncertainty in its predictions,
much like the automatic graders discussed in the previous chapter. Ensemble approaches to
uncertainty estimation, described in chapter 3, are applied to the models developed in this
chapter. The estimates of uncertainty are evaluated on the tasks of misclassification detection
introduced in chapter 5.

This chapter is structured as follows: section 8.1 frames the problem of prompt-response
relevance assessment in mathematical terms. Indirect relevance assessment approaches
are discussed in section 8.2 and direct relevance assessment approaches are discussed in
section 8.3. Indirect relevance assessment models are evaluated on prompts and responses
from the BULATS exam in section 8.5. Direct relevance assessment models are evaluated on
prompts and responses from the BULATS and LinguaSkill exams in section 8.5. Specifically,
sections 8.5.5 and 8.5.6 investigate the predictive performance of models on evaluation data
which is either matched or mismatched to the training data, respectively. The derivation of
uncertainty estimates using ensemble approaches is investigated in section 8.5.7. The code
and experiments for the direct models was a product of joint work with Bruno Mlodozeniec.

8.1 Prompt-Response Relevance Assessment

The current section introduces the task of prompt-response relevance assessment and defines
the problem in mathematical terms. Consider the following scenario - there is an exam where
candidates must provide a response wr to an open ended question prompt wp chosen from a
pool prompts of Dp = {w(q)

p }Qq=1 which can be asked on this exam. Here, both the response
and the prompt are variable length sequences of words w:

w = {w(1), · · · , w(L)}, w ∈ {ω1, · · · , ωV } (8.1)

In the context of assessment of spoken response relevance, the response sequence is produced
by a speech recognition system, while the prompt is written text. The goal of a relevance

8.1 Prompt-Response Relevance Assessment 141

assessment system is to assess whether the response is semantically relevant to the question
asked - essentially, is the candidate answering the question-prompt, or are they speaking off
topic. In this chapter two classes of approach to relevance assessment are considered.

The first approach treats relevance assessment as a ‘topic’ classification task. Here each
prompt is considered to correspond to a distinct class or topic1. A prompt topic classifier
P(yp = q|wr) is constructed which predicts to which prompt the response wr relates to:

ŷp = argmax
q
{P(yp = q|wr; θ̂)} (8.2)

If the predicted prompt-topic and the true prompt-topic are the same, then the response is
deemed relevant, otherwise it is considered non-relevant:

rel =

1, yp = ŷp

0, yp ̸= ŷp
(8.3)

Conceptually, this approach seeks to answer the question "Which prompt is most likely have
elicited the given response?". This question is subtly different from ‘is the given response
relevant to the prompt?", which is answered only indirectly. Consequently, this approach
will be referred to as an indirect approach to relevance assessment.

An important property of this approach is that it assumes that prompt-topics are mutually
exclusive and that a response can only be relevant to a single prompt. This approach does
not fully allow for a response to have degrees of relevance to various prompts. However,
certain prompts in an exam can ask similar questions, which means that it is possible for
the model to yield a large number of false-negatives. Thus, it may be beneficial to relax this
mutual-exclusivity to a certain degree by considering whether the true prompt-topic is within
the top k predicted prompt-topics:

rel =

1, yp ∈ {ŷ1, · · · , ŷK}

0, yp /∈ {ŷ1, · · · , ŷK}
(8.4)

Another limitation of these approaches is that the training data for the prompt-topic classifier
must contain examples of responses for each prompt-topic. This limits the flexibility of
deployment, as example responses must be collected every time a new prompt is introduced.
Furthermore, a classifier over a fixed number of classes may have to be re-trained every time
a new prompt is added to the pool of prompts, which may be expensive.

1Here the concept of a ‘topic’ is used in a slightly different way than in topic models like LDA [101]

142 Deep Learning for Prompt-Response Relevance Assessment

Instead of treating relevance assessment as a prompt-topic classification task, it is possible
to consider directly assessing prompt-response relevance by constructing a model which
yields a relevance score S(wr,wp) between a prompt and a response. Here, a response is
considered relevant to a prompt if the relevance score is above a certainty threshold T :

rel =

1, S(wr,wp) ≥ T

0, S(wr,wp) < T
(8.5)

An example of such a relevance score is the probability of relevance produced by a proba-
bilistic discriminative model:

P(rel|wr,wp; θ̂) (8.6)

This class of approaches fully allows a response to have various degrees of relevance to
multiple prompts at the same time. Furthermore, such models are not limited to assessing
relevance of a response to only a fixed number of prompts. If the model is powerful enough
and generalizes well, it may be able to assess relevance to new prompts which were not
previously seen in the training data.

8.2 Indirect Prompt-Response Relevance Assessment

The two approaches to relevance assessment considered in this chapter were introduced in
the previous section - the indirect approach, which involves classifying which prompt is most
likely to have elicited the given response, and the direct approach, where a model directly
yields a relevance scores. This section discusses two methods of implementing the indirect
approach to prompt-response relevance assessment. Information retrieval style approaches,
where a K-nearest neighbours (KNN) classifier is constructed based on distances between
bag-of-words vector representations of responses and prompts, are discussed in section 8.2.1.
Section 8.2.2 investigates use of a prompt conditional language model using a recurrent
neural network to obtain posterior probabilities over prompts via application of Bayes’ rule.

8.2.1 Vector distances based Approaches

Previous work on relevance assessment between prompts and written responses [132] has
used information-retrieval style approaches based on evaluating distances between vector
representations of written prompts and responses. In this section we considering applying
similar approaches to the assessment of relevance between spoken responses to open ended
prompts, where the response word sequence wr is generated using a speech recognition

8.2 Indirect Prompt-Response Relevance Assessment 143

system. Standard information-retrieval approaches to assessing the relevance involve the
use measures of semantic similarity between responses and prompts Dsem(wr,wp). Prompt
classification is done by finding the prompt which is closest to the response:

ŷp = argmin
q
{Dsem(wr,w

(q)
p)} (8.7)

The response is considered relevant if the predicted prompt topic ŷ is equal to the actual
prompt topic y, otherwise the response is considered non-relevant. As discussed in section 8.1,
classification accuracy can be improved by considering whether the true prompt is in the top
K closes prompts to the response. However, this does increase the rate of false-positives.

In practice, the semantic distance Dsem between response wr and prompt wp can be
approximated by considering a distance metric Dvec between vector representations of the
response hr and the prompt hp.

Dsem(wr,wp) ≈ Dvec(hr,hp) (8.8)

A common similarity metric Dvec(hr,hp) is cosine similarity, which measures the cosine
of the angle between two vectors. A distance metric based on this, cosine distance, can be
defined as:

Dcos(hr,hp) = 1− hr · hp

|hr||hp|
(8.9)

An alternative distance metric is the Mahalanobis distance:

Dmah(hr,hp) = (hr − hp)
TΣ−1(hr − hp) (8.10)

where Σ−1 is the global covariance matrix derived from all vectors hr and hp in a dataset. If
the covariance matrix is diagonal, this reduces to the scaled euclidean distance. In practice,
cosine distance is preferred, as it is computationally cheaper to evaluate and does not require
the estimation of a global covariance matrix.

Vector representations hr and hp the response sentence wr and the prompt sentence
wp can be obtained by constructing a topic space T using models such as TF-IDF, Latent
Semantic Analysis (LSA) [132], or Latent Dirichlet Allocation (LDA) [12, 44]. Construction
of the topic space produces vector representations of the prompt w(1:Q)

p . Once the topic
space has been constructed (ie: the models have been trained), a vector representation of a
test response can be obtained and vector distance metrics used to assess relevance. These
models can be trained on either the text of the prompts w1:Q

p or the transcriptions of example
responses to these prompts, yielding either a prompt-based or response-based topic space.

144 Deep Learning for Prompt-Response Relevance Assessment

In the latter case, multiple example responses to a particular prompt are merged into one
‘aggregate’ example response to increase the robustness of the vector representation of the
prompt. The advantage of a purely response-based representation of prompts is that there
are typically many responses to a prompt, which means that there is far more text to train
the model on, allowing the topic space to be more robustly estimated. Furthermore, the
structure of spoken language is quite different from written language. It is perfectly normal
to have pauses, repetitions and re-starts in spoken language, but not necessarily in written
language. As a consequence, there will be a certain mismatch between written prompts and
transcriptions of spoken responses. Defining the vector representations exclusively using
responses would eliminate that mismatch.

While robust vector representations of prompts can be derived from aggregated example
responses, the diversity of possible responses to a prompt is lost. One approach to capturing
the diversity of responses would be to project each example response using a trained model.
This retains the robust definition of the topic space while allowing each prompt to be
represented by a cloud of points, thereby capturing the diversity of possible responses to
a prompt. A K-nearest Neighbor (KNN) classifier can be used to classify the prompt to
which a response belongs by computing distances of the test response to each of the training
points in the space. The KNN classifier can be modified to yield the K-best2 classification by
removing all training points from the 1-best class from the KNN classifier and re-running the
classification to get the 2-best results, and so on.

Approaches based on these principles were first applied to spoken assessment in [131]
and then in [31]. The detection of responses for which an automatic assessment system will
have difficulty in assigning a valid score, of which non-relevant responses are a specific type,
was investigated in [133]. Here, a decision tree classifier was used with features based on
cosine similarity between a test response and tf-idf representation of both aggregate example
responses and questions, as well as pronunciation and fluency features. In [30] detection
of text reuse and plagiarism using a decision tree classifier based on vector similarity and
lexical matching features, which compare a response to a set of example ‘source texts’, was
investigated. These tasks are similar to prompt-response response relevance assessment in
that a classifier is constructed based on vector distance between representations of a test
response and either a representation of example (training) responses or the question prompt.

2Here there is a conflation of K-nearest neighbours and top-K results. These are different K-s.

8.2 Indirect Prompt-Response Relevance Assessment 145

8.2.2 Prompt-topic adapted RNN Language Model

Approaches based on distances between vector representation of responses and prompts have
previously been successfully applied to a range of tasks, as previously stated. However, there
are several deficiencies with this class of approaches. Firstly, they rely on on bag-of-words
vector representations, such as TF-IDF, LSA and LDA, which lose sequential information
important to evaluating the semantic content of responses. Secondly, while prompt lengths
are typically similar, the length of responses can greatly vary - if any of the test responses are
short, then their vector representations may not be robustly estimated. Thirdly, it is necessary
to select a particular distance metric to assess the distance between the prompt and response
representations in topic space. Finally, classification using non-parametric classifiers, such as
KNN, becomes impractical for very large datasets, as the number of response vectors scales
with the size of the training data. Taking account of response diversity exacerbates this issue.

To address these issues a prompt-topic classification framework based on prompt-topic
adapted language models is proposed. A prompt-conditional language model P(wr|yp = q),
which is a generative model of the response sentence given the prompt sentence, is used to
derive a probability of the prompt via Bayes’ rule.

P(yp = q|wr) =
P(wr|yp = q)P(yp = q)∑Q
j=1 P(wr|y = j)P(yp = j)

≈ P(wr|yp = q)∑Q
j=1 P(wr|yp = j)

∝ P(wr|yp = q)

(8.11)

Here, the prior probability of all prompts P(yp = q) is assumed to be uniform. Topic
classification is done by selecting the prompt-topic which yields the highest probability of
generating the given response:

ŷp = argmax
q
{P(wr|yp = q)} (8.12)

Given the predicted prompt-topic, a response is considered relevant to the prompt if the
predicted prompt matches the prompt which was asked on the exam. The accuracy topic
classifier can be improved by considering whether the true prompt topic is among the top K
predictions. However, this will lead to a higher rate of false positives.

In practice, the language model P(wr|yp) can be constructed using a conditional Recurrent
Neural Network language model (RNNLM) which is trained to associate the example
responses with points hp in the topic-space. In practice, a vector representation of the prompt

146 Deep Learning for Prompt-Response Relevance Assessment

hp is used for adaptation of the language model:

P(wr|yp = q) ≈ P(wr|h(q)
p) (8.13)

These vector representations can be derived in the same way as for the vector-distance based
approaches discussed above. The RNNLM breaks down the probability of a sentence into
a product of the probabilities of the next word in a sequence given the current word and a
history vector, which encodes the full back-history of the sentence.

P(wr|h(q)
p ; θ̂) =

T∏
t=1

P(w(t)
r |w(0:t−1)

r ,h(q)
p ; θ̂)

P(w(t)
r |w(0:t−1)

r ,h(q)
p ; θ̂) = f(h(t),h(q)

p ; θ̂)

h(t) = f(w(t−1),h(t−1),h(q)
p ; θ̂)

(8.14)

This conditional language model needs to be trained on a corpus of transcriptions of
spoken responses and associated vector representations of the prompts asked Dtrn:

Dtrn =
{
w(i)

r , y
(i)
p

}N
i=1

= p̂trn(wr, yp) (8.15)

The model is trained by minimizing the expectation with respect to the empirical distribution
p̂trn(wr, yp) of the negative log-likelihood of the sentences:

L(θ,Dtrn) = − Ep̂trn(wr,yp)

[
ln P(wr|h(yp)

p)
]

= − Ep̂trn(wr,yp)

[T∑
t=1

ln P(w(t)
r |w(0:t−1)

r ,h(yp)
p)

] (8.16)

This approach has several benefits over standard vector-distance approaches. Firstly,
this approach explicitly takes account of word order of the response in order to predict the
most likely to have generated this response. Secondly, there is no need to explicitly select
a distance metric. Thirdly, the problems of robustly estimating a vector representation hr

of the test response are sidestepped. Furthermore, the RNNLM accounts for a broad range
of responses because it is trained on individual response utterances which it associates with
a prompt vector. This makes it more scalable than the KNN approach because the number
of comparisons which need to be made scales only with the number of questions, not the
size of the training data. Thus, arbitrarily large data sets can be used to train the model
without affecting classification time. However, this may still be computationally expensive

8.3 Direct Prompt-Response Relevance Assessment 147

if there is a large number of prompts in the exam. A limitation of this approach is that
it requires prompt-response pairs for all prompts in the examination and can only assess
relevance to prompts which they have seen in the training data. This limits the flexibility and
increases the cost of deployment of such systems, as example responses have to be collected
for newly introduced prompts. Re-training the system to include new prompts may also be
computationally costly.

8.3 Direct Prompt-Response Relevance Assessment

Having discussed indirect approaches to prompt-response relevance assessment, we now
consider models which directly yield a relevance score S(wr,wp) between a prompt and
a response. The simplest approach to consider would be to use the semantic distance Dsem

between vector representations of prompts and responses, discussed in the previous section,
as an (inverse) relevance score:

S(wr,wp) = Dsem(wr,wp)
−1 (8.17)

However, as was previously discussed, such approaches are limited, as it is necessary to both
choose an appropriate distance metric and to use of bag-of-words embeddings of sequences,
which leads to large losses of semantic of information. These embeddings are not constructed
such that a standard metric of distance between them yield a ‘semantic distance’ which is
optimal for prompt-response relevance.

Instead of using bag-of-words embeddings and choosing a particular distance metric, it
is possible to use neural-network based discriminative metric learning approaches, such as
Siamese Neural Networks [14]. These models learn to map a pair of inputs x1 and x2 into a
shared representation space where Euclidean distance is a meaningful measure of semantic
distance. Such models are typically formulated as 2-class probabilistic discriminative models
which yield the probability of ‘similarity’. For prompt-response relevance assessment a
Siamese neural network would map the prompt and response sequences into a shared space
to yield the probability of relevance:

P(rel|wr,wp; θ̂) (8.18)

These models are typically trained using a standard negative log-likelihood loss function:

LNLL(θ,Dtrn) = Ep̂(rel,wp,wr)

[
− ln(P(rel|wr,wp;θ)

]
(8.19)

148 Deep Learning for Prompt-Response Relevance Assessment

Unlike topic-classification models, which simply require prompt-topic labelled prompt-
response pairs, these models must be trained on a balanced dataset Dtrn containing both
positive (relevant) and negative (non-relevant) prompt-response pairs. In the absence of
true non-relevant prompt-response pairs, negative examples can be constructed by mixing
prompts and responses from different prompt-response pairs.

Previously, such models have been applied to the task of prompt-response relevance
assessment [134, 72]. A limitation of these approaches when processing sequence data is
that variable length sequences are mapped into a space of fixed dimensionality. This can
results in a degradation in performance when processing very long sequences. However,
recent work in the fields of Neural Machine Translation and Question Answering [8, 43]
has produced a number of attention-based deep learning architectures to overcome this
problem. As discussed in section 2.1.3, the key advantage of these models is their ability to
use an attention mechanism to optimally extract relevant information from a variable-length
sequence into a fixed-length embedding. This allows these models to effectively process both
short and long sequences.

In this chapter we consider two discriminative relevance assessment models which
combine elements of Siamese-network style and attention-based approaches. Specifically, a
model which uses an attention mechanism to extract an optimal embedding of a response
sequence itself based on an embedding of the prompt sequence is considered in section 8.3.1.
An extension of this model which aims to improve performance on unseen prompts in detailed
in section 8.3.2.

8.3.1 Attention-based Discriminative Models

This section describes a discriminative, neural Attention-based Model (ATM) for directly
assessing the relevance of responses to prompts. The model is illustrated in figure 8.2. It
consists of four components; a prompt encoder, a response encoder, an attention mechanism
and a binary classifier. The proposed model directly assesses the relevance of responses
to prompts by using the prompt wp to extract information from the response wr which is
used to assign a probability of relevance. This is accomplished by learning to dynamically
compute a representation (embedding) hp of the prompt using the prompt encoder. This
prompt embedding is used to attend over a variable-length representation (embedding) of
the response h

(1:T)
r via an attention mechanism, which should highlight the parts of the

response most relevant to the prompt. Based on this information, a binary classifier assigns
the probability of the response being relevant to the prompt. As this is now a discriminative
model, it is possible to derive measures of data uncertainty in the form of the entropy of the

8.3 Direct Prompt-Response Relevance Assessment 149

cr

This chart shows research and development
Prompt Embedding

Response Attention
Mechanism

Response Embedding

Binary Classifier relf

The chart those.overturndelivered

rh (1) rh (2) rh (3) rh (T-2) rh (T-1) rh (T)

ph
c

Figure 8.2 Attention-based Direct Relevance Assessment Model

output. Measures of knowledge uncertainty can be obtained by considering ensembles of
ATM models.

The construction of the model is described here in greater detail. The prompt (eq. 8.20)
and response (eq. 8.21) encoders are Bidirectional Recurrent Neural Networks [108] with
Long Short-Term Memory (LSTM) recurrent units [57, 42] which process the word sequences
of the prompt wp = {w(1)

p , · · · , w(L)
p } and response wr = {w(1)

r , · · · , w(T)
r }, respectively. As

discussed in section 2.1.2, Bi-LSTMs are currently the standard architecture for processing
variable-length sequences. Given a Bi-LSTM which has processed the prompt-sequence, a
fixed-length embedding of the prompt hp is computed by concatenating the final forward in
time
−→
h

(L)
p and backward in time

←−
h

(1)
p hidden states of the prompt encoder.

−→
h (1:L)

p =
−−→
LSTM(wp; θp)

←−
h (1:L)

p =
←−−
LSTM(wp; θp)

hp =

[−→
h

(L)
p
←−
h

(1)
p

] (8.20)

The forward in time
−→
h

(t)
r and backward in time

←−
h

(t)
r hidden states of the response encoder

are concatenated at every time step to produce a hidden state h(t)
r , which contains information

about how the surrounding context relates to the current word. Both the prompt and response
embeddings are sensitive to word order, and so, in the same fashion as the topic-adapted

150 Deep Learning for Prompt-Response Relevance Assessment

RNNLM, should be able to take word order and syntax into account.

−→
h (1:T)

r =
−−→
LSTM(wr; θr)

←−
h (1:T)

r =
←−−
LSTM(wr; θr)

h(t)
r =

[−→
h

(t)
r
←−
h

(t)
r

] (8.21)

A fixed-length prompt-conditional embedding c of the response is computed as a weighted
sum of the hidden states h

(t)
r of the response encoder given a set of attention weights πt

(eq. 8.22) produced by an attention mechanism. The aim of the attention mechanism is to
focus only on the properties of the response which are needed to assess relevance, discarding
everything which is not necessary.

c =
T∑
t=1

πth
(t)
r , πt ≥ 0,

T∑
t=1

πt = 1 (8.22)

The attention weights for each hidden state are computed as a softmax (eq. 8.23), where the
logits are given by a similarity function between the prompt embedding and the response
hidden state.

πt =
es(hp,h

(t)
r)∑T

τ=1 e
s(hp,h

(τ)
r)

(8.23)

The similarity function (eq. 8.24) computes how strongly a hidden state of the response
encoder relates to the embedding of the prompt.

s(hp,h
(t)
r) = vT

e tanh(Λ1hp +Λ2h
(t)
r + b) (8.24)

The parameters of the attention mechanism are θa = {ve,Λ1,Λ2, b}. This similarity
function was used in [8] for neural machine translation. Alternative attention mechanisms,
with different similarity functions [77] and attention sharpening [43] could potentially be
used, but are not explored in this work.

The fixed-length response embedding c is the fed into a binary classifier f (eq. 8.25)
which outputs the probability P(rel|wr,wp) of the response relating to the question. In this
work f is a deep neural network (DNN) with parameters θf .

P(rel|wr,wp; θ̂) = f(c; θf) (8.25)

8.3 Direct Prompt-Response Relevance Assessment 151

The primary advantage of the proposed model is that it directly assesses relevance of
responses to prompts and can embed any prompt into the appropriate space via the prompt
encoder. This eliminates the need to pre-compute a set of prompt representations from
examples responses, as was done for the topic-adapted RNNLM and the vector-similarity
approaches discussed in the previous section. Conceptually, the prompt encoder learns
to project the prompt sentence into a prompt-based topic space and the response encoder
projects the response sentence into a response-based topic space, similarly to the previous
approaches. However, the difference is that these are no longer bag-of-words representations
and they are learned explicitly for the task of relevance assessment. All components of
the model are trained jointly, which allows them to learn the necessary representations and
transformations which make this possible. This should allow the model to also assess the
relevance of responses to newly introduced prompts without the need to collect example
responses to the new prompt or for the model to be re-trained. However, the model needs
to be trained to generalize well in order to effectively handle unseen prompts, especially
if they are quite different to the prompts seen in the training data. Finally, this model is
computationally more efficient than the prompt-adapted RNNLM or KNN models, as it only
needs to be run once, rather than as many times as there are prompts in the training data.

8.3.2 Hierarchical Attention-based Topic Model

In any spoken language proficiency exam some prompts may be similar to others. Further-
more, newly introduced prompts often are simply old prompts phrased slightly differently. If
a model is able to identify that a newly introduced prompt is similar to one or more prompts
seen in training (known prompts), then the model may be able to leverage that information
to do better assessment of relevance between the new prompt and the candidate’s response.
Theoretically, the ATM model described above is able to directly assess the relevance between
arbitrary prompt-response pairs because the response encoder implicitly takes advantage of
the similarity between prompts. However, if the training dataset contains a small number
of diverse prompts, then the model may generalize poorly to new and unseen prompts,
leading to poor relevance assessment performance. Therefore, it may be useful to have the
model explicitly exploit the similarity of the input prompt to each of the prompts seen in the
training data. This section describes a model, called the Hierarchical Attention-based Model
(HATM), which is constructed to do this. The HATM is an extension of the ATM model
described above, where a prompt attention mechanism is added to the model, as shown in
figure 8.3-purple. This prompt attention mechanism expresses the input prompt as a convex
combination of the embeddings of prompts seen in the training data. The HATM views
known prompts as the vertexes of a simplex within which all valid prompt embeddings must

152 Deep Learning for Prompt-Response Relevance Assessment

ph (1)

ph (Q)

ph (q) rel

rh (1) rh (2) rh (3) rh (T-2) rh (T-1) rh (T)

c
f

This chart shows research and development The chart those.overturndelivered

Response Attention
Mechanism

Response Embedding

Binary Classifier

Search Embedding

Prompt Embeddings Prompt Attention
Mechanism

sh

pc

Figure 8.3 Hierarchical Attention-based Direct Relevance Assessment Model

exist. This potentially allows the HATM, given a diverse set of prompt embeddings, to
estimate embeddings for unseen prompts more robustly.

This mechanism is now described in greater detail. The prompt attention mechanism
attends over the embeddings on prompts seen in the training data produced by an ATM’s
prompt encoder. The prompt attention mechanism is conditioned on a ‘search’ embedding hs

of an input prompt produced by new bi-LSTM search encoder, shown in figure 8.3-yellow.

−→
h (1:L)

s =
−−→
LSTM(wp; θs)

←−
h (1:L)

s =
←−−
LSTM(wp; θs)

hs =

[−→
h

(L)
s
←−
h

(1)
s

] (8.26)

The attention weights πq are computed via a similarity function s(hs,h
(q)
p) between a seen

prompt embedding h
(q)
p and the ‘search’ embedding of the input prompt hs:

πq =
es(hs,h

(q)
p)∑Q

j=1 e
s(hs,h

(j)
p)

(8.27)

8.3 Direct Prompt-Response Relevance Assessment 153

Given the prompt attention weights, the input prompt wp is expressed as a convex combina-
tion cp of the embeddings h(1:Q)

p :

cp =

Q∑
q=1

πqh
(q)
p (8.28)

This prompt embedding is then used to attend over a variable length embedding of the
response, as before. The prompt attention mechanism as expressed in equation 8.27 is not
necessarily forced to discover the similarities between prompts, as it could learn to yield an
identity attention during training. In order to force it to discover the similarities between
prompts, the attention mechanism is modified so that during training the prompts cannot
attend over themselves - the attention mechanism is trained in a ‘leave-one-out’ fashion to
teach it to reconstruct each prompt in the training data from all other seen prompts:

πq =

es(hs,h

(q)
p)∑Q

q=1,wp ̸=w
(q)
p

es(hs,h
(q)
p)
, if wp ̸= w(q)

p

0, if wp = w(q)
p

(8.29)

However, no masking is used during inference.
An interesting property of the HATM is that it is possible to derive measures of uncertainty

from the prompt attention mechanism, as the dimensionality (number of seen prompts) is
fixed. Firstly, the entropy of the prompt attention mechanism can be used as a measure of
one aspect of data uncertainty in the prompt embedding:

H[π|wp] = −
Q∑

q=1

πq lnπq (8.30)

If the entropy of the attention mechanism is high, then it indicates that the input prompt is
equally similar (or dissimilar) to all of the prompts seen in training data. On the other hand,
if the entropy of the attention mechanism is low, then the model has chosen to focus on a few
of the most similar prompts to the prompt in question.

Secondly, given an ensemble of HATM models
{
P(rel|wr,wp;θ

(m))
}M
m=1

it is possible
to calculate the mutual information, a measure of knowledge uncertainty. The mutual
information can be expressed as the difference of the entropy of the expected prompt
attention, a measure of total uncertainty, and expected entropy of the prompt attention

154 Deep Learning for Prompt-Response Relevance Assessment

weights, a measure of data uncertainty:

I[π,M|wp] ≈ H
[1

M

M∑
m=1

π(m)
]
− 1

M

M∑
m=1

H[π(m)] (8.31)

As a measure of knowledge uncertainty, mutual information assesses whether the model
understands the input prompt. At the same time, the entropy of the expected attention weights
is a measure of total uncertainty in the prompt embedding. These measures of uncertainty
can be used to assess whether the HATM is understands the input prompt. In addition, it is
also possible to calculate the expected pairwise KL-divergence between the prompt attention
weights of all models in the ensembles

K[π,M|wp] ≈
1

M2

M∑
m=1

M∑
j=1

KL[π(m)||π(j)] (8.32)

These approaches are similar to deriving measures of uncertainty from the output of
a model. However, the difference is that while measure of uncertainty derived from the
output give the overall uncertainty in the prediction, measures of uncertainty derived from
the attention mechanism yield uncertainty in the prompt representation. The advantage of
deriving estimates of uncertainty in the prompt representation is that they allow the designer
of the system to know how well the model will perform when assessing relevance to a
particular prompt without having to gather real responses to the new prompt. This affords
the model designer a significant operational advantage, as it is possible to identify the new
prompts for which the designer will need to collect training responses before before deploying
the system.

8.4 Experiments: Indirect Relevance Assessment

The current section evaluates indirect approaches to prompt-response relevance assessment,
discussed in section 8.2, on spoken responses to question-prompts from the BULATS exam
[15]. Two forms of experiment are conducted in order to assess the performance of the
models. Firstly, a prompt classification experiment is run, where the ability of the system
to accurately recognize the topic of a response is evaluated. Secondly, a prompt-response
relevance assessment experiment, which considers both false-positives and false negatives, is
conducted.

Note, that the work described in this section is the earliest done as part of this thesis,
and therefore is not fully comparable to the experiments on direct approaches considered

8.4 Experiments: Indirect Relevance Assessment 155

in section 8.5, due to both a data mismatch, and ‘less advanced’ deep learning approaches
being considered.

8.4.1 Description of training and evaluation datasets

In this section data from the Business Language Testing Service (BULATS) English tests
is used for training and testing of indirect relevance assessment models. This work focuses
on the 3 sections of the BULATS exam where open ended prompts elicit spontaneously
constructed responses. In Section C, candidates talk about a work related topic; in section D
candidates must describe a graph such as a pie or bar chart related to a business situation; in
section E candidates are asked to respond to 5 prompts related to a single context prompt.
The section E sub-prompts are sufficiently distinct to merit their own prompt vector repre-
sentations. However, at classification time confusions between sub-prompts of an overall
section E prompt are not considered mistakes.

In the following experiments two training datasets TRN1 and TRN2 are considered.
TRN1 consists of ASR transcriptions 9.9K responses from 490 candidates, with an average
35.1 responses per prompt. TRN2 is a larger dataset which contains 202K responses from
10004 candidates, with an average 715.5 responses per prompt. Both datasets contain
responses to 282 unique prompts from all 5 sections of the BULATS exam. Table 8.1 shows
the number of unique prompts per section of the BULATS exam contained in TRN1 and
TRN2.

Section A B C D E

Uniq. Prompts 18 144 17 18 85
Words/Resp. 10 10 61 77 20

Table 8.1 Data Characteristics

As table 8.1 shows, the average response length varies across sections due to the nature of
the sections. Shorter responses are observed for sections A, B and E, with longer responses
to C and D. Estimating topic representations for sections A, B and E questions based on
individual responses would be problematic due to the short response lengths. Further details
of the datasets are available in table 8.2. In this section two held-out data sets are used for
development, DEV, and evaluation, EVL, composed of 572 and 1502 responses to section C,
D and E prompts. All datasets are transcribed using an ASR system, detailed in [82], which
has a word error rate (% WER) on 31.5 on the DEV dataset relative to a set of professionally
produced transcriptions, DEV REF. The version of DEV with professional transcriptions is

156 Deep Learning for Prompt-Response Relevance Assessment

Data #Prompt #Resp. #Words #Resp./ Avg.Resp.
Prompt Length

TRN1
282

9.9K 200.6K 35.1 20.3
TRN2 202K 4.1M 715.5 20.3

DEV
92

572 31K 6.2 54.2
EVL 1502 71.9K 14.1 47.9

Table 8.2 Prompt, response and word statistics of the prompt-response BULATS datasets
based on 1-best recognition hypotheses.

also used to assess the effect of ASR error rates on prompt-classification performance. All
datasets considered here are composed of predominantly Gujarati L1 candidates.

8.4.2 Model Construction

In the current set of experiments all models use 280-dimensional LSA [69, 92] embeddings
of prompts derived from concatenated example responses from TRN1. The scikit-learn
version 17.0 toolkit [100] implementation of LSA was used. As shown in table 8.2, there are
on average 715.5 words per prompt, when responses are concatenated, but only an average of
20-80 words per response, as shown in table8.1. Thus, using concatenated responses should
yield a more robust response-based prompt embedding.

Three models were considered. Firstly, a KNN-classifier was constructed based on cosine
distances between LSA embeddings of prompts. Here, individual example responses to
each prompt in TRN1 were projected into the LSA-based vector space which was already
trained on concatenated example responses. This was done so that there would be a cloud
of points representing each prompt, thereby capturing the diversity of possible responses,
as discussed in section 8.2.1. The scikit-learn implementation of an KNN classifier with
distance-weighted voting was used. The KNN model was only trained on the TRN1 dataset,
as inference was far too slow using the much larger TRN2 dataset.

Secondly, two prompt-adapted RNNLM models RNN1 and RNN2 are trained. RNN1 is
trained on TRN1 and RNN2 is trained on TRN2. RNN1 uses a 100-dimensional hidden layer
while RNN2 uses a 512 dimensional hidden later. Both models had an input-vocabulary size
of 62.4K and an output vocabulary size of 46.8K unique words. Both models are trained
using the back-propagation through time (BPTT) algorithm [87, 88, 86], using stochastic
gradient descent with a minibatch size of 64 and an initial learning rate of 1.0. DEV REF is
used as a validation data set for early stopping to prevent over-fitting. The prompt-adapted

8.4 Experiments: Indirect Relevance Assessment 157

RNNLM systems were implemented using the CUED RNNLM toolkit v0.1 [19], details of
which can be found in [20, 87].

8.4.3 Prompt Classification

In the current section the prompt-topic classification performance of the KNN, RNN1 and
RNN2 systems is assessed on ASR and professional transcriptions of the development DEV
dataset. The results are quoted in terms of the classification error rate, which can also be
interpreted as the false-rejection rate. As previously stated, in the current set of experiments
confusions between sub-prompts of the same overall section E prompt are not considered a
misclassification.

The results are presented in table 8.3, where several trends can be observed. Firstly,
the RNN1 system outperforms the KNN system only marginally, mostly due to better
performance on section E. At the same time, the RNN2 system, which is trained on 20
times more data, yields greatly improved performance over KNN and RNN1 systems, almost
halving the overall error rate. The KNN system could not be evaluated effectively in
reasonable time using 20 times as many example responses and results are not shown, while
RNN2 evaluation times are unaffected. This illustrates how non-parametric KNN systems,
while simple and easy to implement, suffer scaling issues. Secondly, there is only a minor
improvement in terms of classification performance by using professional transcriptions of
DEV. This suggests that the systems are quite robust to a high degree of ASR error, but
at the same time are unable to make better use of higher quality transcriptions. Thirdly,
the performance of all models is always best on section D. This is likely due to section D
prompts being very distinct, as they are about describing charts and graphs. At the same
time section C and E questions are the less distinct because they have free-form answers to
broad questions, leading to higher response variability. This makes the linking of the prompt
from the training data to the test data more challenging, particularly for 1-best classification,
leading to higher error rates. Notably, the RNN1 and RNN2 systems perform better on
section E by about 5-10% than on section C. Clearly, this suggests that section C questions
are hardest to assess.

The typical mistakes which the models make can be analyzed by means of a confusion
matrix. Figure 8.4 shows which sections are most often confused by the RNN1 system. The
confusion matrix for the KNN and RNN2 systems are similar. Figure 8.4 shows that most
confusions are with prompts in same sections. Section C and D prompts are almost never
confused with prompts from other sections, while section E prompts are sometimes confused
with section C prompts about %12 percent of the time. This is likely because each section
has a distinct style of prompts and some prompts within a section are similar. An example is

158 Deep Learning for Prompt-Response Relevance Assessment

Topic
System # Cands.

C D E ALL (C-E)

Repn. REF ASR REF ASR REF ASR REF ASR

LSA
KNN

490
32.1 28.6 2.5 3.7 31.3 33.3 22.0 21.9

RNN1 29.8 31.0 4.9 6.2 23.8 23.8 19.7 20.5

RNN2 10004 19.0 19.0 3.7 3.7 9.5 10.7 10.8 11.2

Table 8.3 % False rejection rate in prompt classification on the DEV dataset. KNN classifier
uses 6 nearest neighbour and distance weighting.

Figure 8.4 Section confusion matrix of RNN1 system on DEV ASR.

shown below. Prompt SC-EX1 relates to personal local events in the workplace. SC-EX2,
which relates to similar issues, is often confused with it. On the other hand, SC-EX3 is rarely
confused with SC-EX1 as it is about non-personal events on a larger scale.

• SC-EX1: Talk about some advice from a colleague. You should say: what the advice
was, how it helped you and whether you would give the same advice to another
colleague.

• SC-EX2: Talk about a successful day you had at work. You should say: what work you
did on that day, how you dealt with any difficulties and why the day was successful.

• SC-EX3: Talk about a company which is a major employer in your town or a town
near you. You should say: what the business of the company is, what kind of jobs it
offers and how the local community feels about the company.

8.4 Experiments: Indirect Relevance Assessment 159

8.4.4 Prompt-Response Relevance Assessment

In this section prompt-response relevance assessment is investigated by considering the
false-rejection (FR) of matched prompt-response pairs and false-acceptance (FA) rates of
mismatched prompt-response pairs. Here, instead of considering the 1-best prediction of
the prompt classifier, the false-acceptance and false-rejection rates are evaluated for K-best
predictions as the value of K is increased. This experiment is conducted on the EVL dataset.

Since the datasets considered here do not contain real non-relevant responses, a pool
W

(q)
r of mismatched responses is synthetically generated for each prompt by using valid

responses to other prompts. Non-relevant responses are then selected from this pool. A
selection strategy defines which responses are present in W

(q)
r . Rather than using a single

selection of non-relevant responses, an expected performance over all possible non-relevant
response selections is estimated. The overall probability of falsely accepting a non-relevant
response can be expressed as follows:

P(FA) =

Q∑
q=1

∑
wr∈W (q)

r

P(FA|wr, q)P(wr|yp = q)P(q)

=
1

Q

Q∑
q=1

1

|W (q)
r |

∑
wr∈W (q)

r

P(FA|wr, yp = q)

(8.33)

In equation 8.33, a prompt q is selected with uniform probability from the set Q of possible
prompts. Then a response wr is randomly selected with uniform probability P(wr|q) from
the pool of mismatched responses to the prompt W (q)

r . The correct responses to the prompt
are not present in the pool. The conditional probability of false accept P(FA|wr, q) is defined
as:

P(FA|wr, yp = q) =

1, yp ∈ {ŷ1, · · · , ŷK}

0, yp /∈ {ŷ1, · · · , ŷK}
(8.34)

As shown in figure 8.4, the main confusions will occur between prompts within the same
section. Two strategies for selecting non-relevant responses are considered based on this:
naive, where a mismatched response can be selected from any section; and directed, where a
mismatched response can only be selected from the same section as the prompt. The naive
strategy more closely represents either candidates who simply have made a mistake and
misunderstood the prompt or malicious candidates who have memorized an unrelated English
passage from a book or newspaper for example. On the other hand, the directed strategy
represents malicious candidates who are familiar with the test system, have access to real

160 Deep Learning for Prompt-Response Relevance Assessment

responses from previous tests and are actively seeking to cheat on their spoken proficiency
exams.

The false acceptance (FA) and false rejection (FR) rates for range of K-best classification
results are plotted on a curve in figure 8.5, which shows several notable trends. Firstly, it
shows that the directed strategy clearly yields higher false acceptance rates for the same
false-rejection rate as the naive strategy. Secondly, the RNN1 and RNN2 systems consistently
outperform the KNN system at all operating points and for both selection strategies. Fur-
thermore, the RNN2 system significantly outperforms the RNN1 system, which shows how
using the deep-learning based prompt-adapted RNNLM system is able to scale performance
using more data, while keeping inference computational cost constant. Finally, the difference
between the naive and directed prompt-shuffling stategy is smallest at all operating points of
the RNN2 system, which shows that it is able to discriminate well between similar prompts.

Figure 8.5 False Acceptance vs. False rejection curve on EVL dataset using ASR transcrip-
tions.

The Equal Error Rates (EER), where FA = FR, are given in table 8.4. As expected, the
equal error rate for the directed strategy is higher than for the naive strategy. It is interesting
that for better systems the difference in performance against the naive and directed strategies
decreases. This indicates that the systems become increasingly better at discriminating
between similar prompts.

In relation to the stated task of assessing prompt-response relevance, the directed strategy
represents a lower-bound on realistic system performance, as candidates are not likely to

8.5 Experiments: Direct Relevance Assessment 161

System
% Equal Error Rate

Directed Naive

KNN 12.5 9.0
RNN1 8.0 6.0
RNN2 5.0 4.5

Table 8.4 Equal error rate (EER) operating points where FA = FR on EVL dataset using ASR
transcriptions.

respond with a valid response to a different prompt. Most likely they will fail to construct
a valid response or will add completely unrelated phrases memorized beforehand, which,
unlike responses from other sections, may not come from the same domain as the test (eg:
Business for BULATs). However, as discussed in section 8.1, prompt-topic classification
may be an excessively harsh approach to prompt-response relevance assessment. Thus, this
concludes the discussion of indirect approaches to prompt-response relevance assessment.
The next section will consider direct approaches to prompt-response relevance assessment.

8.5 Experiments: Direct Relevance Assessment

The previous section evaluated methods of indirect assessment of prompt-response relevance
via prompt-topic classification. It was shown how approaches based on RNN language
models are able to outperform a K-nearest neighbour classifier based on vector distance
features. Crucially, it was shown how deep learning methods are able to scale to larger
datasets and obtain improved performance at no additional test-time computational cost.
However, the prompt-adapted RNNLM still needs to be evaluated as many times are there
are unique prompts in the training dataset. Thus, in this section the assessment of prompt-
response relevance using the direct approach, discussed in section 8.3, is investigated. Here,
the Attention-based Model (ATM) and Hierarchical Attention-based Model (HATM) are
evaluated on data from both the BULATS and LinguaSkill spoken English proficiency exams.
As in the previous set of experiments, the text for each response was generated using an
Automatic Speech Recognition (ASR) system. The 1-best recognition hypothesis was then
passed to a relevance assessment system (ATM/HATM) which assigns a probability of
whether the response was relevant to the prompt.

In this section, properties of the data from BULATS and LinguaSkill exams is discussed
in section 8.5.1, details of model training are described in section 8.5.3. Investigation of the
general properties of the ATM and HATM is done in section 8.5.5, models are evaluated on

162 Deep Learning for Prompt-Response Relevance Assessment

their ability to generalize to new and unseen prompts in section 8.5.6 and use of measures of
uncertainty derived from an ensemble of HATMs to detect prompt-response pairs which the
systems cannot assess well is investigated in section 8.5.7. The experiments described in this
section are based on work done in [3, 83].

It is necessary to point out that the direct relevance assessment approaches are not
comparable to the in-direct approaches discussed in sections 8.2 and evaluated in section 8.4
for several reasons. Firstly, the approaches operate in different ways and it is difficult to
make direct comparison. Secondly, the indirect approaches are the earliest work which is
presented in this thesis, which affected the available datasets as well as models. The direct
relevance assessment models considered in this section use more advanced deep learning
architectures, regularization and training approaches. Furthermore, it is not clear how derive
measures of uncertainty for indirect approaches.

8.5.1 Description of training and evaluation datasets

In this section experiments were run on data from both the BULATS and the LinguaSkill
speaking exam, described in sections 6.1. As described in section 6.1, the BULATS and
LinguaSkill exams have similar structure, but the general domain of the prompts is different.
BULATS focuses on business related prompts while LinguaSkill covers on a broad range of
subjects. As a results, there is a domain mismatch between the LinguaSkill and BULATS
data. This work focuses on the 3 sections where open ended prompts elicit spontaneously
constructed responses. In Section C, candidates talk about a work related topic (e.g. the
perfect office). Candidates must describe a graph such as a pie or bar chart related to a
business situation (e.g. company sales) in Section D. In Section E candidates are asked
to respond to 5 prompts related to a single context prompt (e.g. a set of 5 prompts about
organizing a stall at a trade fair). There are 7 prompts in total.

Table 8.5 gives the statistics of the prompt-response BULATS and LinguaSkill datasets
considered in this section. The training data set BLT-TRN contains 13.9M words in 293.0K
responses from 42K candidates. 379 unique prompts are seen in BLT-TRN, with an average
of 773 example responses per prompt and an average response length of 45.8 words. Two
evaluating datasets are considered - BLT-EVL, which is derived from prompts and responses
to the BULATS exam, and LSK, which is derived from prompts and responses to the
LinguaSkill exam. The datasets BLT-EVLS1-3 are subsets of BLT-EVL. The prompts in
BLT-EVL are a subset of prompts in BLT-TRN, while the prompts in LSK are an entirely
different set.

The breakdown of each dataset by the L1 (native) language of the candidates is presented
in figure 8.6. Figure 8.6a shows that the training dataset BLT-TRN predominantly contains

8.5 Experiments: Direct Relevance Assessment 163

Data #Prompts #Resp. #Words #Resp./ Avg.Resp.
Prompt Length

BLT-TRN 379 293.4K 13.9M 774.6 47.2

BLT-EVLS1 92 1297 64.4K 14.1 49.7
BLT-EVLS2 177 1335 58.5K 7.5 43.8
BLT-EVLS3 179 1445 63.1K 8.1 43.7
BLT-EVL 219 4077 184.5K 18.6 45.3

LSK 56 21.3K 975.0 K 379.8 45.8

Table 8.5 Prompt, response and word statistics of the prompt-response BULATS and Lin-
guaSkill datasets based on 1-best recognition hypotheses using SYS-2 ASR systems.

(a) BULATS training datasets (b) BULATS evaluation dataset

Figure 8.6 Candidate L1 language distribution of datasets.

Spanish and Gujarati candidates, in addition to candidates with Polish, French, Dutch, Arabic,
Thai, Vietnamese and roughly 80 other L1 languages. The BULATS evaluation datasets BLT-
EVL is even distributed across Gujarati, Spanish, Polish, French, Dutch, Arabic, Vietnamese
and Thai. The LinguaSkill dataset LSK covers a range of L1 languages, notably Dutch,
Spanish, Arabic, Vietnamese and Thai, like the BULATS datasets, as well as Japanese,
Portuguese, Hindi and roughly 40 other L1 languages. The L1 breakdown of subsets of the
BLT-EVL dataset is presented in figure 8.6b, which shows that BLT-EVLS1 only consists of
Gujarati speakers and BLT-EVLS2 only of Spanish speakers, while BLT-EVLS3 is uniformly
distributed over Polish, French, Arabic, Dutch, Thai and Vietnamese candidates.

The CEFR grade level breakdown of all datasets is given in figure 8.7. Clearly, both
the BULATS training dataset and LinguaSkill dataset LSK have an uneven distribution over

164 Deep Learning for Prompt-Response Relevance Assessment

Figure 8.7 CEFR Grade level distribution of datasets

grade levels, with the majority of speakers having B1 and B2 labels. The BULATS evaluation
dataset BLT-EVL (and its subsets) are uniformly distributed over CEFR grade level.

Two ASR systems, SYS-1 and SYS-2 3, were used in this section in order to investigate the
effect of ASR errors on assessment performance. This is important, as in a real deployment
scenario responses of non-native English speakers are transcribed using an ASR system and 1-
best hypotheses are used as the text of the response. Both systems are used to transcribe both
the training and evaluation data. SYS-1 is a worse ASR system which was only trained using
crowd-sourced transcriptions [120] of non-native English speakers whose native language
(L1 language) is Gujarati. SYS-2 is trained on crowd-sourced transcriptions of non-native
speakers from a range of different L1 languages. The performance of both systems is
described in tables 8.6 and 8.7 relative to the crowd-sourced transcriptions [120]. Clearly,

ASR BLT-EVLS1 BLT-EVLS2 BLT-EVLS3 BLT-EVL LSK

SYS-1 37.3 52.5 48.6 45.7 -
SYS-2 30.1 30.8 30.4 30.4 37.6

Table 8.6 ASR %WER on evaluation data sets

SYS-2 gives a significant drop in ASR WER% compared in SYS-1, especially on datasets
with responses from non-Gujarati L1 candidates, such as BLT-EVLS2, BLT-EVLS3 and
LSK-E. SYS-2 has roughly equal performance across all evaluation sets, unlike SYS-1, which
is heavily biased towards Gujarati-L1 speakers. Table 8.7 shows that both ASR systems do
worse on candidates with a low CEFR proficiency score (A1 and A2). The difference in the
performance of both systems is larger on the best speakers than on the worst speakers.

3Note, that the ASR system used in indirect relevance assessment experiments was entirely different to the
two considered here.

8.5 Experiments: Direct Relevance Assessment 165

ASR A1 A2 B1 B2 C All

SYS-1 60.3 54.0 44.9 41.8 41.4 45.7
SYS-2 49.9 39.4 29.5 27.0 24.4 30.4

Table 8.7 ASR %WER per CEFR grade level on BLT-EVL

8.5.2 Training and Evaluation Data Construction

As the data are taken from tests run with human examiners, the responses in all datasets
are assumed to be relevant. However, unlike the indirect relevance assessment approaches,
which only requires matched prompt-response pairs, direct approaches additionally require
negative, non-relevant training examples. Here, these mismatched pairings were produced by
shuffling the responses and prompts during training via a dynamic sampling mechanism.

If more than one negative example is shown for a particular response, the positive example
is over-sampled the corresponding number of times to maintain a balanced training. For
multi-part prompts from section 5 of the BULATS and LinguaSkill exams, which contain a
main prompt that describes the overall prompt and several five sub-prompts, all sub-prompts
were pre-appended with the main prompt. These sub-prompts are considered distinct topics
and thus competing negative examples to each other during shuffling.

Negative examples are also introduced into the evaluation datasets via shuffling. The
negative examples are drawn from the empirical prompt distribution of the evaluation data.
10 different shufflings of data are used to construct a diverse set of negative examples for
every prompt. The positive examples are simply oversampled 10 times to maintain a balanced
set of positive and negatives.

As was shown section 8.4, prompts from the same section tend to be more similar,
and therefore more confusable. The same two prompt shuffling strategies considered in
section 8.4 are considered in this section. Specifically the naive strategy, where prompts are
shuffled across all sections of the exam; and the directed strategy, where prompts are shuffled
only within the same section. Naive shuffling corresponds to a more realistic scenario, while
directed reflects the scenario where the candidate is aware of the relevance detection system
and is actively trying to bypass it. For all BULATS evaluation datasets both naive and
directed shuffling is investigated. For the LinguaSkill datasets only naive shuffling is used.

8.5.3 Model and Training Hyper-parameters

The ATM and HATM were implemented in Tensorflow [4] and contain two 400 dimensional
BiLSTM encoders with TanH non-linearities, 200 for the forward states and 200 for the

166 Deep Learning for Prompt-Response Relevance Assessment

backward states. The HATM also contains an additional 200-dimensional BiLSTM prompt-
search encoder. The ATM was trained for 6 epochs with the Adam optimizer [62], an
exponentially decaying learning rate with an initial value of 1e-3 and decay factor 0.85 per
epoch. Dropout regularization [117] was applied to all layers except for the LSTM recurrent
connections and word embeddings, with a keep probability of 0.8. The binary classifier was a
DNN with 2 hidden layers of 200 Leaky ReLU units and a 1-dimensional logistic output. The
HATM was initialized from a trained ATM. For the first 2 epochs only the newly-initialized
prompt-attention mechanism was trained. Further training for 1 more epoch is done with an
unlocked response attention mechanism and a learning rate of 1e-4. The prompt and response
encoders, as well as the DNN classifier remain locked.

8.5.4 Assessment Criteria

Direct approaches to relevance assessment can be assessed as a binary threshold-based
classification task. As was discussed in chapter 5, section 5.2, these tasks can be assessed
using area under an ROC curve (AUROC) or a Precision-Recall cure (AUPR). The latter is
better for assessment unbalanced datasets. However, in this set of experiments the datasets
are balanced (by over-sampling) to have equal numbers of positive and negative examples,
so AUROC is used as the metric of performance. Thus, predictive performance of direct
relevance assessment approaches will be assessed using AUROC.

In section 8.5.7 derivation of measures of uncertainty is considered. Measures of un-
certainty are assessed on the task of misclassification detection at a threshold of 0.5 and
via rejection curves. As discussed in chapter 5, misclassification detection can be assessed
using area under a Precision-Recall curve, are there are usually fewer misclassifications than
correct classification. Rejection curves will be assessed via rejection ratios, where the y-axis
corresponds to predictive performance assessed using AUROC.

8.5.5 Performance on Matched Data

The current section investigates the performance of the ATM on evaluation datasets from
the BULATS exam. Specifically, the effects of L1 language, ASR system, prompt similarity
and CEFR grade-level on relevance assessment performance are assessed. An ensemble of
10 ATM and HATM models was constructed using different random initializations, and the
results quoted in this section correspond to the average performance across the ensemble,
rather than joint-ensemble performance. Results only for the ATM model are presented, as
the behaviour of the HATM model is nearly identical.

8.5 Experiments: Direct Relevance Assessment 167

Table 8.8 show the AUROC scores for ATM models trained on SYS1 and SYS2 transcrip-
tions for all BULATS evaluation data sets BLT-EVLS1-BLT-EVLS3 and BLT-EVL. All models
achieve a high ROC AUROC scores of over 90.0 on all datasets. Performance of models
trained on SYS1 transcriptions and evaluated (on identically constructed) evaluation datasets
also based on SYS1 transcripts consistently achieve lower performance than model trained
and evaluated on the SYS2 transcripts. However, considering that the ASR performance
difference between SYS1 and SYS2 transcriptions is large, as described in table 8.7, the
difference in relevance assessment performance is curiously small. The performance on
subset BLT-EVLS1 was highest, which reflects both the dominance of Gujarati L1 candidates
in the training data as well as the better quality of the ASR transcriptions of responses of
Gujarati candidates. Switching from SYS1 and SYS2 gives a large increase in performance
on BLT-EVLS2 and BLT-EVLS3, but gives only a minor gain on BLT-EVLS1. This is likely
because SYS1 and SYS2 have similar ASR performance on BLT-EVLS1 data, but difference
of nearly 20% WER on BLT-EVLS2 and BLT-EVLS3, as shown in table 8.6. Table 8.8 also

Eval Prompt
ASR

Evaluation Dataset
shuffling BLT-EVLS1 BLT-EVLS2 BLT-EVLS3 BLT-EVL

Naive
SYS1 98.5 ± 0.3 95.5 ± 0.6 96.0 ± 0.4 96.8 ± 0.4

SYS2 98.4 ± 0.8 97.4 ± 1.1 97.2 ± 1.3 97.7 ± 1.1

Directed
SYS1 97.0 ± 0.8 92.5 ± 1.4 92.5 ± 1.4 94.2 ± 1.1

SYS2 97.1 ± 1.7 95.6 ± 2.0 94.9 ± 2.5 95.9 ± 2.1

Table 8.8 Mean % AUROC scores ±2σ on BLT-EVLS1-3 and BLT-EVL across 10 ATM
models. Performance is assessed on both SYS1 and SYS2 transcriptions in a matched
configuration (training data is also decoded using SYS1 and SYS2). Additionally, sensitivity
to prompt shuffling is also assessed.

shows that both models achieve higher performance data with Naive topic shuffling than
with Directed topic shuffling. This supports the findings in [82] which state that it is more
difficult to distinguish prompts from the same section than from across sections. Notably the
performance difference between SYS1 and SYS2 on BLT-EVLS2 and BLT-EVLS3 is greater
on the datasets with Directed shuffling. It is likely that having better ASR transcriptions
allows the ATM to be able to distinguish prompts within a section more effectively, due to
lower ASR noise.

Table 8.9 shows how the AUROC performance varies with the CEFR level of the candi-
dates on subsets of BLT-EVL corresponding to speakers with different CEFR grader levels.
The main observations is that relevance assessment performance increases with proficiency
level. This reflects two effects - firstly, the increasing complexity and clarity of the response,

168 Deep Learning for Prompt-Response Relevance Assessment

Eval Prompt CEFR Grade Level
Shuffling A1 A2 B1 B2 C

Naive 93.2 ± 2.1 96.8 ± 1.3 98.6 ± 0.7 98.8 ± 0.8 98.6 ± 1.0

Directed 90.4 ± 3.1 94.5 ± 2.1 96.8 ± 1.9 97.6 ± 1.7 97.3 ± 2.1

Table 8.9 Per-grade level mean % AUROC scores ±2σ across 10 ATM models on BLT-EVL
using SYS2 transcriptions. In this table the sensitivity of performance to the CEFR grade
level of the candidates is assessed.

allowing it to be more easily distinguished from a response to a different prompt, and the
rising quality of the transcription, as the ASR performance is higher for better speakers, as
described in table 8.7. Interestingly, performance on grade C (highest) speakers is a little
lower than on B2 speakers. This reflects the fact that there are fewer speakers of grade C (C1
and C2) than of other grade levels in the training data, as shown in figure 8.7. Given that
the experiments in tables 8.8 and 8.9 show that SYS2 transcriptions are better, all further
experiments are conducted only on SYS2 transcriptions.

Eval Prompt Section
shuffling C D E

Naive 98.8 ± 0.8 99.5 ± 0.5 96.8 ± 1.3

Directed 95.2 ± 4.3 97.9 ± 2.0 95.8 ± 1.7

Table 8.10 Per-section mean % AUROC scores ±2σ across 10 ATM models on BLT-EVL
using SYS2 transcriptions. Here the performance across sections C-E of the BULATS exam
and how that is affected by prompt shuffling is assessed.

A breakdown of performance on BLT-EVL per section of the BULATS exam using both
Naive and Directed topic shuffling is presented in table 8.10. The results show that it is
easiest to assess performance to section D prompts and hardest on section E prompts. Section
D prompts are the most distinct, as they specifically relate to a particular figure or graph,
while section E prompts are least distinct, as section E is composed of multi-part prompts,
and here each separate sub-prompt is treated separately from all other sub-prompts of the
same overall prompt. However, in either case, the model still achieves high performance on
all sections. As Naive topic shuffling is more representative of real off-topic responses, all
further experiments will be done using Naive topic shuffling.

8.5 Experiments: Direct Relevance Assessment 169

8.5.6 Performance on Mismatched Data

Results in tables 8.8-8.10 show that the ATM (and HATM) model achieves high relevance
assessment performance on responses to known prompts. However, in sections 8.3 these
models are described as being capable of assessing relevance to new and previously unseen
prompts without retraining the model. Furthermore, the Hierarchical Attention-based Topic
model is explicitly introduced in order to improve performance of unseen prompts. In the
following experiments, relevance assessment performance on prompt-response pairs from
the LinguaSkill spoken language proficiency exam is evaluated.

In the following experiments, described in table 8.11, relevance to prompts which are
either seen (from BLT-T3) or unseen (from LSK) is assessed. Both the HATM and ATM
models are only trained on BULATS-derived BLT-T3 dataset. The evaluation responses are
always new (not reused from the training data). However, responses can relate to prompts
either seen or unseen in training. Two strategies for shuffling evaluation responses for
negative examples are considered: seen, unseen. The first uses responses to seen (BULATS)
prompts as negative examples, the second uses responses to unseen (LinguaSkill) prompts as
negative examples. This produces four experiments which illustrate different aspects of how
well the models understand what relates to seen prompts and how well they generalize to
new, unseen prompts. The seen-seen dataset is simply BLT-EVL, the unseen-unseen dataset
is LSK, seen-unseen corresponds to having positive examples and negative example prompts
from BLT-EVL, and negative responses from LSK, and unseen-seen takes positive examples
and negative example prompts from LSK and negative responses from BLT-EVL.

Prompts
Negative Responses relating to

Seen Prompts Unseen Prompts

ATM HATM ATM HATM

Seen 97.7 ± 1.0 97.2 ± 1.3 97.1 ±0.9 96.6 ±1.2

Unseen 63.2 ±6.0 67.8 ±4.2 64.1 ± 6.3 68.9 ± 4.5

Table 8.11 Mean % AUROC scores ±2σ across 10 ATM and HATM models on SYS2
transcriptions. Here Seen-Seen corresponds to BLT-EVL while Unseen-Unseen corresponds
to LSK. Seen prompts-unseen is constructed from BLT-EVL, where negative responses are
taken from LSK while unseen-seen is LSK with negative responses from BLT-EVL.

Results presented in table 8.11 line 1 show that when both the prompts are seen and when
responses relate to seen prompts, both the ATM and HATM have similar, high performance.
When the negative responses are taken from a different dataset (seen-unseen), then there is a
small drop on performance. This shows that once prompts have been seen in training, the

170 Deep Learning for Prompt-Response Relevance Assessment

(a) Seen Seen (b) Unseen Unseen

Figure 8.8 Histograms of relevance probability for HATM on BLT-EVL and LSK. Relevance
of positive (relevant) and negative (non-relevant) prompt-response pairs is depicted in differ-
ent. The histograms represent concatenated predictions across all 10 HATM models (with
different random seeds).

models have a clear understanding of what is relevant to them and are robust to the nature of
the negative-example responses. The situation, however, is worse when assessing relevance
to unseen prompts. The ROC AUROC drops from being above 90 to being in the mid 60
range. In this scenario, the HATM consistently achieves higher performance than the ATM,
although the performance gain is small. This mostly indicates that both the ATM and HATM
have overfit to the BULATS prompts, as the training data only contains 379 unique prompts,
but greater variety of different responses. Thus, table 8.11 shows that while both models are
robust to a diverse set of non-relevant responses, the systems are sensitive to the nature of
the prompts. It must be noted that not only are the LSK prompts unseen by the model, but
there is also a domain mismatch, as the BULATS prompts are exclusively business related,
while the LSK prompts cover a wide range of subjects. Interestingly, the standard deviation
of the ROC AUROC on seen-seen data is an order of magnitude smaller than the standard
deviation of the ROC AUROC on the LinguaSkill data. This suggests that the LinguaSkill
data is out-of-distribution and the ensemble is diverse in that region. This property will be
explored in the next section.

It is interesting to analyze the mistakes which the system makes. To do this, the relevance
probabilities predicted by an HATM4 for positive and negative examples are plotted as
histograms for the scenarios where seen prompts are used to generate both sets of examples
(Fig. 8.8a) and where unseen prompts are used for both (Fig. 8.8b). The other scenarios
yield similar histograms. When operating on seen prompts, the model is able to correctly

4The HATM is chosen as it has better performance on unseen prompts and essentially identical behaviour to
ATM on seen prompts.

8.5 Experiments: Direct Relevance Assessment 171

classify most examples with very high/low relevance probabilities. However, when operating
on unseen prompts it is able to detect when prompts and responses are mismatched, but is
unsure about matched prompt-response pairs for unseen prompts, leading to a large number
of false-negatives. This is the main failure case of these models. Additionally, in both cases
there is a small bump at 0.5, which corresponds to very short responses which the models
do not know how to assess. This is an example of data uncertainty in relevance assessment.
These histograms suggest that the models, via the response attention mechanism, learn a
‘lock and key’ behaviour, where for a given response, only summation of the hidden states
using weights derived from a matched prompt result in a high relevance prediction, and
all other summations result in a low relevance prediction. When the prompt-response pair
is mismatched, the models generally assign a low relevance probability. However, in the
matched case for unseen prompts (LSK) the models yield relevance scores across the whole
range from 0.0 to 1.0, which indicates a generalization issue. It should be noted that ‘lock
and key’ behavior reflects the way the models are trained - each response in the training data

(a) ATM BULATS (b) HATM BULATS

(c) ATM LinguaSkill (d) HATM LinguaSkill

Figure 8.9 t-SNE projection of prompt embeddings.

172 Deep Learning for Prompt-Response Relevance Assessment

is used as a positive example only once, when matched with an appropriate prompt, and
many times as a negative example, when matched with any other prompt.

Having established the performance of both the standard discriminative attention topic
model and the Hierarchical attention topic model, and seen that the HATM does indeed yield
performance benefits on out-of-distribution data, it is interesting to investigate what it has
learned. First, t-SNE projections [122] of the prompt embeddings, presented in figure 8.9,
are computed on the ATM and HATM for both the BULATS prompts and LinguaSkill
prompts. Figures 8.9a and 8.9b show the density plots of the t-SNE projections of the ATM
embeddings hp and attended over HATM embeddings cp of the BULATS prompts. Both sets
of embeddings form three distinct clusters, grouped by section. Notably, the interpolated
embeddings cp reside in the same locations as the originals. Figures 8.9c and 8.9d show
the density plots of the projections of the ATM and HATM embeddings of the LinguaSkill
prompts. Interestingly, LinguaSkill section C and E prompts map to the BULATS section C
and E region, but section D plots map to the section E region. This can be further explored
by examining the attention mechanism of the HATM. Figure 8.10 shows a heatmap of
the attention of BULATS prompts over BULATS prompts and LinguaSkill Prompts over
BULATS prompts. The attention of the BULATS prompts over themselves are zeroed out.
Figure 8.10a shows that the prompt attention mechanism clearly learns to distinguish sections
- as the attention mechanism mostly focuses on prompts from the same section, leading the
to triple-square structure along the diagonal in figure 8.10a. Figure 8.10b shows that the
LinguaSkill prompts attend over BULATS section C and E, which supports the observations
from figures 8.9. The most likely explanation for this is that LinguaSkill section D prompts

(a) BULATS prompts attending (b) LinguaSkill prompts attending

Figure 8.10 Heatmap visualization of HATM mean attention mechanism across 10 random
initialization. X-axis sorted by section (C-E) and by count. Attending prompts are located on
the y-axis, wile the prompt being attended over are on the x-axis.

8.5 Experiments: Direct Relevance Assessment 173

are very distinct from BULATS section C and D prompts, and so are mapped to the most
diverse region, which belongs to BULATS section E prompts. Overall, this shows that
both the ATM and HATM understand underlying structure of the BULATS and LinguaSkill
prompts and cluster them into separate sections. Furthermore, it shows that the prompt
attention mechanism is interpretable and allows the behaviour of the HATM model to be
analyzed.

8.5.7 Uncertainty for Direct Relevance Assessment

In the previous sections the predictive performance of the ATM and HATM were investigated.
It was established that these models are able to achieve high performance on relevance
assessment between prompts and responses when the prompts have been seen in training
(BULATS prompts). Furthermore, both models are shown to be robust to the nature of
the responses. However, the performance of both models drastically falls when assessing
relevance to previously unseen prompts with a degree of domain mismatch. Chapter 3
discussed how to derive measures of uncertainty from neural-network based models and
chapter 5 showed that it is possible to use measures of uncertainty to detect misclassifications
and out-of-distribution inputs. It was shown that explicit ensembles of models, a baseline
approach considered in chapter 5, yield both improvement in classification performance
and competitive measures of uncertainty. At the same time, it is unclear how to generated
out-of-domain training data for relevance assessment, as the input is now a word sequence.
Thus, this section investigates using measures of uncertainty, derived from explicit ensemble
of HATM models, to do two related tasks. Firstly, running the misclassification detection
experiment in the same fashion as described in section 5.3; secondly, using uncertainty to
select a subset of data on which to asses relevance, rejecting the rest to human assessors
(oracle), similar to the experiments in sections 5.3.3 and 7.2.

As discussed in section 8.3, given a single ATM and HATM model trained with maximum
likelihood it is possible to use the entropy of the output distribution as a measure of uncertainty.
Additionally, it is possible to use the entropy of the prompt attention mechanism of an HATM
as another measure of uncertainty. Finally, given a ensemble of models, it is possible to
derive measures of uncertainty such as the entropy of the expected distribution, a measure of
total uncertainty, as well mutual information and expected pairwise KL-divergence, which
are a measures of knowledge uncertainty uncertainty. Thus, in this section six measures of
uncertainty are investigated - entropy, mutual information, expected pairwise KL-divergence
of the output distribution and of the prompt attention mechanism.

Given that measures of uncertainty are derived not only from individual models, but also
from an entire ensemble, it is necessary to first compare the performance of an ensemble

174 Deep Learning for Prompt-Response Relevance Assessment

to the average performance of each model in the ensemble, as well as the best and worst
performance of each model in the ensemble. This comparison is presented in table 8.12. The
results show that an ensemble achieves higher performance than the individual models, on
average, on both ‘in-domain’ BLT-EVL data and ‘out-of-distribution’ LSK data. The best
individual model outperforms the ensemble on LSK, but the performance on LSK is sensitive
to the initialization - the worst performance on significantly worse than the best.

Data Ind. Mean Ind. Best Ind. Worst Ensemble

BLT-EVL 97.5 97.7 95.7 98.2
LSK 68.9 73.4 65.2 71.6

Table 8.12 Comparison of Individual model and Ensemble performance of HATM on BLT-
EVL and LSK datasets in terms of % AUROC.

Table 8.13 presents the results of the misclassification experiment conducted on both
the individual models as well as the ensemble. Here, the classification is made at a decision
threshold of 0.5, as it represents a 2-class application of the argmax decision rule. The results
show that the error (misclassification) rate on BLT-EVL is significantly lower than on LSK. It
is important to know the error rate for two reasons - it represents the ‘random’ performance on
a PR curve and also it shows the misbalance of the dataset (correct - incorrect classifications).
If the dataset is heavily misbalanced, AUPR will be a better indicator of performance than
AUROC. Measures of uncertainty derived from the output are computed using equations 3.31
and 3.32, while measures of uncertainty derived from the prompt attention mechanism are
obtained via 8.31 and 8.32.

Table 8.13 shows that it is possible to detect misclassifications on both BLT-EVL and LSK
datasets. Misclassification detection on LSK data is more difficult - it is out-of-distribution
relative to the training data and models may yield poor estimates of uncertainty in this region.
Note, the difference between AUPR and Error is larger on BLT-EVL than on LSK. Table 8.13
also shows that measures of total uncertainty, such as entropy of the output or the prompt
attention mechanism, are best for misclassification detection. At the same time measures of
knowledge uncertainty, such as mutual information and expected pairwise KL-divergence,
are worse for detecting misclassifications. This is in agreement with results from chapter 5.
Notably, measures of uncertainty derived from the prompt attention mechanism are only
marginally worse than measures derived from the output on BLT-EVL. At the same time,
they are better than measures of uncertainty derived from the output on LSK. This suggests
that most of the uncertainty in predictions is due to the prompt, rather than response, which is
supported by results from section 8.5.5. A significant advantage of measures of uncertainty
derived from the prompt attention mechanism is that they do not rely of the response to be

8.5 Experiments: Direct Relevance Assessment 175

Data Type
Output Prompt Attention

% Error
Ent MI EPKL P.Ent P.MI P.EPKL

BLT-EVL
IND 38.3 ± 1.3 - - 34.5 ± 2.3 - - 8.9
ENS 38.7 ± NA 18.9 ± NA 17.9 ± NA 30.9 ± NA 18.4 ± NA 17.6 ± NA 7.3

LSK
IND 45.5 ± 2.6 - - 47.4 ± 3.7 - - 37.1
ENS 47.6 ± NA 50.9 ± NA 51.1 ± NA 50.8 ± NA 51.3 ± NA 50.9 ± NA 36.7

Table 8.13 Misclassification detection experiment in terms of % AUPR (±2σ on individual
models).

computed. Thus, an organization which plans to add new prompts to an exam can know
prior to deployment whether the system will perform well on the prompt or not. This is a
significant operational advantage.

In addition to the misclassification detection, measures of uncertainty derived from an
HATM were evaluated via prediction rejection experiments in the same fashion as described
in section 5.2. The rejection curves are shown in figure 8.11 and rejection ratios RR are
presented in table 8.14. In this experiment, predictions of the HATM are rejected in order of
decreasing uncertainty and replaced with the true labels. This models the scenario where
the model backs-off to a human assessor when it is uncertain. The expected rejection curve
for a random rejection would be a straight line between base performance and the top right
corner. The ‘oracle’ curve represents rejection in order of decreasing error with the label. In
a real situation, this curve is unavailable, but represents asking an oracle, in this scenario, a
human assessor, to provide the correct prediction. If a rejection scheme is perfect, it should
follow the oracle curve. Figure 8.11 shows that on the estimates of uncertainty provided
by the model can be successfully used to reject some of the worst responses. Note, that the
provided measures of uncertainty are better for in-domain BLT-EVL data than for LSK data.
Notably, entropy of the output and of the prompt attention mechanism is the best measures

Data Type
Output Prompt Attention

Ent MI EPKL P.Ent P.MI P.EPKL

BLT-EVL
IND 72.6 ± 5.8 - - 70.5 ± 6.5 - -
ENS 77.0 ± NA 71.1 ± NA 70.6 ± NA 73.5 ± NA 65.8 ± NA 65.0 ± NA

LSK
IND 54.4 ± 4.3 - - 54.7 ± 4.0 - -
ENS 61.6 ± NA 62.1 ± NA 61.9 ± NA 61.2 ± NA 60.1 ± NA 59.7

Table 8.14 Prediction rejection ratios RR on BLT-EVL and LSK. For individual models this is
a mean ±2σ across 10 models.

176 Deep Learning for Prompt-Response Relevance Assessment

of uncertainty on in-domain BLT-EVL data. However, on LSK the situation is less clear cut,
where all measures have similar performance. The results show that measures derived from
the output are nearly as good as measures of uncertainty derived from the prompt attention
mechanism. This is a significant operational advantage in a deployment scenario - if a new
prompt is introduced into an exam, it is possible to predict expected relevance assessment
performance on that prompt and decide whether it is necessary to collect more training data.

8.6 Chapter Summary

This chapter investigates the assessment of relevance between prompts and spoken responses.
Two approaches to prompt-response relevance assessment were considered - an indirect

(a) Individual - BLT-EVL (b) Ensemble - BLT-EVL

(c) Individual - LSK (d) Ensemble - LSK

Figure 8.11 Prediction rejection curves on BLT-EVL and LSK. For individual models (a and
c) the mean rejection curve ±2σ error bounds across 10 models are depicted.

8.6 Chapter Summary 177

approach, discussed in section 8.2, where a model predicts which prompt most likely elicited
the given response, and a direct approach, discussed in section 8.3, where a model directly
yields a relevance score for a prompt-response pair.

In section 8.2 two indirect prompt-relevance assessment models were considered. The
first is a classic information-retrieval style approach which relies on cosine distances between
vector representations of prompts and responses combined with a K-nearest neighbour
classifier. The second is a deep-learning based prompt-adapted RNN language model, which
is a generative model of responses, conditioned on a vector embedding of the prompt.
Conditional probabilities of the prompt are obtained by applying Bayes’ rule. Experiments in
section 8.4 show that the second model is able to scale to larger datasets, as it is parametric,
and yields better relevance assessment performance. However, a limitation of this approach
is that it still requires running the RNNLM as many times as there are prompts in the dataset
for each response, which can become expensive. Furthermore, these indirect approaches
cannot handle new and unseen prompts without retraining.

In section 8.3 two direct prompt-relevance assessment models, the Attention-based Model
(ATM) and the Hierarchical Attention-based Model (HATM) are considered. Both models use
a prompt-conditional attention mechanism is attend over embeddings of responses, produced
by a response-encoder, to select only the most salient parts of the response for relevance
assessment. As the models also feature a prompt-encoder, they are theoretically capable as
assessing relevance between arbitrary prompt-response pairs without retaining. The HATM
represents all input prompts as a convex combination of prompts seen in the training data via
a second prompt attention mechanism. This allows the HATM to yield both more robust and
interpretable representations of prompts.

The direct relevance assessment models were experimentally evaluated on data from the
BULATS and LinguaSkill spoken language proficiency exams in section 8.5. Results show
that when assessing relevance of responses to known prompts, these models achieve very high,
near perfect performance. However, when assessing relevance to new and unseen prompts,
these models yields lower performance. However, the HATM, with its prompt attention
mechanism, does achieve better performance than the ATM. The reason for this is that the
training data contains very few unique prompts and the models overfit to them, making
it difficult to generalize to new prompts. At the same time, it is shown that both models
are robust to the nature of responses. Furthermore, it is shown that the prompt-attention
mechanism is interpretable and yields insights into the behaviour of the HATM model.
Specifically, it is shown that the prompt-attention mechanism learns to cluster prompts by
BULATS-exam sections in an unsupervised fashion. Future work must investigate approaches

178 Deep Learning for Prompt-Response Relevance Assessment

to enhancing performance on unseen prompts. One approach would be to use the diversity of
available responses to train the prompt-encoder on mixture of both prompts and responses.

Section 8.5.7 investigates deriving measures of uncertainty from ensembles of HATM
models for two tasks: misclassification detection and uncertainty-based prediction rejec-
tion. The results show that estimates of model’s uncertainty can be applied to both tasks
successfully. Crucially, it was shown that useful measures of uncertainty can be derived from
the prompt-attention mechanism for both misclassification detection and uncertainty-based
rejection. This means that a level of expected performance on the prompt can be obtained
based on the prompt alone, which is a significant operational advantage, as it allows the
model’s constructor to decide when to collect more training responses and when no new
training responses are necessary for a new prompt. This should yield a decrease in operations
cost.

However, the investigated approaches to deriving measures of uncertainty are computa-
tionally expensive. Future work should investigate combination of HATM models with Prior
Networks, in order to derive computationally cheaper measures of uncertainty and more
accurate predictions. An important step towards this is the investigation of out-of-distribution
training data generation for structured inputs, such as word sequences. Furthermore, the
usefulness of measures of uncertainty derived from the prompt-attention mechanism suggests
that Prior Networks over intermediate categorical representations inside a neural network
should also be investigated in future work.

Chapter 9

Conclusions

The current chapter concludes this thesis with a review of the main contributions and several
proposals for future work. The main theme of this thesis has been the investigation of
approaches for deriving measures of uncertainty in the predictions of deep learning models.
This thesis has two main areas of contributions. The first is the development and evaluation
of a new class of models, called Prior Networks, for uncertainty estimation which combine
properties of single model and ensemble approaches. Effectively, Prior Networks can
efficiently emulate an ensemble of either classification or regression models using a single
neural network. The second area of contribution is the application of deep learning and
uncertainty estimation techniques discussed in this thesis to the area of non-native spoken
language proficiency assessment. Specifically, DNNs are applied to the tasks of automatic
grading of spoken language proficiency exams and automatic assessment of relevance of
spoken responses to open-ended exam prompts. Ensemble approaches were then used
to derive measures of uncertainty from deep-learning models for grading and relevance
assessment. A per-chapter breakdown of these contributions and a discussion of future
research directions is presented in this chapter.

9.1 Review of Contributions

Chapter 3 introduced the area of uncertainty estimation for parametric models. The sources
of uncertainty in predictions are discussed in the context of both classification and regression
tasks and illustrated on toy artificial datasets. It is illustrated how uncertainty in predictions
can arise due to data uncertainty, which is uncertainty due to class overlap and noise
in the data, and due to knowledge uncertainty, which is uncertainty due to the mismatch
between the training and test data distributions. This chapter shows that standard probabilistic
classification and regression models will naturally capture estimates of data uncertainty

180 Conclusions

if trained using maximum likelihood, given sufficient training data and model capacity.
However, standard maximum likelihood estimation does not contain any mechanism to
capture knowledge uncertainty.

Chapter 3 goes on to discuss two classes of approaches to deriving estimates of knowledge
uncertainty in the predictions of parametric classification and regression models. The
first class is single model approaches, which aim to explicitly train a DNN to yield high-
entropy outputs via multi-task training on out-of-distribution data. While these approaches
are computationally cheap and allow the model to indicate that it is uncertain, they do
not allow the model to indicate why it is uncertainty in a non-heuristic fashion. This
makes it difficult to use these measures of uncertainty for tasks which require the source of
uncertain to be established. Instead of single-model approaches, it is possible to consider
ensemble approaches, which yield interpretable measures of uncertainty within a theoretically
consistent probabilistic framework. By considering measures of spread of ensembles of
models, measures of knowledge uncertainty and data uncertainty can be separately derived.
However, it is hard to control the behavior of an ensemble of models. Furthermore, ensemble
approaches may be computationally expensive.

In chapter 4 a new class of models for uncertainty estimation, called Prior Networks, is
proposed. Prior Networks combine the advantages of single-model and ensemble approaches
to uncertainty estimation. Specifically, Prior Networks parameterize conjugate prior distri-
butions over output distributions and yield the same theoretically interpretable measures
of uncertainty as ensembles. However, unlike ensembles, all measures of uncertainty can
be obtained in closed form using a single deterministic forward pass through a neural net-
work. Furthermore, unlike ensembles, whose behaviour is implicitly controlled by choice of
prior over models and approximate inference scheme, the behaviour of Prior Networks is
controlled explicitly via the choice of out-of-distribution training data. In this chapter Prior
Networks are developed both for classification tasks, where they parameterize a Dirichlet
distribution, and for regression tasks, where they parameterize the Normal-inverse-Wishart
distribution. In sections 4.2.2 and 4.3.2 training criteria for Prior Networks are investigated
and it is shown that in order to appropriately train a Prior Network to yield a desired set
of behaviours it is necessary to minimize the reverse KL-divergence between a target prior
distribution and the Prior Networks. The properties of the reverse KL-divergence loss are
confirmed by training Prior Networks on two artificial datasets in section 4.2.3.

Having confirmed the properties of Prior Networks on two artificial datasets, Prior net-
works are evaluated on the MNIST, SVHN and CIFAR-10 image classification datasets in
chapter 5. Uncertainty estimates derived from Prior Networks are applied to the tasks of
misclassification detection and out-of-distribution input detection. Standard DNNs, Monte-

9.1 Review of Contributions 181

Carlo Dropout Ensembles and explicit ensembles of DNNs are used as the baselines in this
set of experiments. In section 5.3 it is shown that Prior Networks do not yield improved mis-
classification detection performance, most likely due to limitations in the out-of-distribution
training data. However, they are shown to obtain marginally better classification performance
than standard DNNs, most likely due to the out-of-distribution data acting as a regularizer.
The best misclassification detection performance is obtained using measures of uncertainty
derived from explicit ensemble of DNNs. Furthermore, it is shown how the confidence, also
known as the probability of the mode of the predictive posterior, is consistently the best
measure of uncertainty for misclassification detection.

At the same time, in section 5.4 it is shown how Prior Networks, given an appropri-
ate choice of out-of-distribution training data, are capable of outperforming the baselines
approaches on the task of out-of-distribution input detection. Prior Networks consistently
yielded the best results on all datasets. This is likely due to the fact that it is easier to choose
out-of-distribution training data which is good for discriminating between the in-domain
data and a range of out-of-domain image datasets. The best baseline model was an explicit
ensemble of DNNs, while Monte-Carlo dropout ensembles did not give significant benefits
over deterministic DNNs. On this task it was shown the measures of knowledge uncertainty,
such as mutual information and expected pairwise KL-divergence yield the best results.

Chapter 6 transitions from the first part of this thesis, which examined uncertainty
estimation, to the second part, which investigates the application of deep learning and
uncertainty estimation to the area of spoken language proficiency assessment.

In chapter 7 probabilistic regression models, called Density Networks, were applied to
the task of automatic grading based on a set of features derived from the audio and ASR
transcriptions of a candidate’s responses to open-ended prompts on the BULATS exam. The
two classes of approaches to capturing knowledge uncertainty discussed in chapter 3 were
applied to Density Networks. Specifically, Density Networks were trained in a multi-task
fashion on synthetically generated out-of-distribution training data to yield high-entropy
predictive posteriors; Monte-Carlo dropout and explicit ensembles of Density Networks
were used; finally, ensemble and single-model approaches were combined by considering
an explicit ensemble of multi-task trained Density Networks. The previous state-of-the-art
model on the this task was a Gaussian process, which was used as the baseline model in this
chapter. Experiments in section 7.2 show that all models achieve comparable human-level
predictive performance, however, explicit ensembles of multi-task trained Density Networks
obtained the best performance. However, the experiments also show that unlike for the
classification tasks considered in chapter 5, the measures of uncertainty derived from all
models yield low performance of the task of rejecting predictions which are most errorful.

182 Conclusions

However, considering that models operating on different sets of principles yield similarly
low performance suggests that either the features are too limited, or the errors are dominated
by homoscedastic (input-independent) noise. At the same time, calibration experiments show
that all models yield well-calibrated predictive intervals.

In Chapter 8 deep-learning approaches were applied to the task of automatic assessment
of relevance of spoken responses to open-ended exam prompts based on speech-recognition
hypotheses. Two classes of approaches were discussed: indirect approaches, which assess
relevance via prompt classification, and direct approaches, which directly yield a relevance
score for a prompt-response pair. Two indirect prompt-relevance assessment models were
considered - a classic information-retrieval style approach which relies on cosine distances
between vector representations of prompts and responses, and a deep-learning based prompt-
adapted RNN language model. The latter is a generative model of responses, conditioned on
a vector embedding of the prompt. Conditional probabilities of the prompt are obtained by
applying Bayes’ rule. Experiments on data from the BULATS exam in section 8.4 show that
the deep-learning based model is able to scale to larger datasets and yields better performance.
However, indirect relevance assessment approaches cannot handle new and unseen prompts
without retraining.

Two direct prompt-relevance assessment models, the Attention-based Model (ATM)
and the Hierarchical Attention-based Model (HATM) are considered in section 8.3. Both
models use bi-directional LSTM embeddings of prompts to attend over bi-directional LSTM
embeddings of responses to assess relevance, which allows them to assess relevance between
arbitrary prompt-response pairs without retraining. Furthermore, the HATM aims to improve
generalization to unfamiliar prompts by expressing any input prompts as a convex combina-
tion of the embeddings of prompts seen in the training data via a prompt attention mechanism.
Experiments on data from the BULATS and LinguaSkill spoken language proficiency exams,
provided by Cambridge English Language Assessment, show that when assessing relevance
of responses to known prompts, these models achieve very high, near perfect performance.
However, when assessing relevance to new and unseen prompts, these models yield lower
performance. However, the HATM achieves marginally better performance than the ATM.
Section 8.5.7 investigates deriving measures of uncertainty from ensembles of HATM models
for two tasks: misclassification detection and uncertainty-based prediction rejection. It is
shown that measures of uncertainty derived either from the outputs or the prompt attention
mechanism of the HATM can be successfully used to detect misclassifications and reject
predictions to human assessors. Crucially, the fact that the prompt attention mechanism
yields useful measures of uncertainty is a significant operational advantage, as it means that

9.2 Future Work 183

when a new prompt is introduced into an exam, it is possible to see whether the model will
perform well on it without needing actual responses to this prompt.

9.2 Future Work

A range of theoretical extensions of Prior Networks should be investigated. Firstly, results in
chapter 3 show that the quality of uncertainty estimates from Prior Networks depends heavily
on the nature of the out-of-distribution training data. Thus, it is important to thoroughly
investigate approaches to generating or collecting out-of-distribution training data. Secondly,
since explicit ensembles outperform Prior Networks on the task of misclassification detection
and Prior Networks are capable of emulating an ensemble, an interesting avenue of investiga-
tion is the distillation of an ensemble into a Prior Network. Thirdly, this thesis investigated
the Prior Networks for discriminative models with a vector to vector mapping. As a future
avenue of research, it is necessary to investigate derivation of measures of uncertainty for
structured data, such as sequences, lattices, graphs and prefix trees in order to be able to apply
approaches like Prior Networks to a wide range of real tasks which operate on structured
data, such as speech recognition, machine translation, syntactic parsing, etc... Finally, in
chapter 8 it was shown that useful measures of uncertainty can be derived from intermedi-
ate representations in a neural networks, specifically a fixed-length attention mechanism.
Thus, an interesting direction for future research is the construction of Prior Networks over
intermediate representations inside neural networks.

In addition to theoretical extension of Prior Networks, several experimental extensions
to work on Prior Networks should also be carried out. Firstly, classification Prior Networks
should be to far larger and more complex image classification datasets such as ImageNet [27].
Secondly, it is necessary to investigate the use of Prior Networks for different areas of
application, such natural language processing and reinforcement learning. Thirdly, it is
necessary to experimentally evaluate regression Prior Networks on a range of both synthetic
and real tasks. Finally, it is interesting to investigate the use of measures of uncertainty
derived from Prior Networks on the task of adversarial attack detection.

Several avenues of future work can also be outlined for the area of automatic spoken
language proficiency assessment. Firstly, it is necessary to use a regression Prior Network
for automatic grading instead of the Density Networks considered in chapter 7. Secondly,
classification approaches to automatic grading should also be investigated. Additionally, it
is interesting to investigate the training automatic graders on much larger corpora and on
richer features. With regards to prompt-response relevance assessment, it is necessary to
investigate approaches to improving performance on unseen prompts. This can either be done

184 Conclusions

by considering more advanced architectures, leveraging the availability of a diverse range of
responses to prompts to train prompt embeddings or by using transfer learning approaches.

References

[1] Computer says no: Irish vet fails oral english test needed to stay in australia. The
Guardian, 2017. URL https://www.theguardian.com/australia-news/2017/aug/08/
computer-says-no-irish-vet-fails-oral-english-test-needed-to-stay-in-australia.

[2] Linguaskill. Cambridge English Language Assessment, 2019. URL https://www.
cambridgeenglish.org/exams-and-tests/linguaskill/.

[3] Malinin A, K. Knill, A. Ragni, Y. Wang, and M.J.F. Gales. An attention based model
for off-topic spontaneous spoken respnse detection: An Initial Study. In Proc. ISCA
Workshop on Speech and Language Technology for Education (SLaTE), 2017.

[4] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems, 2015. URL http://tensorflow.org/. Software available from tensorflow.org.

[5] Babak Alipanahi, Andrew Delong, Matthew T. Weirauch, and Brendan J. Frey. Pre-
dicting the sequence specificities of DNA- and RNA-binding proteins by deep learn-
ing. Nature Biotechnology, 33(8):831–838, July 2015. ISSN 1087-0156. doi:
10.1038/nbt.3300. URL http://dx.doi.org/10.1038/nbt.3300.

[6] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul F. Christiano, John Schulman, and
Dan Mané. Concrete problems in AI safety. http://arxiv.org/abs/1606.06565, 2016.
arXiv: 1606.06565.

[7] REINALDO B ARELLANO-VALLE, JAVIER E CONTRERAS-REYES, and Marc G
Genton. Shannon entropy and mutual information for multivariate skew-elliptical
distributions. Scandinavian Journal of Statistics, 40(1):42–62, 2013.

[8] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. In Proc. International Conference on
Learning Representations (ICLR), 2015.

[9] Yoshua Bengio. Learning Deep Architectures for AI. Found. Trends Mach. Learn., 2
(1):1–127, 2009.

[10] C. M. Bishop. Mixture Density Networks. Technical Report NCRG 4288, Neural
Computing Research Group, Department of Computer Science, Aston University,
1994.

[11] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

[12] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet Allocation.
Journal of Machine Learning Research, 3:993–1022, March 2003.

https://www.theguardian.com/australia-news/2017/aug/08/computer-says-no-irish-vet-fails-oral-english-test-needed-to-stay-in-australia
https://www.theguardian.com/australia-news/2017/aug/08/computer-says-no-irish-vet-fails-oral-english-test-needed-to-stay-in-australia
https://www.cambridgeenglish.org/exams-and-tests/linguaskill/
https://www.cambridgeenglish.org/exams-and-tests/linguaskill/
http://tensorflow.org/
http://dx.doi.org/10.1038/nbt.3300
http://arxiv.org/abs/1606.06565

186 References

[13] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight
uncertainty in neural networks. arXiv preprint arXiv:1505.05424, 2015.

[14] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah.
Signature verification using a" siamese" time delay neural network. In Advances in
neural information processing systems, pages 737–744, 1994.

[15] BULATS. Business Language Testing Service. http://www.bulats.org, 2012.

[16] M Buscema. Metanet: The theory of independent judges. Substance Use & Misuse,
33(2):439–461, 1998.

[17] Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie
Elhadad. Intelligible models for healthcare: Predicting pneumonia risk and hospital
30-day readmission. In Proc. 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’15, pages 1721–1730, New York, NY,
USA, 2015. ACM. ISBN 978-1-4503-3664-2. doi: 10.1145/2783258.2788613. URL
http://doi.acm.org/10.1145/2783258.2788613.

[18] Lucy Chambers and Kate Ingham. The BULATS online speaking test. Research Notes,
43:21–25, 2011.

[19] X. Chen, X. Liu, Y. Qian, M.J.F. Gales, and P.C. Woodland. CUED-RNNLM –
An Open-Source Toolkit for Efficient Training and Evaluation of Recurrent Neural
Network Language Models. In Proc. International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), 2016.

[20] Xie Chen, Yongqiang Wang, Xunying Liu, Mark J.F. Gales, and P.C. Woodland.
Efficient GPU-based Training of Recurrent Neural Network Language Models Using
Spliced Sentence Bunch. In Proc. INTERSPEECH, 2014.

[21] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representa-
tions using rnn encoder-decoder for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

[22] Robert J Connor and James E Mosimann. Concepts of independence for proportions
with a generalization of the dirichlet distribution. Journal of the American Statistical
Association, 64(325):194–206, 1969.

[23] Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley &
Sons, 2006.

[24] Stanford CS231N. Tiny ImageNet. https://tiny-imagenet.herokuapp.com/, 2017.

[25] C. Cucchiarini, H. Strik, and L. Boves. Automatic evaluation of Dutch pronunciation
by using speech recognition technology. In Proc. of IEEE Workshop on Automatic
Speech Recognition & Understanding (ASRU), pages 622–629, 1997.

[26] M Del Vecchio, A Malinin, and MJF Gales. Improved auto-marking confidence for
spoken language assessment. In 2018 IEEE Spoken Language Technology Workshop
(SLT), pages 957–963. IEEE, 2018.

http://www.bulats.org
http://doi.acm.org/10.1145/2783258.2788613
https://tiny-imagenet.herokuapp.com/

References 187

[27] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR09, 2009.

[28] Stefan Depeweg, José Miguel Hernández-Lobato, Finale Doshi-Velez, and Steffen
Udluft. Decomposition of uncertainty for active learning and reliable reinforcement
learning in stochastic systems. stat, 1050:11, 2017.

[29] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research, 12(Jul):
2121–2159, 2011.

[30] Keelan Evanini and Xinhao Wang. Automatic detection of plagiarized spoken re-
sponses. In Proc. Ninth Workshop on Innovative Use of NLP for Building Educational
Applications, 2014.

[31] Keelan Evanini, Shasha Xie, and Klaus Zechner. Prompt-based Content Scoring
for Automated Spoken Language Assessment. In Proc. Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies (NAACL-HLT), 2013.

[32] G. Evermann and P.C. Woodland. Large vocabulary decoding and confidence esti-
mation using word posterior probabilities. In Proc. of IEEE Intl. Conf. on Acoustics,
Speech and Signal Processing (ICASSP), 2000.

[33] H. Franco, V. Abrash, K. Precoda, H. Bratt, R. Rao, J. Butzberger, R. Rossier, and
F. Cesari. The SRI EduSpeakTM system: Recognition and pronunciation scoring for
language learning. Proc. of InSTILL 2000, pages 123–128, 2000.

[34] H. Franco, L. Neumeyer, V. Digalakis, and O. Ronen. Combination of machine
scores for automatic grading of pronunciation quality. Speech Communication, 30(2):
121–130, 2000.

[35] Yarin Gal. Uncertainty in Deep Learning. PhD thesis, University of Cambridge, 2016.

[36] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian Approximation: Repre-
senting Model Uncertainty in Deep Learning. In Proc. 33rd International Conference
on Machine Learning (ICML-16), 2016.

[37] Ross Girshick. Fast R-CNN. In Proc. 2015 IEEE International Conference on
Computer Vision (ICCV), pages 1440–1448, 2015.

[38] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Aistats, volume 9, pages 249–256, 2010.

[39] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Nets. In
Advances in Neural Information Processing Systems 27, pages 2672–2680. Curran As-
sociates, Inc., 2014. URL http://papers.nips.cc/paper/5423-generative-adversarial-nets.
pdf.

[40] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

188 References

[41] Ian J. Goodfellow, Yaroslav Bulatov, Julian Ibarz, Sacha Arnoud, and Vinay D. Shet.
Multi-digit number recognition from street view imagery using deep convolutional
neural networks, 2013. URL http://arxiv.org/abs/1312.6082. arXiv:1312.6082.

[42] Alex Graves. Supervised Sequence Labelling with Recurrent Neural Networks. Studies
in Computational Intelligence, Springer, 2012.

[43] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural Turing Machines, 2014. URL
http://arxiv.org/abs/1410.5401. arXiv:1410.5401.

[44] Thomas L. Griffiths and Mark Steyvers. Finding Scientific Topics. Proceedings of the
National Academy of Sciences, 101:5228–5235, 2004.

[45] Sylvain Gugger. The 1-cycle policy. 2018. URL https://sgugger.github.io/
the-1cycle-policy.html.

[46] Maya Gupta and Santosh Srivastava. Parametric bayesian estimation of differential
entropy and relative entropy. Entropy, 12(4):818–843, 2010.

[47] Awni Y. Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen,
Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, and Andrew Y.
Ng. Deep speech: Scaling up end-to-end speech recognition, 2014. URL http:
//arxiv.org/abs/1412.5567. arXiv:1412.5567.

[48] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[49] Dan Hendrycks and Kevin Gimpel. A Baseline for Detecting Misclassified and Out-
of-Distribution Examples in Neural Networks. http://arxiv.org/abs/1610.02136, 2016.
arXiv:1610.02136.

[50] Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay,
Mustafa Suleyman, and Phil Blunsom. Teaching machines to read and comprehend.
In Advances in neural information processing systems, pages 1693–1701, 2015.

[51] José Miguel Hernández-Lobato and Ryan Adams. Probabilistic backpropagation
for scalable learning of bayesian neural networks. In International Conference on
Machine Learning, pages 1861–1869, 2015.

[52] Derrick Higgins, Xiaoming Xi, Klaus Zechner, and David Williamson. A three-stage
approach to the automated scoring of spontaneous spoken responses. Computer Speech
and Language, 25(2):282–306, 2011.

[53] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel rahman Mohamed, Navdeep
Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara Sainath, and Brian
Kingsbury. Deep neural networks for acoustic modeling in speech recognition. Signal
Processing Magazine, 2012.

[54] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural
network, 2015. arXiv:1503.02531.

http://arxiv.org/abs/1312.6082
http://arxiv.org/abs/1410.5401
https://sgugger.github.io/the-1cycle-policy.html
https://sgugger.github.io/the-1cycle-policy.html
http://arxiv.org/abs/1412.5567
http://arxiv.org/abs/1412.5567
http://arxiv.org/abs/1610.02136

References 189

[55] Geoffrey E. Hinton and Drew van Camp. Keeping the neural networks simple by
minimizing the description length of the weights. In Proc. Sixth Annual Conference
on Computational Learning Theory, COLT ’93, pages 5–13, New York, NY, USA,
1993. ACM. ISBN 0-89791-611-5. doi: 10.1145/168304.168306. URL http://doi.acm.
org/10.1145/168304.168306.

[56] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature
detectors. http://arxiv.org/abs/1207.0580, 2012. arXiv:1207.0580.

[57] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Comput., 9(8):
1735–1780, 1997.

[58] Marco F Huber, Tim Bailey, Hugh Durrant-Whyte, and Uwe D Hanebeck. On entropy
approximation for gaussian mixture random vectors. In 2008 IEEE International
Conference on Multisensor Fusion and Integration for Intelligent Systems, pages
181–188. IEEE, 2008.

[59] Forrest Iandola, Matt Moskewicz, Sergey Karayev, Ross Girshick, Trevor Darrell, and
Kurt Keutzer. Densenet: Implementing efficient convnet descriptor pyramids. arXiv
preprint arXiv:1404.1869, 2014.

[60] A. Kendall and Y. Gal. What Uncertainties Do We Need in Bayesian Deep Learning
for Computer Vision. In Proc. Conference on Neural Information Processing Systems
(NIPS), 2017.

[61] A. Kendall, Y. Gal, and R. Cipolla. Multi-Task Learning Using Uncertainty to Weight
Losses for Scene Geometry and Semantics. In Proc. Conference on Neural Information
Processing Systems (NIPS), 2017.

[62] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In
Proc. 3rd International Conference on Learning Representations (ICLR), 2015.

[63] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In Proc.
International Conference on Learning Representations (ICLR), 2014.

[64] Artemy Kolchinsky and Brendan Tracey. Estimating mixture entropy with pairwise
distances. Entropy, 19(7):361, 2017.

[65] Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009. URL
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf.

[66] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[67] Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. Human-level
concept learning through probabilistic program induction. Science, 350(6266):1332–
1338, 2015. ISSN 0036-8075. doi: 10.1126/science.aab3050. URL http://science.
sciencemag.org/content/350/6266/1332.

http://doi.acm.org/10.1145/168304.168306
http://doi.acm.org/10.1145/168304.168306
http://arxiv.org/abs/1207.0580
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://science.sciencemag.org/content/350/6266/1332
http://science.sciencemag.org/content/350/6266/1332

190 References

[68] B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and Scalable Predictive
Uncertainty Estimation using Deep Ensembles. In Proc. Conference on Neural
Information Processing Systems (NIPS), 2017.

[69] Thomas K Landauer, Peter W. Foltz, and Darrell Laham. Introduction to Latent
Semantic Analysis. Discourse Processes, 25:259–284, 1998.

[70] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86:2278–2324, 1998.

[71] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and
time series. The handbook of brain theory and neural networks, 3361(10):1995, 1995.

[72] Chong Min Lee, Su-Youn Yoon, Xihao Wang, Matthew Mulholland, Ikkyu Choi, and
Keelan Evanini. Off-topic spoken response detection using siamese convolutional
neural networks. In INTERSPEECH, pages 1427–1431, 2017.

[73] Kimin Lee, Honglak Lee, Kibok Lee, and Jinwoo Shin. Training confidence-calibrated
classifiers for detecting out-of-distribution samples. International Conference on
Learning Representations, 2018. URL https://openreview.net/forum?id=ryiAv2xAZ.

[74] Shiyu Liang, Yixuan Li, and R. Srikant. Enhancing the reliability of out-of-distribution
image detection in neural networks. In Proc. International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=H1VGkIxRZ.

[75] Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. arXiv
preprint arXiv:1711.05101, 2017.

[76] Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh. Hierarchical question-
image co-attention for visual question answering. In Advances In Neural Information
Processing Systems, pages 289–297, 2016.

[77] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches
to attention-based neural machine translation. In Proc. EMNLP, 2015.

[78] David JC MacKay. Bayesian methods for adaptive models. PhD thesis, California
Institute of Technology, 1992.

[79] David JC MacKay. A practical bayesian framework for backpropagation networks.
Neural computation, 4(3):448–472, 1992.

[80] A. Malinin, A. Ragni, M.J.F. Gales, and K.M. Knill. Incorporating Uncertainty into
Deep Learning for Spoken Language Assessment. In Proc. 55th Annual Meeting of
the Association for Computational Linguistics (ACL), 2017.

[81] Andrey Malinin and Mark Gales. Predictive uncertainty estimation via prior networks.
In Advances in Neural Information Processing Systems, pages 7047–7058, 2018.

[82] Andrey Malinin, Rogier van Dalen, Kate Knill, Yu Wang, and Mark Gales. Off-
topic Response Detection for Spontaneous Spoken English Assessment. In Proc.
54th Annual Meeting of the Association for Computational Linguistics (ACL), pages
1075–1084, Berlin, Germany, 2016.

https://openreview.net/forum?id=ryiAv2xAZ
https://openreview.net/forum?id=H1VGkIxRZ

References 191

[83] Andrey Malinin, Kate Knill, and Mark JF Gales. A hierarchical attention based model
for off-topic spontaneous spoken response detection. In 2017 IEEE Automatic Speech
Recognition and Understanding Workshop (ASRU), pages 397–403. IEEE, 2017.

[84] R Mead. A generalised logit-normal distribution. Biometrics, 21(3):721–732, 1965.

[85] Angeliki Metallinou and Jian Cheng. Using Deep Neural Networks to Improve Profi-
ciency Assessment for Children English Language Learners. In Proc. INTERSPEECH,
2014.

[86] Tomas Mikolov. Statistical Language Models Based on Neural Networks. PhD thesis,
Brno University of Technology, 2012.

[87] Tomas Mikolov, Martin Karafiát, Lukás Burget, Jan Cernocký, and Sanjeev Khudanpur.
Recurrent Neural Network Based Language Model. In Proc. INTERSPEECH, 2010.

[88] Tomas Mikolov, Stefan Kombrink, Lukás Burget, Jan Cernocký, and Sanjeev Khudan-
pur. Extensions of Recurrent Neural Network Language Model. In Proc. International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2011.

[89] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of
Word Representations in Vector Space, 2013. URL http://arxiv.org/abs/1301.3781.
arXiv:1301.3781.

[90] Tomas Mikolov et al. Linguistic Regularities in Continuous Space Word Representa-
tions. In Proc. NAACL-HLT, 2013.

[91] Marcin Możejko, Mateusz Susik, and Rafał Karczewski. Inhibited softmax for uncer-
tainty estimation in neural networks. arXiv preprint arXiv:1810.01861, 2018.

[92] Kevin P. Murphy. Machine Learning. The MIT Press, 2012.

[93] Ramesh Nallapati, Bowen Zhou, Cicero dos Santos, Caglar Gulcehre, and Bing Xiang.
Abstractive text summarization using sequence-to-sequence rnns and beyond. In
Proceedings of The 20th SIGNLL Conference on Computational Natural Language
Learning, pages 280–290, 2016.

[94] Radford M. Neal. Bayesian learning for neural networks. Springer Science & Business
Media, 1996.

[95] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled:
High confidence predictions for unrecognizable images. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2015.

[96] Council of Europe. Common European framework of reference for languages: Learn-
ing, teaching, assessment. Cambridge, U.K: Press Syndicate of the University of
Cambridge, 2001. ISBN 9780521005319.

[97] Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent
neural networks. arXiv preprint arXiv:1601.06759, 2016.

[98] Ian Osband. Risk versus uncertainty in deep learning: Bayes, bootstrap and the
dangers of dropout. In NIPS Workshop on Bayesian Deep Learning, 2016.

http://arxiv.org/abs/1301.3781

192 References

[99] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep
exploration via bootstrapped dqn. In D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems
29, pages 4026–4034. Curran Associates, Inc., 2016. URL http://papers.nips.cc/paper/
6501-deep-exploration-via-bootstrapped-dqn.pdf.

[100] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[101] Xuan-Hieu Phan and Cam-Tu Nguyen. GibbsLDA++: A C/C++ implementation of
latent Dirichlet allocation (LDA). http://gibbslda.sourceforge.net/, 2007.

[102] Joaquin Quiñonero-Candela. Dataset Shift in Machine Learning. The MIT Press,
2009.

[103] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for
Machine Learning. MIT Press, 2006.

[104] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and
beyond. arXiv preprint arXiv:1904.09237, 2019.

[105] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals
of mathematical statistics, pages 400–407, 1951.

[106] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6):386, 1958.

[107] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning representa-
tions by back-propagating errors. Cognitive modeling, 5(3):1, 1988.

[108] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, 45(11):2673–2681, 1997.

[109] Abigail See, Peter J Liu, and Christopher D Manning. Get to the point: Summarization
with pointer-generator networks. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 1073–1083,
2017.

[110] Barbara Seidlhofer. English as a lingua franca. ELT journal, 59(4):339, 2005.

[111] Murat Sensoy, Lance Kaplan, and Melih Kandemir. Evidential deep learning to quan-
tify classification uncertainty. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing
Systems 31, pages 3179–3189. Curran Associates, Inc., 2018. URL http://papers.nips.
cc/paper/7580-evidential-deep-learning-to-quantify-classification-uncertainty.pdf.

[112] Burr Settles. Active learning literature survey. Technical report, University of
Wisconsin-Madison Department of Computer Sciences, 2009.

http://papers.nips.cc/paper/6501-deep-exploration-via-bootstrapped-dqn.pdf
http://papers.nips.cc/paper/6501-deep-exploration-via-bootstrapped-dqn.pdf
http://gibbslda.sourceforge.net/
http://papers.nips.cc/paper/7580-evidential-deep-learning-to-quantify-classification-uncertainty.pdf
http://papers.nips.cc/paper/7580-evidential-deep-learning-to-quantify-classification-uncertainty.pdf

References 193

[113] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for
Large-Scale Image Recognition. In Proc. International Conference on Learning
Representations (ICLR), 2015.

[114] Leslie N Smith. A disciplined approach to neural network hyper-parameters:
Part 1–learning rate, batch size, momentum, and weight decay. arXiv preprint
arXiv:1803.09820, 2018.

[115] Leslie N Smith and Nicholay Topin. Super-convergence: Very fast training of neural
networks using large learning rates. arXiv preprint arXiv:1708.07120, 2017.

[116] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[117] Nitish Srivastava et al. Dropout: a simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[118] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. Lstm neural networks for
language modeling. In Thirteenth annual conference of the international speech
communication association, 2012.

[119] Rogier C. van Dalen, Kate M. Knill, and Mark J. F. Gales. Automatically Grading
Learners’ English Using a Gaussian Process. In Proc. ISCA Workshop on Speech and
Language Technology for Education (SLaTE), 2015.

[120] Rogier C. van Dalen, Kate M. Knill, Pirros Tsiakoulis, and Mark J. F. Gales. Im-
proving Multiple-Crowd-Sourced Transcriptions Using a Speech Recogniser. In Proc.
International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
2015.

[121] Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves,
et al. Conditional image generation with pixelcnn decoders. In Advances in neural
information processing systems, pages 4790–4798, 2016.

[122] L. van der Maaten and G. Hinton. Visualizing Data using t-SNE. J. MLR, 1:1–49,
2008.

[123] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances
in neural information processing systems, pages 5998–6008, 2017.

[124] N. Verhelst et al. Common European Framework of Reference for Languages: learning,
teaching, assessment. Cambridge University Press, 2009.

[125] Ruben Villegas, Jimei Yang, Yuliang Zou, Sungryull Sohn, Xunyu Lin, and Honglak
Lee. Learning to Generate Long-term Future via Hierarchical Prediction. In Proc.
International Conference on Machine Learning (ICML), 2017.

[126] Yu Wang, MJF Gales, Katherine Mary Knill, K Kyriakopoulos, Andrey Malinin,
RC van Dalen, and M Rashid. Towards automatic assessment of spontaneous spoken
english. Speech Communication, 104:47–56, 2018.

194 References

[127] Max Welling and Yee Whye Teh. Bayesian Learning via Stochastic Gradient Langevin
Dynamics. In Proc. International Conference on Machine Learning (ICML), 2011.

[128] S. M. Witt. Use of speech recognition in computer-assisted language learning. PhD
thesis, University of Cambridge, 1999.

[129] S. M. Witt and S. J. Young. Phone-level pronunciation scoring and assessment for
interactive language learning. Speech Communication, 30(2):95–108, 2000.

[130] Tzu-Tsung Wong. Generalized dirichlet distribution in bayesian analysis. Applied
Mathematics and Computation, 97(2-3):165–181, 1998.

[131] Shasha Xie, Keelan Evanini, and Klaus Zechner. Exploring Content Features for
Automated Speech Scoring. In Proc. Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies
(NAACL-HLT), 2012.

[132] Helen Yannakoudakis. Automated assessment of English-learner writing. Technical
Report UCAM-CL-TR-842, University of Cambridge Computer Laboratory, 2013.

[133] Su-Youn Yoon and Shasha Xie. Similarity-Based Non-Scorable Response Detection
for Automated Speech Scoring. In Proc. Ninth Workshop on Innovative Use of NLP
for Building Educational Applications, 2014.

[134] Su-Youn Yoon, Chong Min Lee, Ikkyu Choi, Xinhao Wang, Matthew Mulholland,
and Keelan Evanini. Off-topic spoken response detection with word embeddings. In
INTERSPEECH, pages 2754–2758, 2017.

[135] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. LSUN: construc-
tion of a large-scale image dataset using deep learning with humans in the loop, 2015.
URL http://arxiv.org/abs/1506.03365. arXiv:1506.03365.

[136] Z. Yu, V. Ramanarayanan, D. Suendermann-Oeft, X. Wang, K. Zechner, L. Chen,
J. Tao, A. Ivanou, and Y. Qian. Using bidirectional LSTM recurrent neural networks to
learn high-level abstractions of sequential features for automated scoring of non-native
spontaneous speech. In Proc. Automatic Speech Recognition and Understanding
Workshop (ASRU), pages 338–345, Dec 2015. doi: 10.1109/ASRU.2015.7404814.

[137] Klaus Zechner et al. Automatic scoring of non-native spontaneous speech in tests of
spoken English. Speech Communication, 51(10):883–895, 2009.

[138] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

[139] Qingyu Zhou, Nan Yang, Furu Wei, Shaohan Huang, Ming Zhou, and Tiejun Zhao.
Neural document summarization by jointly learning to score and select sentences.
In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 654–663, 2018.

http://arxiv.org/abs/1506.03365

Appendix A

Derivations of Uncertainty Measures

The current appendix details the derivation of measures of uncertainty introduced in chapter 4.
Section A.1 describes derivations of measures of uncertainty for Prior Networks which
parameterize the Dirichlet distribution, while section A.2 describes derivations of measures of
uncertainty for Prior Networks which parameterize the Normal-Inverse-Wishart distribution.

A.1 Dirichlet Prior Networks

The current section details the derivation of differential entropy, mutual information and
expected pairwise KL-divergence for a Prior Network which parameterizes the Dirichlet
distribution:

p(π|x∗; θ̂) = Dir(π; α̂)

α̂ = f(x∗; θ̂)
(A.1)

where p(π; α̂) is a prior distribution over categorical distributions. The Dirichlet distribution
is defined as:

Dir(π;α) = C(α)
K∏
c=1

παc−1
c , αc > 0

C(α) =
Γ(α0)∏K
c=1 Γ(αc)

, α0 =
K∑
c=1

αc

(A.2)

where Γ(·) is the Gamma function.

196 Derivations of Uncertainty Measures

A.1.1 Differential Entropy

The differential entropy of the Dirichlet distribution can be derived as follows:

H[p(π|x∗; θ̂)] = − Ep(π|x;θ̂)[ln(p(π|x; θ̂))]

=
K∑
c=1

ln Γ(α̂c)− ln Γ(α̂0)−
K∑
c=1

(α̂c − 1)Ep(π|x;θ̂)[lnπc]

=
K∑
c=1

ln Γ(α̂c)− ln Γ(α̂0)−
K∑
c=1

(α̂c − 1) ·
(
ψ(α̂c)− ψ(α̂0)

) (A.3)

where ψ is the digamma function and Ep(π|α̂)[ln(πc)] = ψ(α̂c)− ψ(α̂0) is a standard result.

A.1.2 Mutual Information

The mutual information between the labels y and the categorical π for a Dirichlet distribution
can be calculated as follows, using the fact that mutual information is the difference of the
entropy of the expected distribution and the expected entropy of the distribution.

I[y,π|x∗, θ̂]︸ ︷︷ ︸
Knowledge Uncertainty

= H[Ep(π|x∗,θ̂)[P(y|π]]︸ ︷︷ ︸
Total Uncertainty

− Ep(π|x∗,θ̂)[H[P(y|π)]]︸ ︷︷ ︸
Expected Data Uncertainty

=H[P(y|x∗, θ̂)] +
K∑
c=1

Ep(π|x∗,θ̂)[πc lnπc]

= −
K∑
c=1

α̂c

α̂0

(
ln
α̂c

α̂0

− ψ(α̂c + 1) + ψ(α̂0 + 1)
)

(A.4)

The second term in this derivation is a non-standard result. The expected entropy of the
distribution can be calculated in the following way:

Ep(π|x∗,θ̂)[πc ln πc] =
Γ(α̂0)∏K
c=1 Γ(α̂c)

∫
SK

πc ln πc

K∏
c=1

πα̂c−1
c dπ

=
α̂c

α̂0

Γ(α̂0 + 1)

Γ(α̂c + 1)
∏K

c′=1,̸=c Γ(α̂c′)

∫
SK

πα̂c
c lnπc

K∏
c′=1,̸=c

π
α̂c′−1
c′ dπ

=
α̂c

α̂0

(
ψ(α̂c + 1)− ψ(α̂0 + 1)

)
(A.5)

Here the expectation is calculated by noting that the standard result of the expectation of
lnπc with respect to a Dirichlet distribution can be used if the extra factor πc is accounted for

A.2 Normal-inverse-Wishart Prior Networks 197

by adding 1 to the associated concentration parameter α̂c and multiplying by α̂c

α̂0
in order to

have the correct normalizing constant.

A.1.3 Expected Pairwise KL-divergence

Similarly, the Expected Pairwise KL-divergence can also be analytically calculated for the
Dirichlet distribution using the following derivation:

K[p(π|x∗; θ̂)] = Ep(π(1)|x∗;θ̂),p(π(2)|x∗;θ̂)

[
KL[P(y|π(1))||P(y|π(2))]

]
= −

K∑
c=1

Ep(π(1)|x∗;θ̂)[P(ωc|π(1))]Ep(π(2)|x∗;θ̂)[ln P(ωc|π(2))]

− Ep(π(1)|x∗;θ̂)

[
H[P(y|π(1))]

]
=

K∑
c=1

Ep(π|x∗;θ̂)[πc ln πc]−
K∑
c=1

Ep(π|x∗;θ̂)[πc]Ep(π|x∗;θ̂)[lnπc]

(A.6)

The last step is valid only if p(π(1)|x∗; θ̂) = p(π(2)|x∗; θ̂) = p(π|x∗; θ̂), which repre-
sents independent draws of categorical from the Dirichlet. This expression then leads to a
particularly elegant solution:

K[p(π|x∗; θ̂)] =
K∑
c=1

α̂c

α̂0

(
ψ(α̂c + 1)− ψ(α̂0 + 1)

)
−

K∑
c=1

α̂c

α̂0

(
ψ(α̂c)− ψ(α̂0)

)
=
K − 1

α̂0

(A.7)

Thus, the expected pairwise KL-divergence is inversely proportional to the concentration of
the Dirichlet and is maximized when the concentration α̂0 tends to 0.

A.2 Normal-inverse-Wishart Prior Networks

The current section details the derivation of differential entropy, mutual information and
expected pairwise KL-divergence for regression Prior Networks which parameterizes the
Normal-inverse Wishart distribution:

p(µ,Σ|x∗; θ̂) = NW−1(µ,Σ; m̂, Ŝ, κ̂, ν̂)

{m̂, Ŝ, κ̂, ν̂} = f(x∗; θ̂), κ̂ > 0, ν̂ > K − 1
(A.8)

198 Derivations of Uncertainty Measures

where m and S are the prior mean and the positive-definite prior scatter matrix, while
κ and ν are the strengths of belief in each prior, respectively. The parameters κ and ν

are conceptually similar to precision of the Dirichlet distribution α0. The Normal-inverse-
Wishart is a compound distribution which decomposes into a product of a conditional normal
distribution over the mean and an inverse-Wishart distribution over the covariance:

NW−1(µ,Σ;m,S, κ, ν) = N (µ;m,
1

κ
Σ) · W−1(Σ;S, ν) (A.9)

The inverse-Wishart distribution W−1 is a distribution over positive-definite symmetric
matrices Σ of size K ×K defined as follows:

W−1(Σ;S, ν) =
|S| ν2

2
νK
2 ΓK(

ν
2
)
|Σ|

−(ν+K+1)
2 e−

1
2
tr(SΣ−1), ν ≥ K − 1 (A.10)

where ΓK(·) is the multivariate gamma function and K is the dimensionality of y.
The derivation of measures of uncertainty in this appendix rely heavily on results from

[46], specifically propositions 1-6, which are used to obtain closed for expression of expecta-
tions of logs and traces of covariance matrices.

A.2.1 Differential entropy of NW−1 Predictive Posterior

As discussed in section 4.3, the predictive posterior of a Prior Network which parameterizes
a Normal-inverse-Wishart distribution is a multivariate students T distribution:

Ep(µ,Σ)[p(y|µ,Σ)] = St(y|m,
κ+ 1

κ(ν −K + 1)
S, ν −K + 1) (A.11)

The differential entropy of a standard multivariate student’s T distribution with an identity
scatter matrix Σ = I is given by:

H[St(x|µ, I, ν)] = − ln
Γ(ν+K

2
)

Γ(ν
2
)(νπ)

K
2

+ (
ν +K

2
) ·
(
ψ(
ν +K

2
)− ψ(ν

2
)
)

(A.12)

which is a result obtained from [7]. Using the property of differential entropy [23], that if
x ∼ p(x) and y = µ+Ax, then:

H[p(y)] =H[p(x)] + ln |A| (A.13)

A.2 Normal-inverse-Wishart Prior Networks 199

we can show that the differential entropy of a standard general multivariate student’s T
distribution is given by:

H[St(x|µ,Σ, ν)] = 1

2
ln |Σ| − ln

Γ(ν+K
2

)

Γ(ν
2
)(νπ)

K
2

+ (
ν +K

2
) ·
(
ψ(
ν +K

2
)− ψ(ν

2
)
)

(A.14)

Using this expression, we can show that the differential entropy of the predictive posterior of
a Normal-inverse-Wishart Prior Network is given by:

H
[
Ep(µ,Σ)[p(y|µ,Σ)]

]
=H

[
St(y|m,

κ+ 1

κ(ν −K + 1)
S, ν −K + 1)

]
= − ln

Γ(ν+1
2
)

Γ(ν−K+1
2

)
(
(ν −K + 1)π

)K
2

+ (
ν + 1

2
)
(
ψ(
ν + 1

2
)− ψ(ν −K + 1

2
)
)

+
1

2
ln |S|+ K

2
ln

κ+ 1

κ(ν −K + 1)

(A.15)

A.2.2 Differential entropy of Normal-inverse-Wishart distribution

The differential entropy of the Normal-inverse-Wishart distribution can be derived by sepa-
rarely considering the differential entopy of the inverse-Wishart distributionW−1(Σ) and
the expected differential entropy of the Normal distribution N (µ|Σ):

H[NW−1(µ,Σ)] = EW−1(Σ)

[
H[N (µ|Σ)]

]
+H

[
W−1(Σ)

]
(A.16)

The result for the differential entropy of the inverse-Wishart distribution is quoted from [46]:

H
[
W−1(Σ)

]
= lnΓK(

ν

2
) +

νK

2
+
K + 1

2
ln
∣∣∣S
2

∣∣∣
− ν +K + 1

2

K∑
c=1

ψ
(ν −K + c

2

) (A.17)

200 Derivations of Uncertainty Measures

The expected differential entropy of N (µ|Σ) is obtained by applying proposition 3 from
[46]:

EW−1(Σ)

[
H[N (µ|Σ)]

]
= EW−1(Σ)

[
H
[
N
(
µ|m,Σ

1

κ

)]]
=

1

2
EW−1(Σ)

[
ln |Σ|+K +K ln

2π

κ

]
=

1

2

(
ln |S

2
| −

K∑
c=1

ψ(
ν −K + c

2
) +K +K ln

2π

κ

) (A.18)

Thus, the differential entropy of the Normal-inverse-Wishart distribution is given by the
following expression:

H[NW−1(µ,Σ)] = ln ΓK(
ν

2
) +

(ν + 1)K

2
+
K + 2

2
ln |S

2
|

− ν +K + 2

2

K∑
c=1

ψ
(ν −K + c

2

)
+K ln

π

κ

(A.19)

A.2.3 Mutual Information Derivations

The mutual information between the target y and the parameters of the output distribution
{µ,Σ}, the prior of which is given by the Normal-inverse-Wishart distribution can be
obtained by considering that the mutual information is the sum of the differential entropy of
the predictive posterior and the expected differential entropy of the output:

I[y, {µ,Σ}] =H
[
ENW−1(µ,Σ)[p(y|µ,Σ)]

]
− ENW−1(µ,Σ)

[
H[p(y|µ,Σ)]

]
(A.20)

The closed form expression for the first term was previously derived and is given by equa-
tion A.15. The closed form solution for the second term is obtained as follows by applying
proposition 3 from [46]:

ENW−1(µ,Σ)[H[p(y|µ,Σ)]] =
1

2
EW−1(Σ)

[
K +K ln 2π + ln |Σ|

]
=

1

2

(
K +K ln 2π + ln

∣∣∣S
2

∣∣∣− K∑
c=1

ψ
(ν −K + c

2

)) (A.21)

A.2 Normal-inverse-Wishart Prior Networks 201

Thus, the closed form expression for the mutual information is:

I[y, {µ,Σ}] = ln Γ
(ν −K + 1

2

)
− ln Γ

(ν + 1

2

)
+ (

ν + 1

2
)
(
ψ(
ν + 1

2
)− ψ(ν −K + 1

2
)
)

+
K

2

(
ln
(κ+ 1

κ

)
− 1
)
+

1

2

K∑
c=1

ψ
(ν −K + c

2

) (A.22)

A.2.4 Expected Pairwise KL-divergence

Finally, expected pairwise KL-divergence between independently drawn multivariate normal
distributions drawn from a Norma-inverse-Wishart Prior is provided below, using proposition
3, 5 and 6 from [46]:

K
[
NW−1(µ,Σ)

]
= Ep(µ0,Σ0)p(µ1,Σ1)

[
KL
[
p(y|µ0,Σ0)||p(y|µ1,Σ1)

]]
=

1

2
Ep(µ0,Σ0)p(µ1,Σ1)

[
tr(Σ−1

1 Σ0)−K + ln |Σ1|

− ln |Σ0|tr(Σ−1
1 (µ1 − µ0)(µ1 − µ0)

T)
]

=
1

2

(νK

ν −K − 1
−K

)
+

1

2κ

(νK

ν −K − 1
+K

)
(A.23)

where it is necessary to point out that p(µ0,Σ0) = p(µ1,Σ1) = NW−1(µ,Σ) . This is an
elegant solution, similarly to the derivation for the expected pairwise KL-divergence between
independent drawn from the Dirichlet distribution derived in the previous section.

Appendix B

Symmetries in Forward and Reverse
KL-divergences

In this appendix we explore symmetric properties of KL-divergences between conjugate
priors, where forward KL-divergence is defined as KL[p||q] and reverse KL-divergence is
KL[q||p], where p is the true prior distribution and q is the model. In this appendix it is
shown that a forward KL-divergence between conjugate priors implies a reverse cross-
entropy between distributions which the priors are over, while a reverse KL-divergence
between conjugate priors implies a forward cross entropy between distributions which the
priors are over. These properties are demonstrated for the Dirichlet and Normal-inverse-
Wishart distributions. It is not known to the author whether the described property is known
as a general property of α-divergences between members of the exponential family of
distributions.

B.1 Dirichlet Distribution

In this section we analyze properties of forward and reverse KL-divergences between Dirich-
let distributions, which is a conjugate prior to the categorical distribution and a member of
the exponential family of distributions.

The Dirichlet distribution is defined as:

p(π;α) = C(α)
K∏
c=1

παc−1
c , αc > 0

C(α) =
Γ(α0)∏K
c=1 Γ(αc)

, α0 =
K∑
c=1

αc

(B.1)

204 Symmetries in Forward and Reverse KL-divergences

The mean and mode of the Dirichlet are given by:

Mean→ π̂c =
αc

α0

Mode→ π̃c =
αc − 1

α0 −K

(B.2)

where Γ is the gamma function. The KL-divergence between a target Dirichlet p(π|β) and
an approximating Dirichlet p(π|α) can be decomposed into the negative differential entropy
of the target and the cross entropy between the target and the approximation:

KL[p(π|β)||p(π|α)] = −Ep(π|β)
[
ln p(π|α)

]︸ ︷︷ ︸
Cross−Entropy

−H
[
p(π|β)

]︸ ︷︷ ︸
Diff. Entropy

(B.3)

Let’s consider only the cross-entropy term and obtain a closed-form expression for it:

LCE(β,α) = − ln C(α)−
K∑
c=1

(αc − 1)Ep(π|β)[ln πc]

= − ln C(α)− (α0 −K)
K∑
c=1

αc − 1

α0 −K
·
(
ψ(βc)− ψ(β0)

) (B.4)

where ψ is the digamma function. We can consider the following series approximation to the
digamma function:

ψ(x) = ln x− 1

2x
+O(x2)

≈ lnx− 1

2x

(B.5)

Using this approximation, we can show that the cross entropy between Dirichlet distributions
contains within it the reverse cross entropy between the mode of p(π|α) and the mean of
p(π|β):

LCE(β,α) =
K∑
c=1

(αc − 1) ·
(β0 − βc
2βcβ0

)
− ln C(α)

− (α0 −K)
K∑
c=1

αc − 1

α0 −K
· ln βc

β0

=
K∑
c=1

(αc − 1) ·
(β0 − βc
2βcβ0

)
− ln C(α)

+ (α0 −K) · LCE(π̃(α), π̂(β))

(B.6)

B.2 Normal-inverse-Wishart Distribution 205

Similarly, we can show that the reverse entropy between Dirichlet distributions contains
within it the forward cross entropy between the mode of p(π|β) and the mean of p(π|α):

LCE(α,β) =
∑
c=1

(βc − 1) ·
(α0 − αc

2αcα0

)
− ln C(β)

− (β0 −K) · LCE(π̃(β), π̂(α))

(B.7)

This is a curious anti-symmetric property that the forward KL-divergence between
conjugate priors to a distribution implies a reverse cross entropy between those distributions,
and vice-versa.

B.2 Normal-inverse-Wishart Distribution

Having explored the properties of forward and reverse KL-divergences between Dirichlet
distribution, we now explore the same for Normal-inverse-Wishart distributions. The Normal-
inverse-Wishart is a compound distribution which decomposes into a product of a conditional
normal distribution over the mean and an inverse-Wishart distribution over the covariance:

NW−1(µ,Σ;m,S, κ, ν) = N (µ;m,
1

κ
Σ) · W−1(Σ;S, ν)

θ = {m,S, κ, ν}
(B.8)

The cross-entropy between a target normal distribution (N)1 and a model N0 is:

LCE(N1,N0) =
1

2

[
tr
(
Σ−1

0

(
Σ1 + (µ1 − µ0)(µ1 − µ0)

T
)
+K ln 2πe+ ln |Σ0|

]
(B.9)

while the reverse cross-entropy is given by:

LCE(N0,N1) =
1

2

[
tr
(
Σ−1

1

(
Σ0 + (µ1 − µ0)(µ1 − µ0)

T
)
+K ln 2πe+ ln |Σ1|

]
(B.10)

The KL-divergence between Normal-inverse-Wishart distribution can be decomposed as
follows:

LKL(NW−1
1 ,NW−1

0) = −Ep(µ,Σ;θ1)[ln p(µ,Σ;θ0)]︸ ︷︷ ︸
Cross Entropy

− H[p(µ,Σ;θ1)]︸ ︷︷ ︸
Differential Entropy

(B.11)

206 Symmetries in Forward and Reverse KL-divergences

As before, let’s focus on the cross-entropy term:

LCE(NW−1
0 ,NW−1

1) = − Ep(µ,Σ|θ1)
[
ln p(µ,Σ;θ0)

]
= Ep(µ,Σ;θ1)

[(ν0 +K + 2)

2
ln |Σ|

+
1

2
tr
(
Σ−1(S0 + κ0(µ−m0)(µ−m0)

T)
)]

+
1

2

(
K ln 2π + ν0K ln 2 + 2 ln ΓK(

ν0
2
)− ν0 ln |S0|

)
=

(ν0 +K + 2)

2

(
ln |S1| −

K∑
c=1

ψ
(ν0 −K + c

2

))
+
Kκ0
2κ1

+
1

2
tr
(
ν1S

−1
1 (S0 + κ0(m1 −m0)(m1 −m0)

T)
)]

+
1

2

(
K ln 2π + ν0K ln 2 + 2 ln ΓK(

ν0
2
)− ν0 ln |S0|

)

(B.12)

We an see that this form is similar to the reverse cross-entropy between normal distributions,
presented in equation B.10. At the same time, the expression for the reverse KL-divergence
between Normal-inverse-Wishart distributions, provided below, is similar to the form of
expression for the forward cross entropy between normal distributions, provdided in equa-
tion B.9.

LCE(NW−1
1 ,NW−1

0) =
(ν1 +K + 2)

2

(
ln |S0| −

K∑
c=1

ψ
(ν1 −K + c

2

))
+
Kκ1
2κ0

+
1

2
tr
(
ν0S

−1
0 (S1 + κ1(m1 −m0)(m1 −m0)

T)
)]

+
1

2

(
K ln 2π + ν1K ln 2 + 2 ln ΓK(

ν1
2
)− ν1 ln |S0|

)
(B.13)

Appendix C

SVHN Out-of-Domain Detection

In section 5.4 is was established that Prior Networks outperform the baseline and display
the desired properties on the MNIST and CIFAR-10 datasets. Here we consider out-of-
distribution input detection for models trained on the SVHN dataset. In the following
experiments, the 10,000 images from the SVHN test set are used as in-domain data and the
test sets of the CIFAR-100, LSUN and TinyImageNet datasets are out as out-of-distribution
datasets. In all experiments there are equal amount of out-of-distribution and in-domain
images.

OOD Data Model
Total Uncertainty Knowledge Uncertainty

Max.P Ent. M.I. EPKL D.Ent.

CIFAR100

DNN 91.7 ±1.1 93.1 ±0.7 - - -
MCDP 92.5 ±0.8 92.8 ±0.9 92.2 ±0.9 92.4 ±0.9 -
ENSM 97.1 ± NA 97.6 ± NA 97.7 ± NA 97.6 ± NA -
PN-RKL 99.7 ±0.1 99.8 ±0.1 99.8 ±0.1 99.8 ±0.1 99.8 ±0.1

LSUN

DNN 88.6 ±2.3 90.9 ±1.8 - - -
MCDP 90.2 ±1.8 90.4 ±1.8 90.0 ±1.9 90.4 ±1.8 -
ENSM 97.7 ± NA 98.1 ± NA 98.5 ± NA 98.7 ± NA -
PN-RKL 100.0 ±0.0 100.0 ±0.0 100.0 ±0.0 100.0 ±0.0 100.0 ±0.0

TIM

DNN 90.7 ±1.6 92.4 ±1.3 - - -
MCDP 91.8 ±1.3 92.1 ±1.4 91.7 ±1.4 92.0 ±1.2 -
ENSM 97.7 ± NA 98.1 ± NA 98.4 ± NA 98.5 ± NA -
PN-RKL 100.0 ±0.0 100.0 ±0.0 100.0 ±0.0 100.0 ±0.0 100.0 ±0.0

Table C.1 SVHN out-of-domain detection results in terms of mean % AUROC ±2σ across
10 models. Only a single set of results is obtained using explicit ensemble ENSM.

208 SVHN Out-of-Domain Detection

The results shown in table C.1 shows that in all experiments Prior Networks consistently
achieves highest performance and are able to separate out-of-distribution images from the in-
domain images. The second best model, is an explicit ensemble of DNNs, with Monte-Carlo
Dropout ensembles and single DNNs yielding the worst performance. As SVHN is, overall,
a low data uncertainty dataset, all measures of uncertainty yield similar performance, as
expected. The histogram of uncertainty shown in figure C.1 show that the uncertainty which
Prior Networks assign out-of-distribution data is far higher than for in-domain data, unlike
the other models, which are yield low estimates of uncertainty for certain in-domain images.
These results show that Prior Networks, given appropriate out-of-distribution training data
and out-of-distribution test data which does not overlap with the in-domain region, are
capable of perfectly separating out in-domain and out-of-distribution images.

(a) Explicit Ensemble (b) Prior Network

Figure C.1 Histogram of mutual information for in-domain (SVHN test set) and out-of-
domain (TinyImageNet test set) images derived from explicit ensemble (ENSM) and Prior
Network (PN-RKL). Predictions of 10 PN-RKL models trained from different random
initializations are concatenated together.

	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Thesis Structure

	2 Deep Learning
	2.1 Deep Neural Networks
	2.1.1 Feed-Forward Neural Networks
	2.1.2 Recurrent Neural Networks
	2.1.3 Attention Mechanisms
	2.1.4 Parameterizing Distributions using Neural Networks

	2.2 Training
	2.2.1 Training models for Classification
	2.2.2 Training models for Regression
	2.2.3 Regularization

	2.3 Optimization
	2.3.1 Gradient Descent Optimization
	2.3.2 Learning Rate Schedules
	2.3.3 Initialization

	2.4 Chapter Summary

	3 Predictive Uncertainty Estimation
	3.1 Sources of Uncertainty
	3.1.1 Uncertainty for Classification
	3.1.2 Uncertainty for Regression

	3.2 Estimating Data Uncertainty
	3.2.1 Estimating Data Uncertainty for Classification
	3.2.2 Estimating Data Uncertainty for Regression

	3.3 Estimating Knowledge Uncertainty via Single Models
	3.3.1 Single Model Approaches for Classification
	3.3.2 Single Model Approaches for Regression

	3.4 Estimating Knowledge Uncertainty via Ensembles
	3.4.1 Ensemble Approaches for Classification
	3.4.2 Ensemble Approaches for Regression

	3.5 Limits to Modelling Knowledge Uncertainty
	3.6 Chapter Summary

	4 Prior Networks
	4.1 General Attributes of Prior Networks
	4.2 Prior Networks for Classification
	4.2.1 Parameterization and Uncertainty Measures
	4.2.2 Training Criteria
	4.2.3 Experiments on Artificial Data

	4.3 Prior Networks for Regression
	4.3.1 Parameterization and Uncertainty Measures
	4.3.2 Training Criteria

	4.4 Chapter Summary

	5 Experimental Evaluation of Prior Networks
	5.1 Datasets and Experimental Setup
	5.1.1 Model architecture and training
	5.1.2 Out-of-distribution training data

	5.2 Evaluation Metrics
	5.3 Misclassification Detection
	5.3.1 Classification Performance
	5.3.2 Assessing misclassification detection via AUPR
	5.3.3 Assessing misclassification detection via rejection curves

	5.4 Out-of-Distribution sample Detection
	5.4.1 MNIST out-of-distribution input detection
	5.4.2 CIFAR-10 out-of-distribution input detection

	5.5 Chapter Summary

	6 Spoken Language Proficiency Assessment
	6.1 Spoken Language Proficiency
	6.2 Automatic Assessment
	6.3 Chapter Summary

	7 Deep Learning for Automatic Grading
	7.1 Approaches to Automatic Grading
	7.1.1 Gaussian Processes
	7.1.2 Density Networks

	7.2 Experimental Evaluation
	7.2.1 Assessment Criteria
	7.2.2 Datasets
	7.2.3 Model Details
	7.2.4 Evaluation of Predictive Performance
	7.2.5 Evaluation of Rejection Performance
	7.2.6 Evaluation of Calibration Performance

	7.3 Chapter Summary

	8 Deep Learning for Prompt-Response Relevance Assessment
	8.1 Prompt-Response Relevance Assessment
	8.2 Indirect Prompt-Response Relevance Assessment
	8.2.1 Vector distances based Approaches
	8.2.2 Prompt-topic adapted RNN Language Model

	8.3 Direct Prompt-Response Relevance Assessment
	8.3.1 Attention-based Discriminative Models
	8.3.2 Hierarchical Attention-based Topic Model

	8.4 Experiments: Indirect Relevance Assessment
	8.4.1 Description of training and evaluation datasets
	8.4.2 Model Construction
	8.4.3 Prompt Classification
	8.4.4 Prompt-Response Relevance Assessment

	8.5 Experiments: Direct Relevance Assessment
	8.5.1 Description of training and evaluation datasets
	8.5.2 Training and Evaluation Data Construction
	8.5.3 Model and Training Hyper-parameters
	8.5.4 Assessment Criteria
	8.5.5 Performance on Matched Data
	8.5.6 Performance on Mismatched Data
	8.5.7 Uncertainty for Direct Relevance Assessment

	8.6 Chapter Summary

	9 Conclusions
	9.1 Review of Contributions
	9.2 Future Work

	References
	Appendix A Derivations of Uncertainty Measures
	A.1 Dirichlet Prior Networks
	A.1.1 Differential Entropy
	A.1.2 Mutual Information
	A.1.3 Expected Pairwise KL-divergence

	A.2 Normal-inverse-Wishart Prior Networks
	A.2.1 Differential entropy of NW-1 Predictive Posterior
	A.2.2 Differential entropy of Normal-inverse-Wishart distribution
	A.2.3 Mutual Information Derivations
	A.2.4 Expected Pairwise KL-divergence

	Appendix B Symmetries in Forward and Reverse KL-divergences
	B.1 Dirichlet Distribution
	B.2 Normal-inverse-Wishart Distribution

	Appendix C SVHN Out-of-Domain Detection

