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Abstract
In continuous speech recognition, observations are sequential data with variable length,
and labels are sequence of words (or sub-words) possibly having unbounded number of
classes. It is thus impractical to robustly construct models for thewholeword sequence. To
address this problem, rather than treating the whole sentence as an atomic unit, structure
needs to be introduced into classiûers to break the sentence label into words or sub-word
units. hese are usually referred to as structured discriminative models, where the con-
ditional distribution of the classes given the observations is directly modelled. Compared
with generativemodels, discriminativemodels have the potential to improve performance
as awide range of features from the observation andword sequences can be used. Moreover,
in application of generativemodels, such as the hidden Markovmodel (HMM), the frame-
level Markov assumption is o�en assumed. However, discriminativemodels aremuch eas-
ier to deal with segment level modelling, where the frame level Markov assumption is re-
laxed. hen long-span dependencies among observations are allowed to be captured.

One major contribution of this thesis is the study of the features based on generative
models. Since speech observations are sequential data with variable length, it is not ob-
vious how to extract features from these sequences. Sequential kernels are o�en used to
map observations into a space with ûxed dimensions. In this work, generative models are
simply used to provide such mapping, where the extracted features have a compact form.
Moreover, the baseline performance of generative models can be retrieved by discrimina-
tivemodels, e.g. when using the features comprised of the likelihoods from HMMs. In the
past few years, deep neural networks (DNNs) have beenwidely used in speech community,
and signiûcant performance gains have been achieved. his thesis thus focuses on the fea-
tures extracted from the DNN-based systems, such as hybrid and tandem. In order tomake
use of the complementary information from diòerent systems, features based on multiple
systems are also studied.

he commonly used discriminativemodels, such as log-linear models, only yield linear
decision boundaries. One solution to this problem is the use of the “kernel trick”. Alter-
natively, the mixture-of-experts framework can be employed. In this framework, multiple
experts are used in classiûcation, that allows an overall non-linear decision boundary. How-
ever, it might be problematic to choose the number of experts. In order to sidestep of the
problem of setting the model complexity, the Bayesian non-parametric framework can be
used. InBayesian non-parametric approaches, rather than specifying themodel complexity
in advance, themodel complexity is part of the posterior inference. When making predic-



tions, the posterior distribution of themodel parameters can be integrated over, eòectively
averaging over models of all possible complexity.

Another major contribution of this thesis is the extension of the structured discrimina-
tive models to Bayesian non-parametrics. he inûnite structured support vector machine
(SVM) is one such example. It is also a structured extension of the inûnite SVM, which
is a mixture-of-experts model using SVMs as experts. Bayesian inference can be viewed
as a particular minimisation criterion. his thesis extends this speciûc criterion to a more
general form. hen alternative criteria can be derived, such as the large margin training
criterion which has good generalisation properties.
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Chapter 1

Introduction

Language is the systemof communication used byhumans [25, 134], and speech is the verbal

means of communicating [4], which is the language used when speaking [25, 134]. he ori-

gins of language and speech are unknown and subject tomuch debate and speculation. Hu-

mans have speculated about the origins of language throughout history. he Biblical story

of the Tower of Babel [129] is one such account; other cultures have diòerent stories of how

language arose [82]. Given the diversity of languages and interest of human-machine inter-

action (HMI) [26], speech recognition is a compelling technology thatmakes eõcient com-

munication between humans (speaking diòerent languages) and machines possible [47].

he majority of automatic speech recognition (ASR) systems use hidden Markov models

(HMMs) as the underlying acousticmodels, and signiûcant improvement can be achieved

by employing discriminative training [7, 100, 130, 140]. Moreover, speech recognition is

a classiûcation task. It would, therefore, be interesting to examine discriminative models

for speech recognition [38, 54, 65, 109, 147, 209, 215], where the conditional distribution

of the word sequence given the observations is directly modelled. In this thesis, a class of

discriminativemodels called structured discriminativemodels will be studied.

In machine learning, one of themain issues that might be encountered is themismatch

between model complexity and the amount of training data available [133, 177]. he tradi-

tional parametricmodel with ûxed and ûnite number of parameters might suòer from the

problemof over-ûtting or under-ûtting [177]. hus a Bayesian non-parametricmodel might

1
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Figure 1.1: A typical automatic speech recognition system.

be a better choice,where theproblemof choosingmodel complexity can be sidestepped [133,

149]. Moreover, as a Bayesianmodel, the problemof over-ûtting can bemitigated [177]. his

motivates the application of Bayesian non-parametric models in speech recognition [196,

197], which will also be studied in this thesis. Before the discussion of discriminativemod-

els and Bayesian non-parametric models for speech recognition, basic speech recognition

systems and how the discriminative models and non-parametric models being applied in

speech recognition will be brie�y introduced in the following sections.

1.1 Speech Recognition Systems

he state-of-the-art speech recognition systems are based on statistical approaches, and a

speech recognition system is normally decomposed into individual parts. he structure of a

typicalASR system is illustrated in Figure 1.1. Given the speech inputs, a sequence ofwords

associatedwith the inputs can be recognised through the recognition system. As illustrated

in Figure 1.1, at the ûrst stage of speech recognition, through front-end processing (or fea-

ture extraction), the speech signal is compressed into a sequence of feature vectors which

are also referred to as observations, denoted by O = {o1, . . . ,oT}. Given the observa-

tions, acoustic model, lexicon and language model, the hypothesised word sequence can

be generated, which is denoted byW . In large vocabulary continuous speech recognition

(LVCSR), the lexicon (also referred to as the dictionary) dictates how the sub-word units

(from which the acoustic models are constructed) are linked together to form individual

words. For example, the word thesis can be broken up as [30]:

thesis = {th iy s ih s}.

2



1.1 Speech Recognition Systems

he language model contains the information about which word sequences are allowable,

and it gives a probability distribution over these word sequences. he acousticmodel rep-

resents the relationship between observations and the sub-word units that make up speech.

For the speech recognition systems based on statistical approaches, given the observa-

tionsO, themost likely word sequence Ŵ can be obtained by using the Bayesian decision

rule [16]:

Ŵ = arg max
W

P (W |O) (1.1)

By using Bayes’ rule, the decision rule described in (1.1) can be further written as follows:

Ŵ = arg max
W

p(O|W )P (W )

p(O)

= arg max
W

p(O|W )P (W ) (1.2)

where p(O) is not a function of the word sequenceW , hence it can be omitted in the deci-

sion rule. he distribution p(O|W ) is given by the acousticmodel. hemajority of speech

recognition systems are based on the HMM acoustic model or its variants, e.g. the hybrid

system where the state likelihoods are given by deep neural networks (DNNs) [85] rather

than Gaussian mixturemodels (GMMs). P (W ) is the probability of the word sequenceW

given by the language model. If the word sequenceW is comprised of {w1, · · · , wI}, the
probability P (W ) can be described as:

P (W ) =
I∏

i=1

P (wi|w1, · · · , wi−1) (1.3)

Due to the vocabulary size being very large in LVCSR, it is infeasible to estimate P (W ) for

every possibleword sequence robustly. O�en theN-gram languagemodel is used, inwhich

the probability of the currentword is assumed to be only dependent on the previousN − 1

words. hen the probability P (W ) in (1.3) can be further written as:

P (W ) =

I∏

i=1

P (wi|wi−N+1, · · · , wi−1) (1.4)

hemost commonly used values forN are 1, 2 and 3. hese settings are called unigram, bi-

gram and trigram languagemodels respectively. Due to data sparsity, normally the smooth-

ing schemes such as discounting, back-oò and deleted interpolation are used [101].

3
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Figure 1.2: he diagram of classiûers based on feature spaces. he region associated with the
dotted rectangle illustrates a state-of-the-art speech recognition system.

1.2 Discriminative Models and Bayesian Non-parametric
Models in Speech Recognition

Speech recognition is theproblemof classifying the sequentialdata, and the input sequences

have various length. Normally, the classiûers, such as support vector machines (SVMs)

[183], cannot directly deal with the features with various length. One solution to this prob-

lem is to use the feature space (or score space) [148] based on generative models, which

maps the input sequences with various lengths to a space with a ûxed dimension, e.g. the

log-likelihood feature space is commonly used [37, 60, 148, 210]. By using the feature space,

discriminative and Bayesian non-parametricmodels (or classiûers) then can be applied in

speech recognition. he diagram of classiûers based on feature spaces is illustrated in Fig-

ure 1.2. In this ûgure, the region associated with the dotted rectangle is a state-of-the-art

speech recogniser. he standard adaptation andmodel compensation schemes can be em-

ployed by the recogniser to generate the compensated feature vectors. hus, one advan-

tage of using this framework is that the features extracted from the compensated models

(HMMs) can be automatically adapted to the target noise/speaker conditions [148]. hen,

at the ûnal stage, classiûers can be trained with these robust features. Another main ad-

vantage is the nature of the feature space based on generative models. Generative models

such asHMMs have underlying conditional independence assumption that,whilst enabling

them to eõciently represent data sequences, does not accurately represent the dependen-

cies in data sequences such as speech. he feature space associatedwith a generativemodel
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1.3 hesis Organisation

does not have the same conditional independence assumption as the original generative

model. his allows more accuratemodelling of the dependencies in the speech data [37].

By using the framework illustrated in Figure 1.2, the classiûers can be trained based on

the feature space generated by the speech recognition system using deep neural networks

(DNNs) [85], e.g. the tandem system [84] where the outputs from a DNN are appended

to each feature vector. In additional to a single system, multiple systems can also be used

in generating the feature vectors for classiûers [38], which will be discussed in detail in

Chapter 3.

1.3 hesis Organisation

his thesis can be split into 3 main parts. Parametric models will be discussed in the ûrst

part which starts from Chapter 2 to 3. In the ûrst part, the commonly used generative and

discriminative models for speech recognition will be introduced. Non-parametric models

will be discussed in the second part, which starts from Chapter 4 to 5. In the second part,

some of the commonly used Bayesian non-parametric models will be introduced, and the

inûnite structured discriminativemodel will be studied. Finally, in the third part (Chapter

6 and 7) the experimental results and conclusions will be discussed. he supplementary

knowledge and further discussions will also be given in the appendices.

One major contribution of this thesis is the study of the features (for structured dis-

criminative models) extracted from the DNN-based systems, such as hybrid and tandem.

In order to make use of the complementary information from diòerent systems, features

based on multiple systems are also studied in this thesis. hese are discussed in Chapter 3.

Another major contribution of this thesis is the extension of the structured discrimina-

tive models to Bayesian non-parametrics, which are discussed in Chapter 5, as well as in

Appendix E and F which givemore details. his thesis has 7 chapters, and a brief chapter-

by-chapter breakdown is given as follows.

Chapter 2 he widely used generativemodels in speech recognition, such as the hidden

Markovmodel (HMM), and various commonly used training criteria in speech recognition

will be introduced. Adaptation and noise robustness will also be brie�y discussed.

5



CHAPTER 1. INTRODUCTION

Chapter 3 he extensively used unstructured and structured discriminative models in

speech recognition, and various training criteria will be introduced. Diòerent forms of the

features for discriminativemodels will also be discussed in this chapter.

Chapter 4 he motivation of research on Bayesian non-parametric models will be pre-

sented, and some of the commonly used Bayesian non-parametricmodelswill be discussed.

Chapter 5 Acriterion-basedperspectiveonBayesian inferencewillbe introduced. Bayesian

inference and largemargin training of the inûnite structured discriminativemodel will be

discussed in detail.

Chapter 6 Diòerent types of data sets, i.e. AURORA2, AURORA 4 and BABEL, and the

corresponding experimental results on these sets will be represented in this chapter.

Chapter 7 Conclusions and possible directions for the future work will be discussed.
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Chapter 2

GenerativeModels

Generativemodels are themost extensivelyused forms of statisticalmodels in speech recog-

nition. As discussed in Chapter 1, in speech recognition generative approaches are based

on the combination of the acoustic and languagemodels, where the posterior distribution

of the word sequenceW = {w1, . . . , wI} given the observations O = {o1, . . . ,oT} can
be expressed as the following form (according to Bayes’ rule):

P (W |O) =
p(O|W )P (W )

p(O)
(2.1)

where the probability p(O) is class-independent, p(O|W ) is the acousticmodel andP (W )

is the languagemodel. hemost likely word sequence Ŵ can be yielded bymaximising the

class posterior distribution (2.1). In speech recognition hiddenMarkovmodels (HMMs) are

themost popular and successful statistical acousticmodels,whichwill be introduced in the

following sections. Moreover, the commonly used generativemodels in speech recognition

and various training criteria will be discussed.

2.1 Gaussian MixtureModels

heGaussian distribution is one ofmost commonly used distribution, since it has a variety

of properties, e.g. the central limit theorem [13] states that the average of the independent

and identically distributed (i.i.d.) random variables converges to a Gaussian distribution

7
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π zt

Θ ot
T

Figure 2.1: he graphical model of a Gaussian mixture model. In the graphical model, the
plate represents replication. he circle denotes variable, and the gray one denotes observation.
he square represents ûxed parameters. his type of representation of graphical models is used
throughout this thesis.

as the number of variables goes inûnite. However, the Gaussian distribution suòers from

signiûcant limitations when it comes to modelling real data sets [16]. hen, a mixture of

Gaussian distribution becomes a better choice, and this type of model is referred to as the

Gaussian mixture model (GMM). By using a suõcient number of Gaussians, any contin-

uous distribution can be approximated with arbitrary accuracy [16, 89]. hus, in speech

recognition the GMM is widely used in modelling the density of observations. Given the

number of componentsM , the probability density function of the GMM can be expressed

as follows [16]:

p(o|π,Θ) =

M∑

m=1

πmN (o;θm) (2.2)

where o is the observation variable, and π = {π1, . . . , πM} are the mixture weights or

mixture coeõcients, that satisfy
∑

m πm = 1 [16]. Θ = {θ1, . . . ,θM} are the parameters of
the Gaussian components, and for themth component, the parameters θm = {µm,Σm}
are themean and covariance of the Gaussian distribution.

By introducing the indicator variable zt (that denotes which component the tth ob-

servation ot is associated with), the generative process of the GMM can be described as

follows:

zt ∼ Categorical(π) (2.3)

ot ∼ N (o;θzt) (2.4)

whereCategorical(·) is the categorical distribution,which is the generalisation of theBernoulli

distribution with multiple possible outcomes. he corresponding graphical model of the

GMM is illustrated in Figure 2.1.
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Figure 2.2:he topology of a hidden Markov model with 3 emitting states.

2.2 Hidden MarkovModels

he Gaussian mixturemodel (GMM) was discussed in the previous section. Although real

data sets can be well modelled by theGMM, these data are assumed to be independent and

identically distributed (i.i.d.). In speech recognition the inputs are sequential data where

the sequential aspects must be considered such as correlations between observations. his

leads to the consideration of the hidden Markov model (HMM) [146], which is the most

popular and successful statistical model in speech recognition, given its ability tomodelling

sequential data. As described in equation (1.2), the most likely word sequence given the

observations can be determined by the HMM (acoustic model) in conjunction with the

language model. he HMM is a natural extension of the Markov chain (where outputs

of the state are deterministic) by using a probabilistic function associated with each state

[89]. Figure 2.2 illustrates a HMM with 3 emitting states. In this ûgure, states 2, 3 and 4

are emitting states, where observations are generated by these states; states 1 and 5 are non-

emitting states. As illustrated in Figure 2.2, the observations are O = {o1, · · · ,oT}, and
the corresponding state sequence associated with these observations can be described as

S = {s1, · · · , sT}, where these states might have repeated values. Assume the number of

unique states is L, then each st denotes one of the L states. he transition probability from

state i to state j is denoted as aij , and the probability (or distribution) of an observation ot
generated by state j is described as bj(ot). he parameter set of the HMM is denoted as

λ = {c,A,B}, and the deûnitions of these parameters are given as follows:

• c – Initial state distribution

9
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Ai s0 s1 s2 sT

πi z1 z2 zT

Θi o1 o2 oT

L

Figure 2.3: he graphical model of the HMM with GMM state output distributions. In this
ûgure, Ai denotes the ith row of the transition matrixA. πi andΘi are themixture weights
and component parameters of the GMM associated with state i. zt is the indicator variable
that denotes which Gaussian component the tth observation ot is associated with.

he initial state distribution (of state i) can be described as:

ci = P (s0 = i), where 1 ≤ i ≤ L (2.5)

Since c = {c1, . . . , cL} is a distribution, the following property must be satisûed:

L∑

i=1

ci = 1 and ci ≥ 0 (2.6)

where L is the number of the unique states. As illustrated in Figure (2.2), the non-

emitting states are introduced, hence the probability of the initial state that denotes

state 1 is always 1, namely P (s0 = 1) = 1.

• A – State transition probabilitymatrix

Each element of the state transition probability matrixA is deûned as:

aij = P (st+1 = j|st = i), where
L∑

j=1

aij = 1 and aij ≥ 0 (2.7)

where aij is the probability of taking a transition from state i to state j. In speech

recognition, since the HMMs are normally constrained to be le�-to-right, the tran-

sition matrix is not necessarily full.

• B – State output probability
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Figure 2.4:he topology of the DNN-HMM.

Each emitting state j is associated with one output probability distribution bj(·).
Given the observation ot and the corresponding state st = j, the output distribu-

tion can be described as:

bj(ot) = p(ot|st = j) (2.8)

Two forms of the state output distribution are usually adopted in state-of-the-art

speech recognition systems. One form of the distribution is given by the GMM de-

ûned in equation (2.2), and this type of model is usually referred to as the GMM-

HMM. Figure 2.3 illustrates the graphical model of the GMM-HMM. Alternatively,

the state output distribution bj(ot) can be the likelihood derived from the deep neu-

ral networks (DNNs) [85], and the resulting framework is knows as the DNN-HMM

hybrid system [23, 158]. he topology of the DNN-HMM hybrid system is illustrated

in Figure 2.4. In the hybrid system, theDNN aims tomodel the posterior distribution

of each state P (st = j|ot) directly. Given the state posterior probabilities, the state

output distribution for each state can be obtained by applying Bayes’ rule:

bj(ot) = p(ot|st = j) =
P (st = j|ot)p(ot)

P (st = j)
(2.9)

11
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where P (st = j|ot) is the state posterior probability estimated from the DNN.

P (st = j) is the prior probability of state j,which can be estimated from the training

set. It is worth noting that p(ot) can be omitted as it does not depend on a particular

state.

In speech recognition, system combination approaches are of growing interest, and

one of the recently proposed approach is joint decoding [191], inwhich the systems to

be combined share the sameHMM topology, and the frame level acoustic likelihoods

from diòerent systems are combined. In other words, the acoustic models of the

joint decoding system can be viewed as HMMs where the state output score1 is an

combination of the state output probabilities from diòerent HMMs (with the same

topology). Normally, the logarithms of these probabilities are used. Assume there

areD diòerent systems to be combined, then the state output log score for the joint

decoding system can be described as:

log
(
bj(ot)

)
=

D∑

d=1

ηd log
(
pd(ot|st = j)

)
(2.10)

where the scalar ηd is the corresponding combination weight, and pd(ot|st = j)

is the sate output probability given by the dth system. Normally, these sate output

probabilities can be given by the GMM or DNN as described in (2.8) and (2.9). In

work [191] combination of two forms of DNN based systems were investigated, i.e.

the tandem (where the inputs of the GMM-HMM is appended with features from

DNN) and hybrid systems [84, 85], and the combinationweights used in [191] are set

empirically.

he basic theory for HMMs has been presented in the previous paragraphs. In speech

recognition, the application ofHMMs is dependent on two assumptions [57, 201]:

• Quasi-stationary: Speech signalsmay be split into segments corresponding to states,

in which the speech waveform may be considered to be stationary. he transition

between these states is assumed to be instantaneous.

• Conditional independence:he probability of a certain observation being generated

is only dependent on the current state; and given the associated state, the observation

is conditional independent of both the preceding and following observations.
1 In joint decoding system, the state output is not a valid probability, so word “score” is used instead of

“probability”.
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2.3 Training Criteria for GenerativeModels

Although neither of these assumptions is strictly true for speech, nevertheless HMMs are

widely used in speech recognition, and state-of-the-art recognition performance can be

achieved.

In order to applyHMMs to real-world implementation, three basic problems of interest

need to be solved [89, 146]:

• he evaluation problem: Given the model λ = {c,A,B}, the observation se-

quence O = {o1, . . . ,oT} and the corresponding hypothesis (word sequence) W ,

how to eõciently compute the probability p(O|W ;λ)? his evaluation problem also

can be viewed as the problem of evaluating how well the given model matches the

given observation sequence [146]. In practice p(O|W ;λ) can be eõciently calcu-

lated through the forward algorithm [8, 9].

• he decoding problem: Given the model λ and the observation sequence O, how

to choose the corresponding optimal state sequence S = {s1, . . . , sT}? his is a

decoding problem,where the hidden state sequence is attempted to be uncovered. In

practice, an optimisation criterion is used to solve this problem, and themostwidely

used criterion is to ûnd the single best state sequence. A dynamic programming ap-

proach called the Viterbi algorithm [46, 187] is usually employed to ûnd this single

best state sequence.

• he training problem: Given a set of observation sequences, how to estimate the

model parameters λ? In this training problem, normally the model parameters are

attempted to be optimised so as to best describe how observations come about [146].

In practice, various training criteria can be applied to optimise themodel parameters

λ, and the most commonly used optimisation criteria in speech recognition will be

discussed in the following section.

2.3 Training Criteria for GenerativeModels

In the previous sections, themost commonly used generativemodels in speech recognition

were discussed. he implementation of these generativemodels requires estimation of the

model parameters. In this section, various training criteria which are used in parameter

estimation will be introduced, and the hidden Markov model (HMM) will be taken as an

example of the generative model in discussing these criteria. In this thesis only supervised

13



CHAPTER 2. GENERATIVEMODELS

training is considered, where the training set D consists of utterance and reference (word

or sub-word sequence) pairs:

D =
{(
O1,W1

)
, . . . ,

(
ON ,WN

)}
(2.11)

In general, given the training dataD, themodel parameters can be estimated bymaximising

(or minimising) the objective function F(λ):

λ̂ = arg max
λ

{
F(λ)

}
(2.12)

he most common approach for parameter estimation is maximum likelihood (ML) esti-

mation [144, 156], where the model parameters are optimised by maximising the likeli-

hood function given the training data. Alternative to ML estimation, various discrimina-

tive training criteria have been proposed. hese criteria aim to optimise the model pa-

rameters according to the objective functionswhich are directly related to the classiûcation

performance. In the following subsections, the commonly used training criteria in speech

recognition will be discussed.

2.3.1 Maximum Likelihood (ML)

In maximum likelihood (ML) estimation, themodel parameters are optimised bymaximis-

ing the probability of the observations given the word sequences and model parameters.

heML training criterion can be described asmaximising the following objective function:

FML(λ) =
N∏

n=1

p(On|Wn;λ) (2.13)

or

FML(λ) =

N∑

n=1

log p(On|Wn;λ) (2.14)

Maximisation of these two expressions are equivalent, and theywill be used interchangeably

in this thesis. For the HMM, there is no analytically tractable solution that maximises the

objective function (2.14) [146]. Although there is no optimal way of estimating the model

parameters, a local optimal solution can be found by using the iterative procedure such as

the expectation maximisation (EM) algorithm [39], i.e. the Baum-Welch algorithm [8, 9].

Alternative toML estimation,model parameters can be estimated by using themaximum a
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2.3 Training Criteria for GenerativeModels

posteriori (MAP) criterion,which can be viewed as a regularization ofML estimationwith a

prior distribution. In speech recognition, sinceMAP estimation is o�en used in adaptation,

this criterion will be introduced in the section of discussing adaption.

2.3.2 Maximum Mutual Information (MMI)

In ML estimation, training data suõciency andmodel-correctness are required. However,

in general neither of these requirements is strictly satisûed when modelling speech data.

hus, ML estimation may not yield the most appropriate model parameters for speech

recognition. hen discriminative training approaches might be preferred,where themodel

parameters are optimised according to the objective functions which are directly related

to the classiûcation performance. In speech recognition one of the commonly used dis-

criminative training criteria is themaximum mutual information (MMI) criterion [7, 130],

where themutual information between the utteranceO and word sequenceW is aimed to

be maximised. Since the joint distribution p(O,W ) is unknown, the empirical distribu-

tion formulated by the training samples {On,Wn} is used as an approximation. hen, the

mutual information can be described as [66, 89]:

I(O,W ;λ) ≈ 1

N

N∑

n=1

log

(
p(On,Wn;λ)

p(On;λ)P (Wn)

)
(2.15)

As only the acousticmodel parameters are trained, P (Wn) is ûxed. hus, maximising the

mutual information described in (2.15) is equivalent to maximise the following objective

function:

FMMI(λ) =
N∑

n=1

logP (Wn|On;λ) (2.16)

By using Bayes’ rule, the conditional distribution P (Wn|On,λ) in (2.16) can be written in

a form consisting of generativemodel likelihoods p(On|Wn;λ):

P (Wn|On;λ) =
p(On|Wn;λ)P (Wn)∑
W p(On|W ;λ)P (W )

(2.17)

In the denominator term of the right hand side of (2.17), the sum is taken over all possi-

ble hypotheses (word sequences) W including both the correct and competing ones. he

number of all possible hypotheses for an utterance is exponentially large, but a N-Best list

[29] or a lattice [141, 157] can be used to limit the search space of hypotheses. Since lattices
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are more compact representations, they are widely used in discriminative training. If the

assumption of the underlying distribution is correct and there are suõcient training data,

the optimal distributions from ML estimation (discussed in section 2.3.1) and MMI esti-

mation converge to the true underlying distribution [89]. Alternative to MMI estimation,

in speech recognition other discriminative training criteria such as minimum classiûcation

error (MCE) [100] and minimum Bayesian risk (MBR) [140] are also widely used, which

will be discussed in the following subsections.

2.3.3 Minimum Classiûcation Error (MCE)

In minimum classiûcation error (MCE) training, the classiûcation error rate is to be min-

imised, and the goal of training is to be able to correctly discriminate the observations for

best classiûcation results rather than to ût the distributions to the data [100]. his train-

ing criterion is normally based on a smooth function of the diòerence between the log-

likelihood of the correct word sequence and all other competing sequences, and a sigmoid

function is o�en used [66]. MCE training can be described as minimising:

FMCE(λ) =

N∑

n=1

(
1 +

[
P (Wn|On;λ)∑

W 6=Wn
P (W |On;λ)

]σ)−1
(2.18)

where P (Wn|On,λ) is deûned in equation (2.17), and σ is an additional smoothing term

introduced by the sigmoid smoothing function. Compared with MMI estimation, in the

MCE training criterion, the denominator term does not include the correctword sequence,

and a sigmoid smoothing function is used [66]. When the smoothing term σ = 1, then

yields:

FMCE(λ) = N −
N∑

n=1

P (Wn|On;λ) (2.19)

his is one speciûcation of the minimum Bayes risk criterion, which will be discussed in

the following section.

2.3.4 Minimum Bayes Risk (MBR)

In minimum Bayes risk (MBR) training, the expected loss in recognition is aimed to be

minimised [74, 103]. Normally, the expected loss estimated on the training data is used as
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2.3 Training Criteria for GenerativeModels

an approximation [66]. MBR training then can be described as minimising the following

objective function:

FMBR(λ) =
N∑

n=1

∑

W

P (W |On;λ)L(W,Wn) (2.20)

where L(W,Wn) is the loss function, that measures how diòerent the word sequenceW

and the reference Wn are. here are a number of deûnitions for the loss function, and

these deûnitions lead to diòerent meaningful training criteria which will be discussed in

the following paragraphs:

• 1/0 loss: For continuous speech recognition, 0/1 loss is equivalent to a sentence-level

loss function. he loss function can be deûned as follows:

L(W,Wn) =





1; W 6= Wn

0; W = Wn

(2.21)

When σ = 1, the MCE training criterion (2.19) is the same as the MBR training

criterion (2.20) with 1/0 loss deûned in (2.21).

• Word-level loss: his loss function is directly related to the expected word error rate

(WER). It is normally computed by minimising the Levenshtein edit distance [112]

between theword sequencesW andWn. By using thisword-level loss,MBR training

is known as minimum word error (MWE) training [120].

• Phone-level loss: For large vocabulary speech recognitionnot allword sequenceswill

be observed. To ensure generalisation, the loss function is o�en computed between

phone sequences, ratherword sequences [66]. his is known asminimumphone error

(MPE) training [140, 141].

• Frame-level loss: Compared to the number of frames, the use of phone-level loss

function reduces the number of possible errors to be corrected, and this might cause

generalisation issues [66]. To address this problem, minimum phone frame error

(MPFE) training was proposed, where the loss is deûned as a measure of the num-

ber of frames having incorrect phone labels [211]. his is the same as the Hamming

distance [173].

heMMI,MCE andMPE criteria have been compared on theWall Street Journal (WSJ)

task in [118]. In recognition, all these discriminative training signiûcantly outperformedML

17



CHAPTER 2. GENERATIVEMODELS

training in terms ofWER, and bothMCE andMPEwere found to outperformMMI on this

task. In work [211],MPFE was reported to give small but consistent gains over MPE.

2.3.5 LargeMargin Training

Alternative to MMI, MCE and MBR training, large margin training has been successfully

used in speech recognition [94, 107, 113, 161]. For a largemargin classiûer, the generalisation

error is bounded by the sum of the training error and a term that depends on the Vapnik-

Chervonenkis (VC) dimension [34, 183]. he margin is the smallest distance between the

reference label (correct class) and any alternative label (incorrect class), and for sequential

data it can be expressed in the form of the log-posterior ratio [136, 147, 164]. he simplest

form of the largemargin training criterion can be described as maximising:

FLM(λ) =
N∑

n=1

[
min
W 6=Wn

{
log

(
P (Wn|On;λ)

P (W |On;λ)

)}]
(2.22)

where the classposteriordistributionsP (Wn|On;λ) andP (W |On;λ) are deûned in equa-

tion (2.17), and the normalisation terms of the posterior distributions can be cancelled out

in the largemargin training criterion (2.22).

For a sequence classiûcation task it is important to take into account loss. Alternative

to criterion (2.22), inwork [161] themargin is deûned as being not smaller than a loss func-

tion. By using this type of margin deûnition, large margin training can be described as

minimising the following objective function [147]:

FLM(λ) =
N∑

n=1

[
max
W 6=Wn

{
L(W,Wn)− log

(
P (Wn|On;λ)

P (W |On;λ)

)}]

+

(2.23)

where L(W,Wn) is the loss function, and the forms of this loss function were discussed

in section 2.3.4. In order to omit the data that have already been classiûed correctly and

beyond themargin, the hinge loss function
[
·
]
+

is introduced in the largemargin training

criterion (2.23), and it is deûned as follows:

[
f(x)

]
+

=

{
0 when f(x) < 0
f(x) when f(x) ≥ 0

(2.24)

Because of the max{·} function, the objective function described in (2.23) is not diòeren-

tiable. In order to simplify optimisation, the following so�-max inequality can be used as
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2.4 Adaptation and Adaptive Training

an approximation:

max
i
{xi} ≤ log

(∑

i

exp(xi)
)

(2.25)

By using this inequality (2.25), the large margin training criterion (2.23) can be relaxed to

its upper bound:

FLM(λ) ≤
N∑

n=1

[
− logP (Wn|On;λ) + log

(∑

W

P (W |On;λ)Lexp(W,Wn)

)]

+

(2.26)

where the loss function Lexp(W,Wn) is deûned as [147]:

Lexp(W,Wn) =

{
exp

(
Lexp(W,Wn)

)
whenW 6= Wn

0 whenW = Wn
(2.27)

his upper bound (2.26) is related to theMMI andMBR objective functions described

in (2.16) and (2.20) respectively. he ûrst term within the hinge loss function is the negated

log-posterior, which is the same as the MMI objective function; he second term is the

logarithm of aMBR variant, where the loss function is deûned as in equation (2.27) [147].

Furthermore, if the conditional probability P (W |O;λ) is written in the form consisting

of acoustic model likelihood and language model probability as described in (2.17), this

upper bound (2.26) is related to the boostedMMI (BMMI) criterion [143, 153]. he BMMI

objective function to bemaximised can be described as:

FBMMI(λ) =

N∑

n=1

log

(
p(On|Wn;λ)P (Wn)∑

W p(On|W ;λ)P (W ) exp
(
− bA(W,Wn)

)
)

(2.28)

where b is a boosting factor. A(W,Wn) is the accuracy between aword sequenceW and the

given referenceWn, and this accuracy can be expressed in terms of the number of correct

phones in W as in MPE [153]. here are two main diòerences between the upper bound

(2.26) and the BMMI objective function (2.28): in the former the hinge loss function is

used, and in the latter a scaled accuracy function is used instead of the loss function (2.27)

[147].

2.4 Adaptation and Adaptive Training

In speech recognition, since there will always be new speakers and new environments, it is

common that the training data cannot adequately represent the test data, and thismismatch
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might signiûcantlydegrade the recognition performance [66]. To address this issue, adapta-

tionwas proposed to compensate themismatch of acoustic conditions between the training

and test data. Adaptation allows a small amount of data from target speaker (or noise con-

dition) to be used to transform an acoustic model set to make it more closely match that

speaker (or noise condition). By using adaptation, signiûcant improvement can be achieved

on the test data with various acoustic conditions [66, 203]. In general, adaptation can be

performed by feature based approaches,model based approaches or combinations of them.

Feature based approaches can be used to normalise acoustic features such that the mis-

match between the training and test data can be reduced, whereas model based approaches

are generallymore powerful as they havemoremodelling power to represent acoustic vari-

ability and handle uncertainty [56, 192]. In the following subsections, the commonly used

model based schemes such asmaximum a posteriori (MAP) andmaximum likelihood linear

regression (MLLR)will be introduced. Many of thesemodel based schemes can be employed

in the framework of adaptive training, where speech variability and non-speech variability

(such as speaker or acoustic conditions) aremodelled separately [203].

2.4.1 Maximum a Posteriori (MAP)

he adaptation data can be viewed as additional training data, hence themost straightfor-

wardway to perform adaptation is to re-estimate themodel parameters based onML train-

ing. However, this approachmight beproblematic, since the amount of adaptationdatausu-

ally is small. his leads to over-ûtting of the trainedmodel. To address this problem,maxi-

mum a posteriori (MAP) estimationwas proposed [68],where in addition to the adaptation

data, a prior distribution over the model parameters is used in parameter estimation. Let

themodel parameters be λ, given the adaptation data D =
{

(O1,W1), . . . , (ON ,WN )
}
,

MAP estimation can be described as maximising the following objective function:

FMAP(λ) = log p(λ) + FML(λ)

= log p(λ) +
N∑

n=1

log p(On|Wn;λ) (2.29)

where p(λ) is the prior distribution over themodel parameters, andFML(λ) is the objective

function ofmaximum likelihood estimation described in (2.14). By using MAP adaptation,

the original prior parameter values can be eòectively interpolated with those that would be
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obtained from the adaptation data alone. his makes MAP especially useful for porting a

well-trained model set to a new domain where only a limited amount of data is available

[66]. Onemajor drawback ofMAP adaptation is that each Gaussian component is updated

individually. If the adaptation data is sparse, then many of the model parameters will not

be updated [66]. To address this problem, various extensions ofMAP estimation have been

proposed, e.g. the regression basedmodel prediction [3] and structuredMAP [163]. Alter-

native to extensionswithin theMAP framework, linear transform based approaches can be

adopted to perform rapid adaptation of all Gaussian parameters,whichwill be discussed in

the following subsection.

2.4.2 Linear Transform Based Adaptation

In speech recognition, the linear transform based adaptation approaches are widely used.

Especiallywhen the amount of adaptation data is limited, this type of adaptation is currently

themost eòective form [66]. In the transform based adaptation approaches, a set of linear

transforms are used tomap the existingmodel to a new adapted one such that the likelihood

of themodel parameters is maximised given the adaptation data [66]. When a single global

transform T is considered, given the adaptation data D =
{

(O1,W1), . . . , (ON ,WN )
}

and theunadaptedmodel parameters λ̄, the transform then can be estimated bymaximising

the following likelihood function:

F(T ) =

N∑

n=1

p(Wn|On; λ̄,T ) (2.30)

In this thesis, three types of commonly used linear transform based adaptation will be in-

troduced, namely maximum likelihood linear regression (MLLR) [110], varianceMLLR and

constrainedMLLR (CMLLR) [55].

In the following subsections, bar notation will be used to denote the unmodiûed (or

canonical) acoustic models and unmodiûed (or “clean”) observations. For example, λ̄ de-

notes the canonical set ofHMM parameters, whilst λ denotes the adapted set ofHMM pa-

rameters. Similarly, ō denotes the “clean” observation,whilsto denotes the noise-corrupted

observation.
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2.4.2.1 Maximum Likelihood Linear Regression (MLLR)

Maximum likelihood linear regression (MLLR) [110] was originally proposed to transform

the mean vectors of the Gaussian components. Transforms later were extended to the co-

variance matrices [55]. In mean MLLR, only the means of the Gaussian components are

transformed. For themth component, the transform can be described as [110]:

µm = Aµ̄m + b (2.31)

where {A, b} are the transform parameters associated with themean vectors. In addition

to mean vectors, transforms can also be applied to the covariancematrices. hen the trans-

form can be described as follows [55]:

Σm = HΣ̄mH
T (2.32)

whereH are the transform parameters associated with the covariancematrices. his type

of transform is usually called varianceMLLR [200]. When both the mean vectors and co-

variancematrices are adapted, the likelihood for themthGaussian component can be com-

puted by transforming the observations andmeans whilst keeping the covariancematrices

unchanged [66]:

N (o;µm,Σm) =
1

|H|N
(
H−1o;H−1(Aµ̄m + b), Σ̄m

)
(2.33)

When using this form (2.33), the likelihood can be eõciently computed by caching the

transformed observations andmeans, especially in situationswhen the covariancematrices

are diagonal [66, 200].

2.4.2.2 ConstrainedMLLR

In constrained MLLR (CMLLR), both the mean vectors and covariance matrices of the

Gaussian components are transformed, and the transform matrices A and H are con-

strained to be the same. hen the CMLLR transform can be described as follows [55]:

µm = Aµ̄m + b (2.34)

Σm = AΣ̄mA
T (2.35)
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whereA is the constrained transformparameters, and b is the bias for themean transform.

With this transform constraint, the likelihood described in (2.33) can be further written as:

N (o;µm,Σm) =
1

|A|N
(
A−1o−A−1b; µ̄m, Σ̄m

)

=
1

|A|N
(
ō; µ̄m, Σ̄m

)
(2.36)

where ō is the transformed observation:

ō = A−1o−A−1b (2.37)

Compared with mean and varianceMLLR, CMLLR can be operated in the form of trans-

forming observations as described in (2.37). his makes this type of transform eõcient if

the speaker (or environment) changes rapidly [66]. CMLLR is the form of linear transform

most frequently used in adaptive training, which will be discussed at the end of this chap-

ter. For the detail of transform estimation on the mean, variance and constrained MLLR,

consulting the references [55, 110].

2.4.3 Vector Taylor Series (VTS)

he linear transform based schemes (discussed in the previous subsection) is usually used

to adapt a speech recognition system to changes in speaker. Although these methods can

reduce the eòect of noise,more eòective approaches have been proposed to compensate for

noise eòect, and these approaches are normally referred to as noise compensation. Adap-

tation and compensation have become similar in recent years and sharemany of the same

attributes [192], hence in this thesis these two terms are used interchangeably. In this sub-

section, a noise compensation approach called vector Taylor series (VTS) compensation [2,

128] will be introduced.

Consider a simpliûed noisy acoustic environmentmodel,where the clean speech signal

ō (in the time domain) is corrupted by additive noise n and channel distortion h as illus-

trated in Figure 2.5. In the time domain, the relationship between the noise corrupted and

clean speech signals (or themismatch function) can be described as follows:

o = ō⊗ h+ n (2.38)
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+

Clean Speech Convolutional Noise Corrupted Speech

ō oChannel
h Distortion

n

Additive Noise

Figure 2.5: A simpliûedmodel of noisy acoustic environment.

where⊗ denotes convolution in the time domain. In theHMM based recognition system,

the Mel-frequency cepstral coeõcients (MFCC) [89, 200] are widely used. In the MFCC

domain, themismatch function (2.38) can be described as follows1 [1, 2, 63]:

os =ōs + hs +C log
(

1 + exp
(
C−1(ns − ōs − hs)

))

=ōs + f(ōs,ns,hs) (2.39)

where os and ōs are the noise corrupted and clean (static) observations. he superscript s

denotes the static coeõcients. In speech recognition, an observationo is o�en comprised of

static coeõcients appended with delta (∆) and delta-delta (∆2) dynamic coeõcients [52,

66], namely o =
[
osT,∆osT,∆2osT]T. In the mismatch function (2.39), ns is the addi-

tive noise, hs is the convolutional noise or channel distortion, and C is the discrete cosine

transform (DCT) matrix.

Model compensation is aimed to obtain the parameters of the noise corrupted speech

model from the clean speech and noisemodels [63]. Many of themodel compensation ap-

proaches assume that if the clean speech andnoisemodels areGaussian, namelyN (µ̄s, Σ̄
s
),

N (µs,n,Σs,n) andN (µs,h,Σs,h)2, then the noise corrupted speechmodel is alsoGaussian.

hus, the parameters of the corrupted speech distribution N (µs
m,Σ

s
m) for a particular

component can be written as:

µs
m = E{os} (2.40)

Σs
m = E{ososT} − µs

mµ
sT
m (2.41)

where the expectation is taken with respect to the component distribution of the clean

speech model and the distribution of the noisemodel. he relationship between the noise
1 In this section, when applying log(·) or exp(·) to a vector, an element-wise logarithm or exponential

function is performed to all elements of the vector.
2 he convolution noise is usually assumed to be constant, namelyΣs,h = 0 [2, 63].
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corrupted and clean (static) speech (os and ōs) is described in equation (2.39). According to

this equation (2.39), the noisy corrupted (static) speech os is a highly non-linear function of

the underlying clean (static) speech ōs. here are no simple closed form solutions to these

expectations in equations (2.40) and (2.41), hence various approximate approaches have

been proposed. Parallel model combination (PMC) [61, 62] is one such approach, where the

Gaussian means and variances in the cepstral domain aremapped into a linear domain in

which the noise is additive, and the means and variances of the new distribution for the

noise corrupted speech are computed, then they are mapped back to the cepstral domain

[66]. An alternative approximate approach is VTS compensation [2, 128], where the vector

Taylor series expansion is used to dealing with non-linearity.

In VTS compensation [2], the non-linearity between the noise corrupted speech and

clean speech can be represented by using the ûrst order vector Taylor series expansion of

equation (2.39). For a particular component,when the expansion points for the vector Tay-

lor series are themeans of the clean speech, additive noise and convolutional noise (namely

µ̄s
m, µs,n and µs,h), then the mean of the noise corrupted speech distribution can be de-

scribed as follows:

µs
m = E

{
µ̄s
m + f(µ̄s

m,µ
s,n,µs,h) + (os − µ̄s

m)
∂f

∂os + (ns − µs,n)
∂f

∂ns + (hs − µs,h)
∂f

∂hs

}

(2.42)

where function f(·) is deûned in equation (2.39), and the expectation is taken over the clean

speech and noise distributions, namely N (µ̄s
m, Σ̄

s
m) for the clean speech, N (µs,n,Σs,n)

for the additive noise, andN (µs,h,Σs,h) for the convolutional noise. he partial derivatives

in (2.42) can be expressed in terms of partial derivatives of os with respect to ōs, ns and hs

evaluated at µ̄s
m, µs,n and µs,h, and they can be described as follows [2, 66]:

∂f/∂os = ∂f/∂hs = A (2.43)

∂f/∂ns = I −A (2.44)

where A = CFC−1 and F is a diagonal matrix whose elements are given by 1/
(
1 +

exp(C−1(ns − ōs − hs))
)
. With the ûrst order vector Taylor series approximation (2.42),

themean and variance of the noisy corrupted speech can be described as follows [2, 66]:

µs
m = µ̄s

m + f(µ̄s
m,µ

s,n,µs,h) (2.45)

Σs
m = AΣ̄

s
mA

T +AΣs,hAT + (I −A)Σs,n(I −A)T (2.46)
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Figure 2.6:he framework of linear transform based adaptive training.

In practice, the convolution noise is usually assumed to be constant, namely Σs,h = 0.

Normallyµs,n,Σs,n andµs,h are seldomknown in advance, so theymust be estimated from

the test data. When they are not available, noise estimation can be based on themaximum

likelihood (ML) noise estimation scheme [115]. For compensation of the delta and delta-

delta coeõcients, the continuous time approximation [76] is commonly used,where discrete

time estimation of the gradient is approximated by the derivativewith respect to time. More

details can be found in [2].

2.4.4 Adaptive Training

In adaptation, a well trained acoustic model is pre-required, and the traditional approach

to obtain the model is to train it on the data from a single source [66, 203]. he model

then can be adapted to the test domain during recognition using the adaptation techniques

introduced in the previous subsections. However, normally the the training data includes

a large number of acoustic conditions such as speakers or noise conditions, hence acous-

tic mismatches exit within the training data. One approach to handling this problem is to

use adaptation during training, and this type of method is referred to as adaptive training

[5, 66], in which speech variability and acoustic conditions are modelled separately. hus,

in adaptive training (take the linear transform based approach for example), two sets of

models are obtained, namely the canonical model λ̄ (which represents speech variability)

and the transforms {T 1, . . . ,T L} (which represent diòerent acoustic conditions) , where

L is the number of diòerent acoustic conditions. he framework of linear transform based

adaptive training is illustrated in Figure 2.6. his type of adaptive training is also known as

speaker adaptive training (SAT) [5], given that it was ûrst proposed to handle speaker vari-

ability, where each speaker corresponds to an acoustic condition. he training procedure
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of adaptive training is performed in an iterative way, and this process can be summarised

as follows [66]:

(1) Initialise the canonical model and the transform for each acoustic condition.

(2) Estimate the transform for each acoustic condition using the training data associated

with that condition.

(3) Estimate the canonical model given all of the transforms.

(4) Goto step (2) until convergence or themaximum number of iterations is reached.

he canonicalmodel obtained from adaptive training cannotbe directly employed in speech

recognition, and the transforms for the test data need to be estimated given some supervi-

sion data. hen, the adapted model (the canonical model with transforms) can be used in

the ûnal recognition. Since CMLLR is simple to implement, it is widely used in adaptive

training [58].

2.5 Summary

In this chapter, the most commonly used generative models in speech recognition, such

Gaussianmixturemodels (GMMs) and hiddenMarkovmodels (HMMs),were introduced.

In speech recognition, the state-of-the-art systems o�en employ deep neutral networks

(DNNs), therefore the frameworks of the DNN-HMM system and the joint decoding sys-

tem were brie�y introduced. Various training criteria for generativemodels, such as maxi-

mum likelihood (ML),maximummutual information (MMI),minimum Bayes risk (MBR)

and largemargin training, were also brie�y discussed. hemismatch between the training

and test data is a common issue in speech recognition, hence the techniques such as adapta-

tion and compensation to reduced this mismatchwere discussed in this chapter. Moreover,

adaptive training, which deals with the problem of themismatch within the training data,

was brie�y discussed.
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Chapter 3

DiscriminativeModels

In the previous chapter, themost commonly used generativemodels in speech recognition

were introduced. To adopt a generative model in the classiûcation task, Bayes’ rule needs

to be applied to yield the posterior distribution of the class label given the observations. In

speech recognition,HMMs are themostwidely used acousticmodels. hough discrimina-

tive training of the HMM normally achieves performance gains compared with generative

training, however the underlying model is still generative. Recently, applying discrimina-

tive models directly to speech recognition is of growing interest [48, 54, 65, 79, 106, 215],

where the conditional distribution of the class label given the observations is modelled di-

rectly. Compared with generative models, discriminative models may lead to improved

performance, particularly when the class-conditional density assumptions of the generative

models give a poor approximation to the true distributions [16]. Moreover, discriminative

models do not make any assumption on the distribution of the input data, and not need to

model the density as an incremental step, but focus on the boundary between classes. his

means discriminative models do not waste any resources trying to model the joint distri-

bution [132, 183]. As illustrated in Figure 3.1, the complicated structure in the probability

densitymight have little impact on the posterior probabilities. herefore, it is not always de-

sirable to compute the joint distribution. Finally, discriminativemodels have the potential

to improve performance as a wider range of features from the observation and word se-

quences can be used in training compared with generativemodels [54]. hese are themain

reasons why discriminative models have been widely and successfully used [105, 132, 183].
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Figure 3.1: he generative model versus the discriminative model. his ûgure is taken from
[16]. Example of the class-conditional densities for 2 classes having a single input variable o
(le� plot) together with the corresponding posterior probabilities (right plot). Note that the
le�-hand mode of the class conditional density p(o|w = 1) shown in blue on the le� plot,
has no eòect on the posterior probabilities. he vertical green line in the right plot shows the
decision boundary in o that gives theminimum misclassiûcation rate.

In this chapter, themost commonly used discriminativemodelswill be introduced. Various

training criteria and forms of features for discriminativemodels also will be discussed.

In general, discriminativemodels can be divided into two groups, namely the unstruc-

tured1 and structured discriminative models. For structured discriminative models, the

class labels are sequences and diòerent class labels share the same common units. For ex-

ample, in speech recognition sentences are structured labels, and diòerent sentences share

the same common units of words (or phones). For unstructured discriminative models,

the class labels are single (atomic) units, and diòerent class labels distinguish from each

other. In the following sections, these two types of discriminativemodels will be discussed

in detail.

3.1 Unstructured DiscriminativeModels

In this section, some of the commonly used unstructured discriminative models will be

introduced. In order to distinguish from the class label W which is a sequence, in this

1 In some literatures, the unstructuredmodel is called the �at model.
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Figure 3.2:he logistic sigmoid function.

thesis w is used as the notation of the class label for unstructured discriminative models.

he unstructured class labels are single units. For example, if the number of classes is L,

the class label w takes value from {1, . . . , L}. Unstructured discriminativemodels can be

directly applied to isolatedword recognition [14, 63] or phone classiûcation [152]. However,

in continuous speech recognition (CSR) the number of the possible classes for an utterance

is exponentially large. One solution to this problem is to use acoustic code breaking [185],

which will be discussed at the end of this section.

3.1.1 Logistic Regression

For a discriminativemodel, the conditionaldistributionP (w|O) ismodelled directly,where

O = {o1, . . . ,oT} is a sequence of observations. In a two-class (or binary) classiûcation

problem with class labels {−1, 1}, the conditional probability P (w|O) for class 1 can be

written as a logistic sigmoid acting on a linear function of the feature vector [16]:

P
(
w=1|O

)
=

1

1 + exp(−f)
(3.1)

he graphical representation of the logistic sigmoid function is illustrated in Figure 3.2. In

equation (3.1), f is a linear function of the feature vector ϕ(O):

f = ηTϕ(O) (3.2)

Given the form of the conditional distribution (3.1) for class 1, the conditional distribution

for class −1 can be written as P
(
w=−1|O

)
= 1 − P

(
w= 1|O

)
. his type of model is
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known as logistic regression1 [32, 189]. In (3.2), η are themodel parameters, and ϕ(·) is the

feature function that maps the observations O with various length to a ûxed dimensional

space. One example of the feature vector is [209]:

ϕ(O) =

[
1∑T
t=1 ot

]
(3.3)

where 1 is introduced to allow a bias parameter.

Logistic regression only can be used in binary classiûcation. In order to extend tomulti-

class classiûcation, the conditional probability P (w|O) can be given by a so�max transfor-

mation of a linear function of the feature vector [16]:

P
(
w|O

)
=

exp(fw)∑
w exp(fw)

, w ∈ {1, . . . , L} (3.4)

where {1, . . . , L} are L diòerent classes, and fw is a linear function of the feature vector:

fw = ηT
wϕ(O) (3.5)

where ηw are themodel parameters associated with class w. his type ofmodel (3.4) is re-

ferred to as multinomial logistic regression, which is also known as the maximum entropy

model [10, 119], (unstructured) log-linear model, or single-layer artiûcial neural network

(ANN) [15]. Given that a valid probability distribution satisûes
∑

w P (w|O) = 1, the pa-

rameters for one class, such as ηw do not need to be estimated and can be set to 0. However,

these redundant parameters are normally kept in optimisation, for the numerical stability

reasons and equal treatment of all classes [14, 171].

he parameters {η1, . . . ,ηL} ofmultinomial logistic regression can be combined to be

a single vector [209]:

η =
[
ηT
1, . . . ,η

T
L

]T (3.6)

hen the linear function of the feature vector fw described in (3.5) can be expressed as:

fw = ηT
wϕ(O) = ηTφ(O, w) (3.7)

where φ(O, w) is a sparse feature vector that characterises the dependencies between ob-

servationsO and class w:

φ(O, w) =



δ(w, 1)ϕ(O)

...
δ(w,L)ϕ(O)


 (3.8)

1 It is worth noting that logistic regression is amodel for classiûcation rather than regression.
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Figure 3.3: Binary classiûcation using the SVM for separable data.

where δ(·) is the Kronecker delta, and ϕ(·) is a feature function, e.g. the example given in

equation (3.3). More forms of the feature function ϕ(·) will be discussed in section 3.5.

3.1.2 Support Vector Machines

Support Vector Machines (SVMs) [31, 183] are widely used supervised learning model in

(binary) classiûcation. For SVMs, the generalisation error is bounded by the sum of the

training error and a term that depends on the Vapnik-Chervonenkis (VC) dimension [34,

108, 183]. Good generalisation of this type of classiûer has enabled it to be successfully used

in various research ûelds including speech recognition [60, 63, 67]. Intuitively, the SVM

constructs a hyperplane that has the largest distance to the nearest training data point of

any class. his distance between classes is referred to as margin. Figure 3.3 illustrates a

binary classiûcation task using the SVM for separable data in the two-dimensional space.

Consider a training set consisting of feature vector and class label pairs D =
{(
ϕ(O1), w1

)
, . . . ,

(
ϕ(ON), wN

)}
, where wn ∈ {−1,+1} and ϕ(On) is the feature vec-

tor for observationsOn. For a separable binary classiûcation task, given the hyperplane of

the SVM,which are parameterised by η and bias b, correct classiûcation of the training data

will satisfy:

wn
(
ηTϕ(On) + b

)
≥ 1, ∀n ∈ {1, . . . , N} (3.9)
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where the training data are constrained to be not inside the region enclosed by themargin

edges. he data located at the edges, namely wn
(
ηTϕ(On) + b

)
= 1, are called support

vectors. As illustrated in Figure 3.3, the dashed lines aremargin edges, and the solid line is

the hyperplane (decision boundary). hemargin is the distance between the dashed edges,

and it can be expressed as [31]:

margin =
2

||η|| (3.10)

he optimal hyperplane is the unique one that maximises the margin (3.10) under the

constraints in (3.9), hence constructing an optimal hyperplane (decision boundary) is a

quadratic problem, and this optimal hyperplane is estimated such that themargin is max-

imised and all the training data are correctly classiûed1 [31]:

min
η,b

1

2
||η||2 (3.11)

s.t. wn
(
ηTϕ(On) + b

)
≥ 1, ∀n ∈ {1, . . . , N}

Given the optimal hyperplanewith parameters {η, b} and a new input feature vectorϕ(O),

then classiûcation can be described as follows:

ŵ = sign
(
ηTϕ(O) + b

)
(3.12)

where sign(·) is the sign function that extracts the sign (−1 or +1) of a real number.

he discussion so far has based on the assumption that the training data is linearly

separable. In many real-world applications this assumption is not generally satisûed. In

this case the training data are aimed to be separated with a minimal number of errors. To

allow training errors, slack variables, ξn ≥ 0, are introduced. hen the constraint described

in (3.9) is relaxed to wn
(
ηTϕ(On) + b

)
≥ 1 − ξn. his is known as the so� margin SVM

constraint. For the data that lie outside the margin edges, ξn = 0. For the misclassiûed

data or the data inside the edges, ξn ≥ 0. he number of training errors is bounded by
∑

n ξn [24]. hen, for the non-separable case, the hyperplane is found by minimising the

upper bound of the training errors and maximising the margin for the correctly classiûed

1 he optimisation problem of minimising 1
2
||η|| is diõcult to solve because it involves a square root.

Alternatively, in SVMs 1
2
||η||2 is minimised.
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data [31]:

min
η,b

{
1

2
||η||2 + C

N∑

n=1

ξn

}
(3.13)

s.t. wn
(
ηTϕ(On) + b

)
≥ 1− ξn, ∀n ∈ {1, . . . , N}

ξn ≥ 0, ∀n ∈ {1, . . . , N}

where C is a constant that is used to trade oò between themargin and the training errors.

(3.13) is known as the primal form of the SVM optimisation problem. Alternatively, this

optimisation problem also can be expressed in a dual form, andmore details can be found

in [24, 31].

3.1.2.1 Multi-class SVMs

Binary classiûcation is considered so far. For multi-class classiûcation tasks, SVMs also can

be applied by reducing themulti-class problem intomultiple binary classiûcation problems

[41, 42, 88, 139]. Rather than decomposing the multi-class problem into multiple binary

classiûcation problems, the multi-class SVM [33] has been proposed, which is treated as a

single optimization problem.

Formulti-class classiûcation, let the parameters for classw beηw, the number of classes

L and the input feature vector ϕ(O), classiûcation then can be expressed as follows1:

ŵ = arg max
w

{
ηT
wϕ(O)

}
(3.14)

In multi-class SVMs, the score for the correct class, such as ηT
wϕ(O), is aimed to be greater

than the scores for the incorrect classes as much as possible. One such training criterion is

expressed as follows [33]:

min
η1,...,ηL

{ L∑

w=1

1

2
||ηw||2 + C

N∑

n=1

ξn

}
(3.15)

s.t. ηT
wnϕ(On)− ηT

wϕ(On) ≥ L(w,wn)− ξn, ∀n,w

ξn ≥ 0, ∀n ∈ {1, . . . , N}
1 It is worth noting that here the bias is not written out separately, but it can be incorporated in the feature

vector, e.g. the features described in equation (3.3).
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whereL is the total numberof classes. L(w,wn) is the 1/0 loss,which isdeûned asL(w,wn)

= 1− δ(w,wn), and δ(·) is the Kronecker delta. Similar to that in multinomial logistic re-

gression (3.6), the parameters {η1, . . . ,ηL} can be combined to be a single vector:

η =
[
ηT
1, . . . ,η

T
L

]T (3.16)

and let the feature vector be the form described in (3.8) :

φ(O, w) =



δ(w, 1)ϕ(O)

...
δ(w,L)ϕ(O)


 (3.17)

Classiûcation then can be described as follows:

ŵ = arg max
w

{
ηTφ(O, w)

}
(3.18)

and the training criterion (3.15) becomes:

min
η

{
1

2
||η||2 + C

N∑

n=1

ξn

}
(3.19)

s.t. ηTφ(On, wn)− ηTφ(On, w) ≥ L(w,wn)− ξn, ∀n,w
ξn ≥ 0, ∀n ∈ {1, . . . , N}

In the discussion so far, only the linear decision boundary (hyperplane) is considered.

By applying the kernel trick [22], SVMs (or multi-class SVMs) can also be applied to yield a

non-linear decision boundary. By using a kernel function, the linear decision boundary is

constructed in a transformed feature space. hus though the decision boundary is a linear

hyperplane in the transformed feature space, it might be nonlinear in the original input

space. More details on the kernel trick can be found in [22, 31, 33].

3.1.2.2 Relationships with Logistic Regression

In the training criterion (3.19) of themulti-class SVM,when substituting the constraints into

theminimisation criterion, training can be described asminimising the following objective

function:

1

2
||η||2 + C

N∑

n=1

[
max
w

{
L(w,wn)−

(
ηTφ(On, wn)− ηTφ(On, w)

)}]

+

(3.20)
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where
[
·
]
+

is the hinge loss, which is deûned as:

[
f(x)

]
+

= max
{

0, f(x)
}

=

{
0 when f(x) < 0
f(x) when f(x) ≥ 0

(3.21)

It is worth noting that the loss function is deûned as L(w,wn) = 1 − δ(w,wn). When

w = wn, the function inside the maximisation equals 0. hus the maximisation function

maxw{·} in (3.20) can be expressed as maxw{·} = max
{

0,maxw 6=wn{·}
}
. According to

the deûnition of the hinge loss described in (3.21), objective function (3.20) is equivalent to

the following expression:

1

2
||η||2 + C

N∑

n=1

[
max
w 6=wn

{
L(w,wn)−

(
ηTφ(On, wn)− ηTφ(On, w)

)}]

+

(3.22)

hese two forms of expressions (3.20) and (3.22) are equivalent, and the later one is used

throughout this thesis.

As discussed in [209], large margin training of the logistic regression model is equiv-

alent to a SVM. he margin for logistic regression is deûned as the log-posterior ratio

between the correct class wn and the best competing class w. he large margin training

criterion can be described as maximising this margin and minimising the loss function

L(w,wn), which measures the distance between the class w and the correct one wn. By

introducing a Gaussian prior, log p(η) = logN (η; 0, CI) = − 1
2C ||η||2 + Constant, with

zero mean and scaled identitymatrix, largemargin training ofmultinomial logistic regres-

sion (3.4) can be described as minimising:

1

2C
||η||2 +

N∑

n=1

[
max
w 6=wn

{
L(w,wn)− log

(P (wn|On)

P (w|On)

)}]

+

(3.23)

his training criterion has similar form to large margin training of generative models de-

scribed in (2.23). Substituting the deûnitions of the multinomial logistic regression (3.4)

and (3.7) into criterion (3.23), then largemargin training ofmultinomial logistic regression

can be expressed as minimising:

1

2
||η||2 + C

N∑

n=1

[
max
w 6=wn

{
L(w,wn)−

(
ηTφ(On, wn)− ηTφ(On, w)

)}]

+

(3.24)

his is the training criterion of the multi-class SVM described in (3.22). herefore, large

margin training ofmultinomial logistic regression models can be interpreted as multi-class
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Figure 3.4: Acoustic code-breaking based on themost likely segmentation [147].

SVMs. It is worth noting that, when a non-zero mean Gaussian prior is used, log p(η) =

logN (η;µη, CI) = − 1
2C ||η − µη||2 + Constant, a more general form of large margin

training criterion (3.24) can be derived:

1

2
||η − µη||2 + C

N∑

n=1

[
max
w 6=wn

{
L(w,wn)−

(
ηTφ(On, wn)− ηTφ(On, w)

)}]

+

(3.25)

3.1.3 Acoustic Code-breaking

In the previous subsections, unstructured discriminativemodels, such as logistic regression

and SVMs, were discussed. In continuous speech recognition (CSR), the inputs are utter-

ances, and the number of possible classes for an utterance is exponential large. hus, it is

impractical to directlymodel thewhole utterancewith unstructured discriminativemodels.

One solution to this problem is to use acoustic code-breaking [185], where the continuous

speech is segmented into segments, and then each segment is treated independently and

classiûed separately. In acoustic code-breaking, the problem of sentence recognition is de-

composed into the sub-problems ofword (or phone) recognition. hese sub-problems then

can be addressed directly by using the unstructured discriminativemodels discussed in the

previous subsections.

A number of acoustic code-breaking approaches haven been proposed forCSR [63, 109,

185]. In these approaches, an existing HMM-based speech recogniser is used to yield the

1-best hypothesis or word lattice [179, 200], then classiûcation can be performed based on
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Figure 3.5: Acoustic code-breaking based on the confusion network [66, 109].

the given segmentation information. In this subsection, acoustic code-breaking based on

the 1-best hypothesis and lattice will be discussed.

Given an input utterance O, an existing speech recogniser can be applied to generate

the 1-best hypothesis and corresponding segmentation. In this thesis, such segmentation

is called the most likely segmentation (given by this recogniser). Given the most likely

segmentation, each segment of the utterance can be treated independently, and be classiûed

separately. his type of acoustic code-breaking approach is illustrated in Figure 3.4. In

work [63, 196], unstructured classiûers, such as SVMs,were employed in digit classiûcation

(where the class labels are zero to nine, oh and silence) under the framework of acoustic

code-breaking as illustrated in Figure 3.4.

Alternative to themost likely segmentation, a confusion network can beused in acoustic

code-breaking,where binary classiûcation is performed for eachword pair. his framework

is illustrated in Figure 3.5, and can be summarised in three steps. In the ûrst step, the word

lattice is generated by using an existing speech recognition system, and Figure 3.5 (a) gives

an example of the word lattice. In the second step, the word lattice is converted to a confu-

sion network, and one example of the confusion network is illustrated in Figure 3.5 (b). In

the third step, this confusion network is pruned such that each set of parallel arcs contains at

most two as illustrated in Figure 3.5 (c). When the pruned confusion network is produced,

binary classiûers can be applied to each confusionwordpair. Normally, the binary classiûers

are trained only formost frequent confusionswhich are determined from the training data,

and the number of classiûers is limited by the number of available examples in the training
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b r a c e
Figure 3.6: A handwritten word “brace” taken from [173].

data. his makes acoustic code-breaking a limited approach, especially when the confu-

sion pairs of the test data did not appear in training. Alternative to decompose sentence

recognition into word (or phone) recognition by using acoustic code-breaking, structured

discriminative models can be directly employed to recognise continuous speech, and this

type ofmodel will be discussed in the following section.

3.2 Structured DiscriminativeModels

In the previous section, unstructured discriminativemodelswere discussed,where the class

labels are considered as single (atomic)units anddiòerent unitsdistinguish from each other.

his type of model cannot be directly applied to speech recognition where the inputs are

observation sequence and class labels are sentences, since the number of possible classes

for an sentence could be unbounded, e.g. the number of possible classes for a 6-digit string

is 106. Although the framework of acoustic code-breaking can be applied, unstructured

discriminativemodels only can be used in a very limited way, e.g. ûxed segmentations and

the limited number of confusion candidates. his motivates interest in structured discrim-

inativemodels where the structure of the labels is considered. In structured discriminative

models, the class label is considered as being comprised of atomic units, and diòerent labels

share the common set ofunits, e.g. diòerent sentences can be considered as being comprised

of a sequence of phones from a common set. In structured models, for each atomic unit

there is a set of corresponding model parameters, hence the parameters for diòerent classes

can be constructed, even these classes did not appear in training. his is similar to HMMs

in modelling sentence, where sentence models are constructed by concatenating word (or

phone) models. Moreover, the (long range) dependencies within the input sequence can

bemodelled by structuredmodels, whereas for unstructuredmodels, the input sequence is
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Figure 3.7: Graphical representations of theHMM,MEMM and CRF. (a) and (b) are directed
graphs; (c) is a undirected graph.

segmented and diòerent segments are treated independently. Take handwriting recognition

for example, for the handwriting illustrated in Figure 3.6, when diòerent letters are treated

separately, distinguishing between the second letter ‘r’ and the fourth letter ‘c’ in isolation

is far from trivial. When the word is treated as a whole, in the context of the surround-

ing letters this task becomes much less error-prone [173]. hus, structured discriminative

models are better choices in classiûcation of the sequential data with structured labels. In

this section, various extensively used structured discriminativemodels, such as conditional

random ûelds (CRFs) [104] and structured SVMs1 [209, 210], will be discussed.

3.2.1 Conditional Random Fields

Conditional random ûelds (CRFs) were original proposed by Laòerty [104] in themachine

learning community, and this type of model has been widely used in various ûelds such

as natural language processing (NLP) and automatic speech recognition (ASR) [48]. CRFs

are discriminative models, where the conditional probability of the state sequence S =

{s1, . . . , sT} given the observation sequenceO = {o1, . . . ,oT} is modelled directly2.

For HMMs, which are generative models, the joint distribution between the state and

observation sequences is modelled:

p(S,O) =

T∏

t=1

P (st|st−1)p(ot|st) (3.26)

1 Strictly speaking, structured SVMs are not discriminativemodels, but discriminant functionswhichmap
the inputs to class labels directly.

2 It is worth noting that only linear-chain CRFs are considered in this work, and the state and observation
sequences have the same length.
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where P (st|st−1) is the state transition probability, and p(ot|st) is the state output proba-

bility as discussed in section 2.2. he corresponding graphical model is illustrated in Fig-

ure 3.7 (a). It is worth noting that the graphical model in Figure 2.3 is a speciûcation of

the HMM (in Figure 3.7 (a)) with GMM state output distribution. Given the joint distri-

bution p(S,O), the conditional distribution P (S|O) can be obtained through P (S|O) =

p(S,O)/p(O), whereas in maximum entropy Markov models (MEMMs) [121], the condi-

tional distribution of the state sequence given observations P (S|O) is modelled directly:

P (S|O) =
T∏

t=1

P (st|st−1,ot) (3.27)

where the distribution P (st|st−1,ot) is modelled by amaximum entropymodel (or multi-

nomial logistic regression), with form P (st|st−1,ot) ∝ exp
(
ηTφ(ot, st, st−1)

)
, as dis-

cussed in section 3.1.1. he graphical representation of the MEMM is illustrated in Fig-

ure 3.7 (b). Compared with the graphical model of the HMM (in Figure 3.7 (a)), the direc-

tion of the arcs from the states to the observations is reversed, that denotes the state distribu-

tions now are conditioned on the observations. Onemajor issue ofMEMMs is the label bias

problem [104]. In MEMMs, probability P (S|O) is factorised into terms of P (st|st−1,ot).
his means if there are very few states st that can follow st−1, then the role of the observa-

tion ot in distinguishing them is diminished [48]. In the extreme case when there is only

one outgoing transition from st−1= 2 to st (say state 1), then p(st= 1|st−1= 2,ot) = 1,

and consequently p(st 6= 1|st−1= 2,ot) = 0. hen the impact of ot is completely ignored

by the model. In MEMMs, the label bias problem arises because for each state the condi-

tional probabilityP (st|st−1,ot) is required to be locally normalized to sum to a probability

distribution [48].

he label bias problem can be addressed by CRFs [104], where the state sequence S is

modelled jointly (given the observation sequenceO) and a global normalisation is used for

the entire conditional distribution P (S|O,η) (with model parameters η), which can be

expressed as follows:

P (S|O,η) =
1

Z(O,η)
exp

(
ηTΦ

(
O, S

))
(3.28)

where Z(O,η) =
∑

S exp
(
ηTΦ

(
O, S

))
is a normalisation term that ensures P (S|O,η)

is a valid probability distribution. Φ
(
O, S

)1 is the joint feature vector, which can be ex-
1 In this thesis, the joint feature vector, that characterises the dependence between the observations and

the label sequence (where the label is a sequence rather than a single unit), is denoted as Φ(·) .
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pressed as the form consisting of acoustic and language features [209]:

Φ
(
O, S

)
=

[
φac
(
O, S

)

φlg
(
S
)

]
=

T∑

t=1

[
φ
(
ot, st

)

φ
(
st, st−1

)
]

(3.29)

where φ
(
ot, st

)
and φ

(
st, st−1

)
are the acoustic and language feature vectors for frame

ot. One simple form of the features is deûned as the suõcient statistics with respect to the

HMMs:

φ
(
ot, st

)
=




...
δ(st = i)
δ(st = i)ot

δ(st = i)diag(oto
T
t )

...



, ∀i (3.30)

φ
(
st, st−1

)
=




...
δ(st = i)

δ(st = i, st−1 = j)
...



, ∀i, j (3.31)

where δ(·) is the Kronecker delta. hus, the position of ot and diag(oto
T
t ) in the feature

vector φ(ot, st) depends on the state label i. he features φ(ot, st) are associated with

the state output probabilities, and the features φ(st, st−1) are associated with the HMM

transition probabilities. Alternative to the suõcient statistics with respect to the HMMs,

log-likelihoods and their partial derivatives [106, 148] also can be used as the features. he

form of the features based on log-likelihoods will be discussed in section 3.5.

3.2.2 Hidden Conditional Random Fields

In CRFs, the class labels are sate sequences, and the conditional distribution of the state

sequence given the observations P (S|O) is modelled. However, in some applications, the

class labels are not directly linked to the observations, and the underlying hidden variables

of the class needs to be considered. Speech recognition is a typical example, where the

conditional distribution of the word (or sub-word) sequence given observations P (W |O)

is modelled, and the state sequence is treated as hidden variables, which are marginalised

out in calculating the conditional distribution P (W |O). hus, hidden conditional random
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ûelds (HCRFs) [79, 145] were proposed to generalise CRFs to handle the hidden variables

underlying the class labels. In HCRFs, the conditional distribution of the word (or sub-

word) sequence W = {w1, . . . , wI} given the observation sequence O = {o1, . . . ,oT}
can be expressed as follows:

P (W |O,η) =
1

Z(O,η)

∑

S

exp
(
ηTΦ

(
O,W, S

))
(3.32)

where S = {s1, . . . , sT} is the state sequence corresponding to the observation sequence

O = {o1, . . . ,oT}, and the sum is over all possible state sequences S associated with label

W . η aremodel parameters andZ(O,η) =
∑

W

∑
S exp

(
ηTΦ

(
O,W, S

))
is the normal-

isation term. Compared with CRFs described in (3.28), in HCRFs the hidden variables are

marginalised out, and optimisation is no longer convex, so a global optimum on the train-

ing set is not guaranteed [48]. In (3.32), the formof the joint feature vector Φ
(
O,W, S

)
has

a similar form to that in CRFs (3.29):

Φ
(
O,W, S

)
=

[
φac
(
O,W, S

)

φlg
(
W,S

)
]

=
T∑

t=1

[
φ
(
ot, st

)

φ
(
st, st−1

)
]

(3.33)

where S is a state sequence associated with the word (or sub-word) sequenceW . φ(ot, st)

and φ(st, st−1) are acoustic and language feature vectors described in (3.30) and (3.31).

In CRFs and HCRFs, the model structure is embodied in the formation of joint fea-

ture vector Φ(·). he model parameters and joint feature vectors for a sentence can be

constructed by combining the local parameters and features associated with the states and

words (or sub-words) [209, 210]. his is similar to the HMM for an sentence, which is

formed by concatenating theHMM word (or sub-word) models.

3.2.3 Segmental Conditional Random Fields

Segmental conditional random ûelds (SCRFs) are the extension of CRFs. SCRFs relax the

Markov assumption from the frame level to the segment level. his means the Markov

assumption is not enforced on the observations within the segment, that allows to cap-

ture long-span dependencies [48]. his type of model is also known as the semi-Markov

CRF [154]. Let ρ = {ρ1, . . . , ρI} be an segmentation corresponding to observationsO =

{O(1), . . . ,O(I)} with label W = {w1, . . . , wI}, where O(i) is one segment of obser-

vations, and ρi gives segmentation information for the word (or sub-word) label wi, e.g.
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the index of the frames associated with label wi. he conditional distribution modelled by

SCRFs can be expressed as:

P (W |O,η) =
1

Z(O,η)

∑

ρ

exp
(
ηTΦ

(
O,W,ρ

))
(3.34)

his type ofmodel is also known as the conditional augmentedmodel (CAug) [106]. In the

model deûnition (3.34), the sum is over all possible segmentations ρ associated with label

W . Z(O,η) =
∑

W

∑
ρ exp

(
ηTΦ

(
O,W,ρ

))
is the normalisation term same as that in

CRFs and HCRFs. he joint feature vector Φ
(
O,W,ρ

)
allows the observations within a

segment to be related, rather than making conditional independence assumption on the

observations in CRFs andHCRFs [209]:

Φ
(
O,W,ρ

)
=

[
φac
(
O,W,ρ

)

φlg
(
W,ρ

)
]

=

|ρ|∑

i=1

[
φ
(
O(i), wi

)

φ
(
wi, wi−1

)
]

(3.35)

where |ρ| is the number of segments. φ(O(i), wi) and φ(wi, wi−1) are the segment level

acoustic and language feature vectors. Let {v1, . . . , vL} denote all unique sub-sentence

units (words or sub-words) in the dictionary, the acoustic feature vector can be expressed

as:

φ
(
O(i), wi

)
=




...
δ(wi = vl)ϕ

(
O(i)

)
...


 , ∀l (3.36)

where ϕ(·) is the feature vector for a segment, which maps the observations with various

length to a vector with ûxed dimension. One possible expression of ϕ(·) is comprised of

likelihoods:

ϕ
(
O(i)

)
=




log p
(
O(i)|v1

)
...

log p
(
O(i)|vL

)


 (3.37)

he language feature vectorφ
(
wi, wi−1

)
is related tounigram andbigramlanguagemodels,

andmight be described as [209]:

φ
(
wi, wi−1

)
=




...
δ(wi = v)

δ(wi = v, wi−1 = v′)
...



, ∀v, v′ (3.38)

where v and v′ are the possible words (or sub-words) in the dictionary. he graphical rep-

resentation of aHCRF is illustrated in Figure 3.8.
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wi wi+1

oτ
· · ·

ot ot+1
· · ·

ot′

Figure 3.8:he factor graph representation of a segmental CRF.

3.2.4 Structured Log-linear Models

In the precious subsection, segmentalCRFs (or conditional augmentedmodels)were intro-

duced. In this type ofmodel, the sumover all possible segmentations leads to a non-convex

optimisation problem and ineõciency in training. Analogous toViterbi decoding [46, 187],

where the likelihood is calculated by ûnding the most likely state sequence, here the most

likely segmentation ρ is used instead of summing over all possible segmentations [147].

hen segmental CRFs described in (3.34) can be approximated as a log-linear model:

P (W |O,η) ≈ 1

Z(O,η)
exp

(
ηTΦ

(
O,W,ρ

))
(3.39)

hemost likely segmentation ρ can be obtained from the generativemodel (HMM). Given

theHMMwith parametersλ, themost likely segmentationρ can be estimated bymaximis-

ing [54]:

ρλ = arg max
ρ

P (ρ)p(O|λ,ρ) (3.40)

where p(O|λ,ρ) is the likelihood given by the HMM. In this work, the probabilities of

choosing diòerent segments are supposed to be equal, namely P (ρ) is a uniform distri-

bution. Alternatively, the optimal segmentation obtained from discriminative models is

discussed in [210]. In this work, the best segmentation from discriminative model is only

considered in classiûcation, where the best segmentation aims to maximise the conditional

probability described in (3.39), i.e. max
ρ
ηTΦ

(
O,W,ρ

)
for the numerator term. hen clas-

siûcation with this log-linear model can be described as follows [210]:

Ŵ = arg max
W

{
max
ρ
ηTΦ

(
O,W,ρ

)}
(3.41)

his yields both the optimal word sequence and segmentation.

46



3.2 Structured DiscriminativeModels

It is worth noting that multinomial logistic regression discussed in section 3.1.1 and

CRFs in section 3.2.1 also belong to the framework of log-linear models, but with diòerent

deûnitions of the feature function Φ(·).

3.2.5 Structured SVMs

Structured SVMs are generalisations of SVMs to handle the sequential datawith structured

labels. Similar to the SVM, the structured SVM is a discriminant function, where the (se-

quential) input is mapped to a (sequential) label directly by maximising the discriminant

function:

Ŵ = arg max
W

{
ηTΦ

(
O,W,ρ

)}
(3.42)

where η are the model parameters. Φ(·) is the joint feature vector. One example is given

in (3.35) and various forms of the joint features will be discussed in detail in section 3.5. In

speech recognition, the segmentationρ is seldomknown. hus, in classiûcation the optimal

segmentation needs to be estimated with the class label:

(
Ŵ , ρ̂

)
= arg max

W,ρ

{
ηTΦ

(
O,W,ρ

)}
(3.43)

his is equivalent to classiûcation with log-linear models as described in (3.41).

Given the training dataD = {(O1,W1), . . . , (ON ,WN )} comprised of utterance and

label pairs, and the corresponding most likely segmentations {ρ1, . . . ,ρN} from HMMs

as described in (3.40). he training criterion of the structured SVM can be expressed as

follows:

min
η

{
1

2
||η||2 + C

N∑

n=1

ξn

}
, ∀n, ξn ≥ 0 (3.44)

s.t. ∀n, (W,ρ) 6= (Wn,ρn) :

ηTΦ(On,Wn,ρn)− ηTΦ(On,W,ρ) ≥ L(W,Wn)− ξn,

ξn ≥ 0

where (W,ρ) is any possible label and segmentation pair, and it is diòerent to the reference

andmost likely segmentation pair (Wn,ρn). L(W,Wn) is the loss function between label
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W and referenceWn. Similar to the SVM, the training criterion (3.44) can be written as

minimising follows:

1

2
||η||2 + C

N∑

n=1

[
max

W,ρ 6=Wn,ρn

{
L(W,Wn)−

(
ηTΦ

(
On,Wn,ρn

)
− ηTΦ

(
On,W,ρ

))}]

+

(3.45)

where
[
·
]
+

is the hinge loss deûned in (3.21). For each training instance, the best competing

label and segmentation pair (W,ρ) is found over all possible labels and segmentations1

except the reference with the corresponding segmentation (Wn,ρn).

3.2.5.1 Relationships with Log-linear Models

Structured SVMs are closely related to the log-linear models discussed in section 3.2.4.

Analogous to the relationship between multinomial logistic regression and the SVM (dis-

cussed in section 3.1.2.2), the structured SVM can be interpreted as large margin training

of the log-linear model described in (3.39) [210]. When the margin is deûned as the log-

posterior ratio of the log-linear models between the referenceWn and the best competing

labelW , the largemargin training criterion can be described asmaximising thismargin and

minimising the loss functionL(w,wn). By introducing a prior p(η), largemargin training

of the log-linear model described in (3.39) can be described as minimising [210]:

− log p(η) +
N∑

n=1

[
max

W,ρ 6=Wn,ρn

{
L(W,Wn)− log

(P (Wn|On,η)

P (W |On,η)

)}]

+

(3.46)

When the prior p(η) is a Gaussian distribution, p(η) = N (0, CI) ∝ exp(− 1
2C ||η||2),

with zero mean and scaled identitymatrix, and substituting the deûnition of the log-linear

model (3.39) into the large margin training criterion (3.46), the denominator terms of the

log-linear models can be cancelled out. hen, the training criterion (3.46) can be further

written as minimising:

1

2
||η||2 + C

N∑

n=1

[
max

W,ρ 6=Wn,ρn

{
L(W,Wn)−

(
ηTΦ(On,Wn,ρn)− ηTΦ(On,W,ρ)

)}]

+

(3.47)

1 hese possible labels and segmentations can be obtained from a denominator lattice [147, 209].
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3.3 Training Criteria for DiscriminativeModels

his is the training criterion of the structured SVM described in (3.45). In some applica-

tions, the prior knowledge on the model parameters η is available, then a non-zero mean

Gaussian distribution can be introduced, e.g. p(η) = N (µ, CI) ∝ exp(− 1
2C ||η − µ||2).

µ is the available model parameters, e.g. the parameters of the log-linear model trained

with the conditional maximum likelihood criterion. With this non-zero mean Gaussian

distribution, largemargin training of the log-linear model can be described as follows:

1

2
||η − µ||2 + C

N∑

n=1

[
max

W,ρ 6=Wn,ρn

{
L(W,Wn)−

(
ηTΦ(On,Wn,ρn)− ηTΦ(On,W,ρ)

)}]

+

(3.48)

3.3 Training Criteria forDiscriminativeModels

Diòerent structured discriminative models were discussed in the precious section. Simi-

lar to generative models, various training criteria can be employed in training these dis-

criminative models. In this section, the commonly used training criteria for discrimina-

tive models will be discussed. Let the training data for discriminative models be D =

{(O1,W1), . . . , (ON ,WN )}, which consist of utterance and reference pairs. Given these

training data, the model parameters can be estimated by maximising (or minimising) the

training criteria, and these criteria will be discussed in the following subsections.

3.3.1 Conditional Maximum Likelihood (CML)

Similar to maximum likelihood estimation for generative models, conditional maximum

likelihood (CML) training is extensively used in parameter estimation of discriminative

models. In CML estimation, given the training data D, the conditional likelihood of the

model parameters is maximised. he objective function of CML estimation can be ex-

pressed as follows:

FCML(η) =
N∑

n=1

log p(Wn|On,η) (3.49)

It isworth noting that this training criterion (3.49) has the same form as themaximummu-

tual information (MMI) training criterion (2.16) for the generativemodels. he diòerence is
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Figure 3.9:hemargin deûnition for discriminativemodels.

that in theMMI criterion the conditional distributions arewritten in the formof consisting

of likelihoods (from generativemodels) through Bayes’ rule as described in (2.17).

In CML training, the objective function (3.49) is to be maximised. Normally, the iter-

ative training approaches, such as gradient based algorithms, are used in parameter esti-

mation. For CRFs and log-linear models, the objective function is convex, hence a global

optimum can be found in parameter estimation; whereas, for hidden CRFs and segmental

CRFs, due to the sum over the latent variables, the objective function is no longer convex,

and a global optimum is not guaranteed [48].

3.3.2 Minimum Bayes Risk (MBR)

In discriminative training of generative models, minimum Bayes risk (MBR), which min-

imises the expected loss on the training data, is one of the most extensively used training

criteria. Similarly, this type of training criterion also can be applied to discriminativemod-

els. In MBR training, the objective function to beminimised can be expressed as follows:

FMBR(η) =
N∑

n=1

∑

W

P (W |On,η)L(W,Wn) (3.50)

whereW denotes all possibleword sequences. L(W,Wn) is the loss function, thatmeasures

how diòerent the word sequenceW and the referenceWn are. Analogous to MBR training

of generative models discussed in section 2.3.4, there are a number of deûnitions for the

loss function, and these deûnitions lead to diòerent meaningful training criteria, such as

theminimum word error (MWE) andminimum phone error (MPE) criteria.
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3.4 Adaptation for DiscriminativeModels

3.3.3 LargeMargin Training

In large margin training, the margin is deûned as the log-posterior ratio of the structured

discriminative models between the reference Wn and the best competing label W (this

margin deûnition is illustrated in Figure 3.9). hen the training criterion can be described

as minimising the inverse of this margin and the loss function L(W,Wn) [65]:

FLM(η) =
N∑

n=1

[
max
W 6=Wn

{
L(W,Wn)− log

(
P (Wn|On,η)

P (W |On,η)

)}]

+

(3.51)

where
[
·
]
+

is the hinge loss deûned in (3.21). hemaximum is found over all possible labels

W except the correct oneWn. his criterion (3.51) has the same form as the large margin

training criterion (2.23) for generativemodels. he diòerence is that for generativemodels

the conditional distributions P (W |O) are written in the form of consisting of likelihoods

through Bayes’ rule as described in equation (2.17).

For segmental CRFs (also apply to hidden CRFs), by substituting themodel deûnition

(3.34) into the largemargin training criterion (3.51), the denominator terms of the discrim-

inativemodels can be cancelled out. hen criterion (3.51) can be further written as follows:

FLM(η) =

N∑

n=1

[
convex︷ ︸︸ ︷

max
W 6=Wn

{
L(W,Wn) + log

∑

ρ

exp
(
ηTΦ(On,W,ρ)

)}

− log
∑

ρ

exp
(
ηTΦ(On,Wn,ρ)

)

︸ ︷︷ ︸
concave

]

+

(3.52)

his optimisation problem can be solved by using the concave-convex procedure (CCCP)

[204] and cutting plane algorithm [96], but eõciencymight be an issue. First, the sumover

all possible segments leads to ineõciency in training anddecoding. Moreover, this objective

function is not convex, although it is comprised of concave and convex functions. For Log-

linearmodels (and CRFs), this largemargin training criterion (3.51) (with aGaussian prior)

is equivalent to the training criterion of the structured SVM as discussed in section 3.2.5.1.

3.4 Adaptation forDiscriminativeModels

As discussed in section 2.4, in speech recognition the mismatch between the training and

test data is a common issue. In order to address this mismatch problem, a range of adapta-
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tion approaches, such asmaximum aposteriori (MAP) and linear transform based schemes,

have been proposed. Analogously, for discriminative models, adaptation also can be ap-

plied, and the adaptation approaches can be split into three broad categories: general adap-

tation, linear transform based approaches and feature adaptation [65]. For generativemod-

els, themajority of adaptation approaches are based onmaximum likelihood (ML),whereas

for discriminativemodels, adaptation is usually based on conditional maximum likelihood

(CML).

In general adaptation approaches, there is no assumption made on the nature of the

features in themodel. Maximum a posteriori (MAP) [27, 170] is a typical example. Similar

to adaptation for generativemodels discussed in section 2.4.1,MAP adaptation for discrim-

inativemodels can be described as maximising the follows:

FMAP(η) = log p(η) + FCML(η)

= log p(η) +
N∑

n=1

log p(Wn|On,η) (3.53)

where FCML(η) is the CML criterion described in (3.49), and p(η) is the prior distribution

over parameters η. his prior distribution is o�en chosen to be a Gaussian distribution.

When the Gaussian prior has the non-zero mean and scaled identity covariance matrix,

namely p(η) = N (µ, CI) ∝ exp
(
− 1

2C ||η − µ||2
)
,MAP adaptation described in (3.53)

can be expressed as the CML criterion with a regularisation term:

F ′MAP(η) = − 1

2C
||η − µ||2 + FCML(η) (3.54)

It is worth noting that the Gaussian prior also can be used in large margin training (3.51).

As discussed in section 3.2.5.1, when the discriminativemodels are log-linear models, large

margin training with a Gaussian prior is equivalent to the training criterion of structured

SVMs.

Although the general approaches can be applied in discriminativemodels, they do not

take advantage of any structure in the features [65]. Alternative approaches, such as linear

transform based schemes, have been proposed in [117, 169]. hese approaches make use of

linear transforms similar to that for HMMs discussed in section 2.4.2. he third form of

adaptation is related to feature compensation schemes used in generative models [65]. In

this approach, the features aremodiûed to be independent of the speaker or environment,
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3.5 Features for DiscriminativeModels

rather than adapting themodel parameters. hese adapted features can be generated based

on generativemodels, and various adaptation techniques (some of these were discussed in

section 2.4) can used for these generativemodels. he features based on generativemodels

will be discussed in detail in the following section.

3.5 Features forDiscriminativeModels

Various structured discriminativemodels have been introduced in section 3.2. In this sec-

tion, the possible forms of the feature vector for segmental CRFs, log-linear models and

structured SVMs will be discussed in detail. In general, the features for these discrimina-

tive models can be expressed as a form consisting of the acoustic and language features1

[209]:

Φ
(
O,W,ρ

)
=

[
φac
(
O,W,ρ

)

φlg
(
W,ρ

)
]

(3.55)

where Φ(·) is the joint feature function, which characterise the dependencies between the

observations and label sequence, and the corresponding feature vectorΦ(O,W,ρ) is known

as the joint feature vector. O = {o1, . . . ,oT} are the observations (or utterance),W is the

class label (or sentence)which is aword (or sub-word) sequence, andρ is the segmentation.

Given the segmentation ρ = {ρ1, . . . , ρI} where I is the number of segments and ρi gives

information for the ith segment, e.g. the frames index associated with the ith segment, the

observations and corresponding label sequence can be described asO = {O(1), . . . ,O(I)}
andW = {w1, . . . , wI}, whereO(i) is a segment and wi is a word or sub-word unit. his

type ofnotation is used throughout this thesis. In the feature deûnition (3.55),φac
(
O,W,ρ

)

are the acoustic features which are related to the observation statistics, and φlg
(
W,ρ

)
are

the language features that relate to pronunciation probabilities andword statistics [65, 209].

Normally, the acoustic features for speech recognition can be divided into to two categories,

namely the frame level and segment level features. he acoustic features can be expressed

in a general form of summing over the features for all segments:

φac
(
O,W,ρ

)
=

I∑

i=1

φ
(
O(i), wi, ρi

)
(3.56)

1 In some literatures, the language features are also called supra-segmental features [65, 147].

53



CHAPTER 3. DISCRIMINATIVEMODELS

where φ
(
O(i), wi, ρi

)
is the feature vector for one segment. In the following subsections,

the forms of the acoustic and language features will be discussed in detail.

3.5.1 Frame Level Features

When using frame level features, in this thesis another type of hidden information is con-

sidered as being associated with the segmentation ρ, i.e. the state index S = {s1, . . . , sT}
corresponding to the observationsO = {o1, . . . ,oT}. LetL be the total number of unique

states, the frame level features for a segment then can be expressed as follows [65]:

φ
(
O(i), wi, ρi

)
=
∑

t∈{ρi}
φ(ot, st) =

∑

t∈{ρi}



δ(st, 1)ϕ(ot)

...
δ(st, L)ϕ(ot)


 (3.57)

where {ρi} denotes the index of the frames associated with the ith segment, and δ(·) is

the Kronecker delta. It is worth noting that since the segmentation information is given,

st (where t ∈ {ρi}) only denotes the state associated with wi, and this also applies to the

following discussion. In (3.57) ϕ(ot) is the feature (vector) for observation ot, and various

deûnitions of ϕ(ot) will be discussed in the following subsections. By substituting this

form of frame level features (3.57) in, the acoustic features deûned in (3.56) can be further

expressed as follows:

φac
(
O,W,ρ

)
=

T∑

t=1

φ(ot, st) =
T∑

t=1



δ(st, 1)ϕ(ot)

...
δ(st, L)ϕ(ot)


 (3.58)

3.5.1.1 Gaussian Statistic and Log-likelihood Features

A simple form of the features ϕ(ot) is the one used in HCRFs [79], which consists of the

Gaussian suõcient statistics of observations:

ϕ(ot) =




1
ot

diag(oto
T
t )


 (3.59)

when the parameters corresponding to this feature vector are:

ηt =



−1

2

(
k log(2π) + log |Σ|+ log

(
µTΣ−1µ

))

Σ−1µ
−1

2diag
(
Σ−1

)


 (3.60)
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where k is the dimension of the observation ot. Given this parameter deûnition (3.60),

the dot product of the feature vector and parameters is the log-likelihood for a Gaussian

distribution1:

ηT
tϕ(ot) = logN (ot;µ,Σ) (3.61)

where µ is themean of the Gaussian distribution, andΣ is a diagonal covariancematrix.

By using this form of parameters (3.60), state output distributions of the HMM can be

retrieved. his is the reason why CRFs and HCRFs can retrieve the HMM probabilities

[79], which means the HMM baseline can be achieved by setting the parameters in a fash-

ion described in (3.60). his also motivates the use of log-likelihoods as features, where

the dimensionality of the features can be dramatically reduced compared with the Gaus-

sian statistic features. he simplest form of the log-likelihood features for an frame can be

expressed as follows:

ϕ(ot) =
[

log p(ot|st)
]

(3.62)

where p(ot|st) is the state output distribution. hus, it is straightforward that the state

output distribution can be retrieved by setting the corresponding parameter to be 1. In

additional to log-likelihoods, features can be based on classiûerswhich provide information

about the discrimination between word (or sub-word) classes [65]. Multilayer perceptron

(MLP) [15] is one such example, which provides the posterior probability of phone units.

In terms of log-likelihood features, when the log-likelihoods are given by the DNN-

HMM hybrid system, where the likelihoods are obtained according to Bayes’ rule as de-

scribed in equation (2.9): p(ot|st) ∝ P (st|ot)/P (st)
2. he so�max activation function

is o�en used for the output layer of the DNN. Let the outputs of the last hidden layer be

h, andA be the weights for the output layer, then the dot production of the feature ϕ(ot)

described in (3.62) and the corresponding parameter ηt can be expressed as:

ηtϕ(ot) = ηtA
T
sth+ ηtf(st) (3.63)

where Ast is the row of A that is associated with state st, and f(st) is a state dependent

function, which is the logarithm of the normalisation term that ensures p(ot|st) be a valid
1 Without loss of generality, a single Gaussian distribution is considered here.
2 Since p(ot) is not a function of the state st, and it has a equal impact on the DNN outputs, hence it is le�

out in the analysis.
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distribution. According to this expression, it is interesting to note that the features extracted

from the hybrid system can be viewed as being transformed from the hidden layer outputs

[38]. As described in (3.63), discriminativemodels introduce additional parameters in the

feature transformation, thus optimal transforms might be learnt with an appropriate train-

ing criterion.

3.5.1.2 Features Based on Multiple Systems

In general, diòerent systems have various characteristics,make diòerent errors, and are ex-

pected to provide complementary advantages. hus, in speech recognition, system combi-

nation approaches are of growing interest, and state-of-the-art speech recognisers typically

utilisemultiple systems tomake ensemble decisions. Analogously, features can be extracted

from multiple systems. In this work, only the log-likelihood based features are considered.

he features for an frame based onD diòerent systems can be described as:

ϕ(ot) =




log p1(ot|st)
...

log pD(ot|st)


 (3.64)

where pd(ot|st) is the log-likelihood given by the dth system. According to the feature deû-

nition (3.64), in generating the features, the likelihoods are given by the output distributions

of the same state associated diòerent systems. hus, these diòerent systems share the same

HMM topology as that in the joint decoding system discussed in section 2.2.

When using frame level features based on multiple systems, by substituting the feature

deûnitions (3.64), (3.58) and (3.55) in, decoding with log-linear models described in (3.41)

can be further expressed as follows1:

Ŵ = arg max
W

{
max
S

{
ηlgφlg

(
W,ρ

)
+

T∑

t=1

L∑

j=1

δ(st, j)

D∑

d=1

ηj,d log pd(ot|st)
}}

(3.65)

where t is the index for frames, j is the jth unique state, and d is the index for systems.

ηlg and ηj,d are the parameters corresponding to features φlg
(
W,ρ

)2 and log pd(ot|st)3,
1 As discussed at the beginning of section 3.5.1, the hidden states S are considered as being associatedwith

the segmentation ρ. When using frame-level features,maximisation yields the best word and state sequences.
2 he languagemodel features φlg(W,ρ) are the elements of the joint feature vector described in (3.55).
3 log pd(ot|st) is the dth element of the feature vector described in (3.64).
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and they are elements of the wholemodel parameters η. For the tth frame, in decoding as

described in (3.65), the acoustic score computed for frame ot can be described as:

L(ot|st=j) =
D∑

d=1

ηj,d log pd(ot|st=j) (3.66)

his is the same as the combined score used in joint decoding described in (2.10), but

with more general state dependent combination weights ηT
j =

[
ηj,1, . . . , ηj,D

]
, which

vary with state j1. When the language score ηlgφlg(W,ρ) is comprised of the state tran-

sition probability P (S) and the probability given by the language model P (W ), namely

ηlgφlg(W,ρ) = logP (S) + logP (W ), decoding with log-linear models becomes HMM

Viterbi decoding (using combined state output score (3.66)), and it is equivalent to standard

joint decoding discussed in section 2.2.

3.5.2 Segment Level Features

Various forms of frame level features were discussed in the previous subsection, where the

features for utterances are comprised of feature based on frames. his is just one option

for feature extraction. Rather than extracting features for each frame ot, feature generation

can be based on segmentsO(i). here are a number of advantages for this type of (segment

level) features, e.g. the features could be expressed in amore compact form, and long-span

dependencies within the segment are enabled [48]. In this subsection, the segment level

features based on log-likelihoods will be discussed.

For segment level features, the general form of the features for an segment can be ex-

pressed as follows [65]:

φ
(
O(i), wi, ρi

)
=



δ(wi, v1)ϕ

(
O(i)

)
...

δ(wi, vL)ϕ
(
O(i)

)


 (3.67)

where {v1, . . . , vL} denote all possible sub-sentence units (such as words or tri-phones) in

the dictionary, and δ(·) is the Kronecker delta. ϕ(O(i)) is the feature vector for segment

O(i), and the form of the feature vector ϕ(O(i)) will be discussed in the following sub-

section. By substituting this form of segment level features (3.67) in, the acoustic features
1 Asdescribed in equation (2.10), in standard jointdecoding the combinationweights are systemdependent

and do not vary with state j.
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… … … …

…
…

… …

ϕ
(
O(i)

)
:

φac
(
O,W,ρ

)
:

··
·

O,ρ:
W : “nine” “zero” “one” “nine” +

zero

one

··
·

nine

Figure 3.10: Constructing the segment level acoustic features.

deûned in (3.56) can be further described as follows:

φac
(
O,W,ρ

)
=

I∑

i=1

φ
(
O(i), wi, ρi

)
=

I∑

i=1



δ(wi, v1)ϕ

(
O(i)

)
...

δ(wi, vL)ϕ
(
O(i)

)


 (3.68)

An example of constructing the segment level acoustic features is illustrated in Figure 3.10.

3.5.2.1 Log-likelihood Features

In speech recognition log-likelihood features are one of the most commonly used forms,

and for this type of features ϕ(O(i)) can be expressed as follows [196, 209]:

ϕ
(
O(i)

)
=




log p
(
O(i)|v1

)
...

log p
(
O(i)|vL

)


 (3.69)

where p(O(i)|vl) is the likelihood given by generativemodel associatedwith label vl. When

each segment corresponds a tri-phone1, the number of all possible unique tri-phones L is

very large. hen, the dimension of the feature vector ϕ(O(i)) is very high. his leads to

ineõciency in training. Normally,whenusing tri-phones, the featuresϕ(O(i)) onlyuse log-

likelihoods corresponding to the tri-phones having the same context with wi (which is the

label corresponds toO(i)). For example, when wi = “b-uh+k”, only themodels associated

with the tri-phones having the form “b-∗+k” (where ∗ denotes all possible mono-phones)

1 he following discussion also applies to the systems using graphemes with context information.
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are used in generating the log-likelihoods:

ϕ
(
O(i)

)
=




log p
(
O(i)|“b-aa+k”

)

log p
(
O(i)|“b-ae+k”

)
...

log p
(
O(i)|“b-zh+k”

)


 (3.70)

his can signiûcantly reduce the dimensionality of the features, and this formof setting can

also be applied to the features based onmultiple systemswhichwill be discussed in the next

subsection.

Let the parameters corresponding to features (3.68) be
[
η(v1)T, . . . ,η(vL)T

]T. Analo-

gous to the discussion for the frame level log-likelihood features, let the score ηlgφlg(W,ρ)

be the probability P (W ) given by the language model, the HMM probability can be re-

trieved by setting the elements of the parameters associated with the correct label to be 1

and others 0, namely η(v1) =
[
1, 0, . . . , 0

]
, · · · ,η(vL) =

[
0, 0, . . . , 1

]
. his means the

HMM baseline can be achieved by conûguring the parameters in this fashion.

In addition to log-likelihoods, the derivatives of the log-likelihoods also can be used in

the features:

ϕ
(
O(i)

)
=




log p
(
O(i)|v1

)

∇λ log p
(
O(i)|v1

)
...

log p
(
O(i)|vL

)

∇λ log p
(
O(i)|vL

)




(3.71)

where λ are the parameters of the generativemodel, and∇λ represents the derivative with

respect to λ. here are a number of advantage to using derivative features, e.g. if the gener-

ativemodel is an HMM then the resulting features do not have the same underlying condi-

tional independence assumptions of the HMM [65, 209], moreover the derivative features

can providemore discriminative information [109, 148, 209].

3.5.2.2 Features Based on Multiple Systems

In section 3.5.1.2 the frame level features based on multiple systems were discussed. Analo-

gously, the segment level features also can be based onmultiple systems. LetD be the num-

ber of systems used in feature generation. One form of the segment level features ϕ(O(i))
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can be expressed as follows [38]:

ϕ
(
O(i)

)
=




log p1
(
O(i)|v1

)
...

log p1
(
O(i)|vL

)




features from system 1

...
log pD

(
O(i)|v1

)
...

log pD
(
O(i)|vL

)




features from systemD




(3.72)

his type of features has been studied in work [38], where two systems were used in feature

generation. Since the features use the log-likelihoods not only from the correct labels, but

also from the competing ones, the dimensionality of the feature vector is very high, and this

leads to ineõciency in training. Alternatively, one simpliûed form can be used [199]:

ϕ
(
O(i)

)
=




log p1
(
O(i)|wi

)
...

log pD
(
O(i)|wi

)


 (3.73)

where only the log-likelihoods associatedwith the correct labelswi are used in feature gen-

eration. In this thesis, this type of features (3.73) will be examined in the experimental

section. he commonly used acoustic features are tabulated in Table 3.1.

3.5.3 Language Features

he form of the language features are mainly associated with the state, phone and word

sequence [65]. When using frame level features, the segmentation also speciûes the state

information. hen one of the simplest forms for language features is based on the state

transition features [79]:

φlg
(
W,ρ

)
=

T∑

t=1




...
δ(st = i)

δ(st = i, st−1 = j)
...



, ∀i, j (3.74)

where T is the number of frames. i and j denote any possible states pair which speciûes a

valid state transition.
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Feature Type Representation Papers

Frame Level

Gaussian Statistics ϕ(ot) =




1
ot

diag(oto
T
t )


 [79]

Derivatives ϕ(ot) =




...
log p(ot|s)
∇λ log p(ot|s)...


 , ∀s [109, 148]

from Multi-Systems ϕ(ot) =




log p1(ot|st)
...

log pD(ot|st)


 [199]

Segment Level
Derivatives ϕ

(
O(i)

)
=




...
log p

(
O(i)|v

)

∇λ log p
(
O(i)|v

)
...


,∀v [148]

from Multi-Systems ϕ
(
O(i)

)
=




log p1
(
O(i)|wi

)
...

log pD
(
O(i)|wi

)


 [198, 199]

Table 3.1:he commonly used acoustic features.

For segment level features, the corresponding language features can be based on uni-

gram and bigram features:

φlg
(
W,ρ

)
=

I∑

i=1




...
δ(wi = v)

δ(wi = v, wi−1 = v′)
...



, ∀v, v′ (3.75)

where I is the number of segments. v and v′ denotes any possible sub-sentence units, such

aswords, in the dictionary. Another extensively used formof the language features is based

on the probability given by the languagemodel [209]:

φlg
(
W,ρ

)
=
[

logP (W )
]

(3.76)

where P (W ) is the probability of the word sequenceW given by the languagemodel, e.g.

the n-gram language model. his type of language features (3.76) will be examined in the

experimental section.

61



CHAPTER 3. DISCRIMINATIVEMODELS

3.6 Summary

In this chapter, various unstructured discriminativemodels have been introduced. For un-

structured models, the structure of the class labels is not considered and each class label

is treated as a single (atomic) unit, these models cannot be directly applied to continuous

speech recognition. hus, the framework of acoustic code breaking was discussed, where

the continuous speech is segmented into segments, and then each segment is treated inde-

pendently and classiûed separately. Rather than treating diòerent speech segments inde-

pendently, structured discriminativemodels can be employed in continuous speech recog-

nition directly. In structured models the label structure is considered, e.g. diòerent sen-

tences share the same common set of sub-sentence units (such as words or phones). Since

the features play a signiûcant role in discriminativemodels, diòerent forms of featureswere

also discussed. In general these features can be divided up into the acoustic features and the

language features, and various forms of the acoustic features are summarised in Table 3.1.
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Chapter 4

BayesianNon-parametricModels

In the previous sections, various commonly used parametric models (including both the

generative and discriminative models) in speech recognition were discussed, where o de-

notes a speech observation vector, λ and η indicate the model parameters for generative

and discriminative models in speech recognition. In this section, a general discussion on

Bayesian non-parametric models will be given, and a more general form of notations will

be used, e.g. x denotes the input vector, and G indicates the wholemodel parameter set.

4.1 Motivations

Maximumlikelihood (ML) estimation [89] discussed in section 2.3.1 is one of themost com-

monly used estimatemethods for parametricmodels. In ML estimation, themodel param-

eters are considered as ûxed but unknown values, and the parameters can be estimated by

maximising the likelihood function. For example, given a parametric model p(x|G) with

training dataD = {x1, · · · ,xN}, themodel parameters G can be estimated bymaximising

the likelihood function:

Ĝ = arg max
G

∏

n

p(xn|G) (4.1)

In maximum likelihood estimation, since themodel parameters are estimated bymax-

imising the likelihood given the training data, extreme conclusions might be drawn, espe-
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ciallywhen the number of training data is relatively small. his is also known as over-ûtting.

In order to mitigate this problem, Bayesian approaches can be employed. In Bayesian ap-

proaches, the model parameters are considered as random variables, and a prior distribu-

tion p(G) is used to express the uncertainty of these parameters. Whenmaking predictions,

all themodel parameters aremarginalised out:

p(x|D) =

∫
p(x|G)p(G|D)dG (4.2)

his is called the predictive distribution, which is the distribution of the unobserved data

(prediction) conditional on the observed ones [166]. In equation (4.2), the posterior distri-

bution p(G|D) can be obtained through Bayes’ rule:

p(G|D) ∝ p(G)
∏

n

p(xn|G) (4.3)

When more data are observed, the posterior distribution can be viewed as the prior, and

the new posterior distribution can be obtained through Bayes’ rule described in (4.3). his

motivatesmaximum a posteriori (MAP) to be an adaptation approach in speech recognition

[66, 68]. In MAP estimation, the model parameters can be estimated by maximising the

posterior distribution described in (4.3).

In parametric approaches, the complexity of the model needs to be determined in ad-

vance, e.g. specifying the number of states in a hidden Markov model. In order to avoid

the problem of setting model complexity, Bayesian non-parametricmodels can be applied,

e.g. the inûnite Gaussian mixture model (iGMM) was proposed to sidestep the problem

of choosing component number in GMMs [149]. For parametric models, the number of

parameters is ûnite and predetermined. In contrast, for non-parametricmodels, the num-

ber of parameters is inûnite, namely, the size of the parameter set G may be inûnite. In

Bayesian non-parametricmodels, a prior distribution is deûned on the inûnite dimensional

parameter space. Given the training data (or observed data), data analysis is performed by

posterior inference, computing the posterior distribution of themodel parameters given the

observed data. Rather than specifying themodel complexity in advance (parametricmod-

els), the model complexity is part of the posterior inference for Bayesian non-parametric

models. When making predictions, the posterior distribution of themodel parameters can

be integrated over, eòectively averaging over models of all possible complexity [50, 70, 133].

Suppose the model complexity is denoted by M , e.g. the number of components in

themixturemodel, the predictive distribution for Bayesian non-parametricmodels can be
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obtained bymarginalising over all themodel parameters (including themodel complexity).

his might be expressed as follows:

p(x|D) =
∑

M

∫
p(x|GM ,M)p(GM ,M |D)dGM (4.4)

where GM denotes the model parameters associated with model complexityM . Since the

complexity of themodel is considered, the posterior distribution of themodel parameters

p(GM ,M |D) is extremely complicated or does not have an analytical form. his leads to

intractability in calculating the predictive distribution (4.4). hus, approximate methods

need to be applied, e.g. theMonte Carlo (MC) approaches [6, 16].

4.1.1 De Finetti’s heorem

In the previous section, themotivation for Bayesian non-parametricmodelswas discussed.

his section will examine de Finetti’s theorem [45], which is o�en taken as a justiûcation

for Bayesian non-parametricmodels.

Consider a sequence of variables {x1, · · · ,xN}. hese variables are exchangeable, if

any permutation of their indices has equal probability:

p
(
x1, · · · ,xN

)
= p
(
xσ(1), · · · ,xσ(N)

)
(4.5)

where {σ(1), · · · , σ(N)} is any permutation (or reordering) of {1, · · · , N}. his deûni-

tion (4.5) can be extended to the inûnite situation. An inûnite sequence {x1,x2, · · · } is

inûnite exchangeable, if any ûnite subset of the variables is exchangeable [11, 69]. Exchange-

ability is a reasonable assumption, since it is common that the indices of variables are only

chosen to distinguish from each other. Exchangeability re�ects the assumption that the

variables do not depend on their indices although they might be dependent on each other.

Moreover, inûnite exchangeabilitymakes themodel unaòected by the unobserved data (e.g.

the test data). Comparedwith the independently and identically distributed (i.i.d.) assump-

tion, exchangeability is amuchweaker assumption, and the i.i.d. assumption automatically

results in exchangeability of the sequence [133, 168, 177].

De Finetti’s theorem states that for any inûnity exchangeable sequence of variables {x1,

x2, · · · }, where xn ∈ X , there exists a random variable set G, such that the joint distribu-
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tion of anyN (N ≥ 1) variables satisûes:

p(x1, · · · ,xN) =

∫
p(G)

N∏

n=1

p(xn|G)dG (4.6)

where p(G) is the prior distribution over parameters G. In de Finetti’s theorem,whenX is a

ûnite dimensional discrete space, G are ûnite-dimensional. When X is a continuous space,

G are inûnite-dimensional (typically a random measure).

According to de Finetti’s theorem described in (4.6), exchangeability automatically im-

plies the existence of a Bayesianmodelwith random latent parameters G. hus, in Bayesian

models the assumption, that is the existence of randomly distributed parameters, is not a

modelling hypothesis, but amathematical consequence of the data’s properties [133]. When

the observations are continuous, the parameters G are inûnite-dimensional, since there is

no ûnite parameterisation for the space of continuous densities [133, 168]. his implies the

number of parameters in the Bayesian model is inûnite. he Bayesian model then becomes

a Bayesian non-parametricmodel. hus, de Finetti’s theorem is considered as the justiûca-

tion of Bayesian non-parametricmodels.

In de Finetti’s theorem, themodel parameter set G is typically a random measure. he

Dirichlet process (DP) [18, 44, 160] deûnes a distribution over probability measures with

many attractive properties, and iswidely used in practice due to its simplicity and the com-

putational eõciency in inference. hismotivates a class of Bayesian non-parametricmodels

based on Dirichlet processes which will be further discussed in the following sections.

4.2 Bayesian Approaches

In the previous section, themotivation for employingBayesian non-parametricmodels and

de Finetti’s theoremwere discussed. his sectionwill brie�y introduce Bayesian approaches

for generativemodels and discriminativemodels.

4.2.1 Bayesian Inference

In terms of a generativemodel, a frequentist point of viewmay be adopted,where themodel

parameters are considered as ûxed but unknown, and the values of the parameters are deter-

mined by a estimator (or criterion), e.g. themaximum likelihood (ML) estimator described

66



4.2 Bayesian Approaches

in (4.1). hese estimated parameters then can be used in making predictions. As discussed

in the previous section,ML estimation might lead to over-ûtting. Bayesian approaches are

an alternative. Compared with frequentist schemes, Bayesian approaches employ a prior

distribution over themodel parameters to express the uncertainty of these parameters be-

fore observing the data, and make precise revisions of uncertainty in the light of new evi-

dence. he revised distribution is expressed in the form of a posterior distribution [16, 81].

As described in (4.2), when making predictions, all themodel parameters aremarginalised

out:

p(x|D) =

∫
p(x|G)p(G|D)dG (4.7)

his is called the predictive distribution [166]. For a generativemodel, the posterior distri-

bution p(G|D) in equation (4.7) can be obtained according to Bayes’ rule:

p(G|D) ∝ p(G|Λ)
∏

n

p(xn|G) (4.8)

where p(G|Λ) is a prior distribution with hyperparameters Λ. It is worth noting that the

maximum likelihood estimate is the maximum of the posterior distribution described in

(4.8) without considering the prior distribution p(G|Λ) (or when the prior is a uniform

distribution). In ML estimation, the likelihood function is employed to estimate themodel

parameters,whereasBayesian approaches utilise the likelihood function to update the prior

beliefs.

In the posterior distribution described in (4.8), the prior distribution p(G|Λ) captures

any available knowledge about the data generation process. he hyperparameters Λ can be

set to some ûxed value based on our prior beliefs [168]. A fully Bayesian analysis places a

prior distribution p(Λ) on the hyperparameters. In practice, an empirical Bayesian method

is o�en applied, inwhich the hyperparameters Λ are estimated bymaximising themarginal

likelihood of the training data:

Λ̂ = arg max
Λ

∫
p(G|Λ)

∏

n

p(xn|G)dG (4.9)

As described in equation (4.7), the predictive distribution is obtained by integrating

over all themodel parameters. he posterior distribution described in the right hand side of

(4.8) is un-normalised. When the normalisation term of the posterior distribution p(G|D)

is not possible to compute, or the posterior distribution does not have a closed form, the
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integral by deûnition in calculating the predictive distribution (4.7) becomes intractable.

hen, approximate methods such as Monte Carlo (MC) approaches [6] can be applied. In

theMC approach, the integral in the predictive distribution (4.7) can be approximated by

summing overK samples:

p(x|D) ≈ 1

K

K∑

k=1

p(x|G(k)) (4.10)

where the samples {G(1), . . . ,G(K)} are drawn from the posterior distribution p(G|D) de-

scribed in (4.8). Alternative to MC approaches [6], a point estimate scheme can be applied,

in which themodel parameters G are estimated by maximising themodel posterior distri-

bution described in (4.8):

Ĝ = arg max
G

p(G|D) = arg max
G

p(G|Λ)
∏

n

p(xn|G) (4.11)

his is called maximum a posteriori (MAP) estimation. Compared with ML estimation

described in (4.1), a prior distribution is incorporated in MAP estimation. hus,MAP esti-

mation can be viewed as a regularisation ofML estimation. Given the point estimated pa-

rameters Ĝ, the posterior distribution of the model parameters can be written in the form

of a Dirac delta function, namely p(G|D) ≈ δ(G, Ĝ). hen, the predictive distribution

described in (4.7) becomes:

p(x|D) ≈
∫
p(x|G)δ(G, Ĝ)dG = p(x|Ĝ) (4.12)

4.2.2 Conditional Bayesian Inference

For a classiûcation task, a discriminative model, which models the posterior distribution

P (w|x) directly,might be preferred. One reason for selecting discriminativemodels is that

they do not make any assumption on the distribution of the input data, and it is not nec-

essary to model the density p(x|w), Instead thesemodels focus on the boundary between

classes. A simple example is illustrated in Figure 3.1 of Chapter 3. he complicated structure

in the probability density function has little eòect on the posterior probabilities. herefore,

it is not always necessary to compute the joint distribution. his is the main reason why

discriminativemodels have been widely and successfully used [105, 132, 183].
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For the discriminative model P (w|x,G), which gives the conditional distribution of

the class w given the observation x, with model parameters G, assume the training data

are D = {(x1, w1), . . . , (xN , wN)},ML estimation for the generative model described in

equation (4.1) becomes conditional maximum likelihood (CML) estimation:

Ĝ = arg max
G

∏

n

P (wn|xn,G) (4.13)

Under a Bayesian setting, the model parameters G are given a prior distribution, and

Bayes’ rule is used to update the distribution a�er new evidence is observed. Whenmaking

predictions, similar to the predictive distribution for a generativemodel described in (4.7),

the class posterior distribution1 for the discriminative model can be obtained by marginal-

ising out all themodel parameters [17, 105]:

P (w|x,D) =

∫
P (w|x,G)p(G|D)dG (4.14)

Analogous to the posterior distribution of model parameters for a generative model de-

scribed in (4.8), the posterior distribution p(G|D) can be obtained according to Bayes’ rule:

p(G|D) ∝ p(G|Λ)
∏

n

P (wn|xn,G) (4.15)

where p(G|Λ) is the prior distribution of the model parameters, and Λ are hyperparame-

ters. Normally, neither the posterior distribution p(G|D) nor the integral in the class pos-

terior distribution (4.14) is tractable. Analogous to the approximation made for generative

models (4.10),Monte Carlo (MC) approaches can be applied to approximate the class pos-

terior distribution (4.14):

P (w|x,D) ≈ 1

K

K∑

k=1

P (w|x,G(k)) (4.16)

where the samples {G(1), . . . ,G(K)} are drawn from the posterior distribution p(G|D) de-

scribed in (4.15).

As discussed in section 4.2.1, in addition to MC approaches, MAP estimation (4.11) (a

point estimate scheme) can also be applied. MAP estimation for discriminativemodels can

be described as:

Ĝ = arg max
G

p(G|D) = arg max
G

p(G|Λ)
∏

n

p(wn|xn,G) (4.17)

1 To distinguish from the predictive distribution of the generativemodel, the predictive distribution of the
discriminativemodel is called the class posterior distribution throughout this thesis.
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Θ

A1 A2

A3

A4

A5

A6

Figure 4.1: A possible partition {A1, · · · ,A6} of the set Θ.

Given the point estimated parameters Ĥ , the posteriordistribution of themodel parameters

can be written in the form of a Dirac delta function, namely p(G|D) ≈ δ(G, Ĝ). hen, the

class posterior distribution described in (4.14) can be further written as:

P (w|x,D) ≈
∫
P (w|x,G)δ(G, Ĝ)dG = P (w|x, Ĝ) (4.18)

4.3 Dirichlet Processes

In the previous sections, the basic ideas of Bayesian inference were introduced. his sec-

tion will discuss the Dirichlet process (DP) [44], which is a distribution over distributions

with a wide support that is the space of all (discrete) distributions. he Dirichlet process is

one of the most widely used stochastic processes in Bayesian non-parametric models due

to its simplicity, wide coverage of the distributions, and tractability in posterior inference.

However, the formal deûnition of the Dirichlet process does not provide a mechanism to

sample from this process. Two practical representations of the Dirichlet process, called the

stick-breaking construction [160] and the Chinese restaurant process (CRP) [138], will be in-

troduced in this section. he stick-breaking process andChinese restaurant process provide

mechanisms to draw samples and predict future observations from the Dirichlet process.

Since theDirichlet process is discrete,which is too limited tomodel the continuous data, the

inûnitemixturemodels based on the two practical representations of the Dirichlet process

will also be discussed.
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4.3.1 he Deûnition of the Dirichlet Process

Let Θ be the set of all possible outcomes (which is sometimes called the sample space), e.g.

heads and tails when tossing a coin, a ûnitemeasurable partition {A1, · · · ,AL} on Θ can

be deûned as:
L⋃

l=1

Al = Θ Al ∩Ai = ∅ ∀i 6= l (4.19)

where ∅ is the empty set. One possible partition of the set Θ is illustrated in Figure 4.1.

Some complimentary knowledge on probability measures is given in Appendix A.

Let G0 be a probability distribution1 on Θ, G be a random measure of this set Θ,

and α be a positive real number. If the measure G on any ûnite measurable partition

{A1, · · · ,AL} is Dirichlet distributed:

G(A1), · · · ,G(AL) ∼ Dirichlet(αG0(A1), · · · , αG0(AL)) 2 (4.20)

hen the random measureG is drawn from a Dirichlet process with concentration param-

eter α and base distributionG0 [44]:

G ∼ DP(α,G0) (4.21)

he Dirichlet process deûnes a distribution over probabilitymeasures. For anymeasur-

able setA ∈ Θ, the expectation over the Dirichlet process satisûes E(G(A)) = G0(A).

hus, the base distributionG0 gives themean of a Dirichlet process, while the concentra-

tion parameterα can be considered as the precision (inverse of variance),which determines

how the sampled distributionG deviates from the base distributionG0 on average [177].

4.3.1.1 he Posterior Distribution

In the previous section the formal deûnition of the Dirichlet process was introduced. he

posteriordistribution of theDirichletprocesswill be discussed in this section. And thispos-

terior distribution motivates two practical representations of the Dirichlet process (called
1 Inmeasure theory, a probability distribution is a probabilitymeasure, and this distribution (or probability

measure) can be speciûed by a probability function.
2 If the probability distribution G0 is speciûed by a probability density function p(θ) (continuous),

G0(Al) can be described as G0(Al) =
∫
θ∈Al

p(θ)dθ; If G0 is speciûed by a probability mass function∑
i πiδ(θ,θi) (discrete),G0(Al) can be described asG0(Al) =

∑
θi∈Al

πi.
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the stick-breaking process and the Chinese restaurant process), which will be discussed in

the following subsections.

Assume G ∼ DP(α,G0) is sampled from the Dirichlet process. Since G itself is a

distribution, samples can be drawn fromG. Let {θ′1, · · · ,θ′N}1 be a sequence of samples

from the random measureG, and {A1, · · · ,AL} be a ûnite partition of the set Θ. Given

theDirichlet distribution induced by a ûnite partition described in (4.20) and the conjugacy

of the Dirichlet distribution, the posterior distribution is also Dirichlet distributed [168,

177]:

(
G(A1), · · · ,G(AL)

)
|θ′1, · · · ,θ′N ∼ Dirichlet

(
αG0(A1) +N1, · · · , αG0(AL) +NL

)

(4.22)

where Nl is the number of samples in {θ′1, · · · ,θ′N} drawn from Al. Since (4.22) is true

for any ûnitemeasurable partition, according to the deûnition of the Dirichlet process, the

posterior distribution overG also follows a Dirichlet process [168, 177]:

G|θ′1, · · · ,θ′N ∼ DP
(
N + α,

1

N + α

( N∑

n=1

δ
(
θ,θ′n

)
+ αG0

))
(4.23)

where δ(θ,θ′n) is a point mass at θ′n, which is a Dirac delta function. According to the

posterior distribution ofG in (4.23), as the number of observations grow, when N � α,

the posterior distribution is dominated by the empirical distribution 1
N

∑N
n=1 δ(θ,θ

′
n),

which is an approximation of the true underlying distribution. his means the posterior

distribution of the random measure approaches the true underlying distribution [177].

4.3.2 Stick-breaking Processes

In the previous subsection, the deûnition of theDirichlet processwas introduced. However,

thisdeûnitiondoesnot provide amechanism todraw samples from theDirichlet process. In

this section, a representation of theDirichlet process called the stick-breaking process [160],

that allows samples to be drawn, will be discussed in detail.

1 SinceG is discrete (whichwill be discussed in the following subsection), diòerent θ′n may have identical
value; he unique values of {θ′1, . . . ,θ′N} are denoted as {θ1, . . . ,θM}.
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a stick of length 1

v1 1− v1
π1 v2 1− v2

π2 v3 1− v3
π3 v4 1− v4

π4

Figure 4.2: he stick-breaking process. he red parts are to be broken oò, and the lengths of
the red parts of the stick correspond to the weights from a Dirichlet process.

Given the posterior distribution of themeasure (4.23),which is aDirichlet process, then

the expectation of themeasureG is:

E
(
G|θ′1, · · · ,θ′N

)
=

1

N + α

( N∑

n=1

δ
(
θ,θ′n

)
+ αG0

)
(4.24)

when the number of observations goes to inûnity, the second term in brackets becomes 0,

then the following can be derived:

lim
N→∞

E
(
G|θ′1, · · · ,θ′N

)
=
∞∑

m=1

πmδ(θ,θm) (4.25)

where {θ1,θ2, · · · } are the unique values in {θ′1,θ′2, · · · }, andπm is the limiting frequency

of θm (whenN →∞). According to the expectedmeasure (4.25), sampledmeasures from

the Dirichlet process are discretewith probability one. his is veriûed by the stick-breaking

construction of the Dirichlet process discussed in the rest of this subsection.

he stick-breaking process provides a constructive representation of the Dirichlet pro-

cess. In the stick breaking process, a sequence of weights are sampled:

vm ∼ Beta(1, α)

πm = vm

m−1∏

i=1

(1− vi) (4.26)

where α is the parameter of the Beta distribution [16], which arises from themarginal dis-

tribution of the Dirichlet process. he stick-breaking process is illustrated in Figure 4.2.
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Consider a stick with length 1. πm is the length of the part to be broken from the stick in

themth breaking, and vm denotes the ratio of the remaining stick to be broken. By recur-

sively breaking this stick, a sequence ofweights {π1, π2, · · · } can be obtained. Normally, the

weights π = {π1, π2, · · · } from the stick-breaking process are denoted as π ∼ GEM(α),

which is named a�er Griõths, Egnen andMcCloskey [138].

Given the base distributionG0, the stick-breaking construction of theDirichlet process

can be described as follows1:

π ∼ GEM(α)

θm ∼ G0

G =

∞∑

m=1

πmδ(θ,θm) (4.27)

where δ(θ,θm) is the Dirac delta function. he stick-breaking construction guarantees

G ∼ DP(α,G0). According to the stick-breaking construction of the Dirichlet process,

samples from the Dirichlet process are discretemeasures with probability one [160, 168].

4.3.3 Chinese Restaurant Processes

In the previous subsection, the stick breaking process was introduced, which provides a

constructive representation of the Dirichlet process. In this subsection, another practical

presentation called the Chinese restaurant process (CRP) will be discussed.

he Chinese restaurant process is ametaphor which assumes there are inûnite number

of tables in a restaurant. When a customer come to the restaurant, the probability of sitting

at an occupied table is proportional to the number of people already sitting there, and the

probability of sitting at a new table is proportional to α:

P
(
zN+1 = m|z1, · · · , zN , α

)
=





Nm

N + α
wherem is an occupied table

α

N + α
wherem is an unoccupied table

(4.28)

where N + 1 is the (N + 1)th costumer, m is the mth table, indicator zN+1 denotes the

(N + 1)th costumer sitting at the zN+1th table, and Nm is the number of people (except
1 Here,G0 is considered as a continuous distribution, to distinguish the samples θ′i drawn fromG (which

is discrete as described in (4.27)), the sample drawn fromG0 is denoted as θm.
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Figure 4.3:he Chinese restaurant process. In this ûgure, each row gives a status of the restau-
rant. When a new customer comes to this restaurant, the probability of sitting at an occupied
table is proportional to the number of people already sitting there, and the probability of sitting
at a new table is proportional to α. hese probabilities are given in each circle of this ûgure.

the (N +1)th person) occupying themth table. Normally, the indicators z = {z1, z2, · · · }
sampled from the Chinese restaurant process are denoted as z ∼ CRP(α). An example of

the Chinese restaurant process is illustrated in Figure 4.3. he derivation of this processwill

be detailed in the rest of this subsection.

LetG be a random measure drawn from DP(α,G0), and {θ′1, · · · ,θ′N} a sequence of

samples drawn fromG. Given the posterior distribution ofG,which is still a Dirichlet pro-

cess as described in (4.23), the predictive distribution of θ′N+1 conditional on {θ′1, · · · ,θ′N}
can be obtained by marginalising out G. Since P (θ|G,θ′1, · · · ,θ′N) = G|θ′1, · · · ,θ′N ,
then the following can be derived:

P
(
θ′N+1 = θ|θ′1, · · · ,θ′N

)
=

∫
P (θ|G,θ′1, · · · ,θ′N)p(G|θ′1, · · · ,θ′N)dG

= E
(
G|θ′1, · · · ,θ′N

)
(4.29)

Given the deûnition of the expected measure (4.24), equation (4.29) then can be further

written as:

P
(
θ′N+1 = θ|θ′1, · · · ,θ′N

)
=

1

N + α

( N∑

n=1

δ
(
θ,θ′n

)
+ αG0

)
(4.30)

hepredictive distribution ofθ′N+1 is the base distribution of theposteriorDirichletprocess

(4.23), which is the posterior distribution of the random measureG given {θ′1, · · · ,θ′N}.
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he process of obtaining {θ′1,θ′2, · · · } according to the predictive distributions (4.30) is

known as the Pólya urn scheme [18], which is ametaphor to help interpreting this process.

Speciûcally, the Pólya urn scheme can be described as the follows. here is no ball in the urn

at the beginning, a ball with colour θ′1 drawn fromG0 is put in the urn. In the following

steps, take the (N + 1)th step for example, with probability α
N+α , a new ball having colour

θ′N+1 drawn fromG0 is put in the urn;With probability N
N+α , a ball having colour θ

′
N+1 is

drawn from the urn, then the ball is replaced to the urn with an extra ball having the same

colour θ′N+1.

According to the stick-breaking construction of the Dirichlet process (4.27), the ran-

dom measureG drawn from the Dirichlet process is discrete. hus, the observations {θ′1,
· · · ,θ′N} drawn from G have positive probability taking identical values. his leads to

the clustering property of the Dirichlet process, as shown in the Pólya urn scheme. Let

{θ1, · · · ,θM} be the unique values of {θ′1, · · · ,θ′N}, andNm denote the number of value

θm in {θ′1, · · · ,θ′N}, which satisûes
∑M

m=1Nm = N . hen the predictive distribution

(4.30) can be rewritten as:

P
(
θ′N+1 = θ|θ′1, · · · ,θ′N

)
=

1

N + α

( M∑

m=1

Nmδ
(
θ,θm

)
+ αG0

)
(4.31)

By introducing the indicator variable zn, which denotes the cluster (or component) asso-

ciated with the nth observation, the predictive distribution (4.31) can be expressed as the

following form:

P
(
zN+1 = z|z1, · · · , zN , α

)
=

1

N + α

( M∑

m=1

Nmδ(z,m) + αδ
(
z,M + 1

))
(4.32)

whereM+1 denotes a new cluster. he unique values of {z1, · · · , zN} induce partitioning
(or clustering) of the set {1, · · · , N}, and the distribution over the partitions is called the

Chinese restaurant process (CRP) [138]. his equation (4.32) is equivalent to the expression

of the CRP described in (4.28).

4.3.4 InûniteMixtureModels

In the previous section, Dirichlet processes and two practical representations, called the

stick-breaking process and the Chinese restaurant process, were discussed. Dirichlet pro-

cesses provide distributions over probabilitymeasures. he probabilitymeasureG sampled
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G0

α G

θ′n

xn
N

Figure 4.4: he graphical model of the inûnite mixture model. In the graphical model, the
plate represents replication. he circle denotes variable, and the gray one denotes observation.
he square represents ûxed parameters. his type of representation of graphical models is used
throughout this thesis.

from a Dirichlet process is discrete. his makes Dirichlet processes too limited to model

the continuous observations directly. In order to address this problem, a continuous den-

sity can be obtained by smoothing the random measure G with a density function. his

results in an inûnitemixturemodel [131, 149, 177].

According to the stick-breaking construction of the Dirichlet process (4.27), the ran-

dom measureG sampled from this process can be speciûed by a probabilitymass function

PG(θ) =
∑∞

m=1 πmδ(θ,θm). Given the random measureG which is speciûed by PG(θ),

and the density function of a single parametricmodel p(x|θ) parameterised by θ, the den-

sity of the inûnite mixture model can be obtained by smoothing the random measure G

with p(x|θ) [177]:

p(x|G) =

∫
PG(θ)p(x|θ)dθ =

∞∑

m=1

πmp(x|θm) (4.33)

where G = {π,Θ} are the parameters of thewhole inûnitemixturemodel,π = {πm}∞m=1

are themixture weights, andΘ = {θm}∞m=1 are the parameters of all the components.

he graphical model of this inûnite mixture model is illustrated in Figure 4.4, and the
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corresponding generative process can be described as follows:

G ∼ DP(α,G0)

θ′n ∼ G
xn ∼ p

(
x|θ′n

)
(4.34)

Since the randommeasureG isdiscrete, theparameters {θ′1, · · · ,θ′N} fromGhavepositive

probability taking identical values.

From the two representations of the Dirichlet process, the stick-breaking process (4.26)

and the Chinese restaurant process (4.28), the inûnite mixture model can be described in

two diòerent but equivalentways. he graphical model of the inûnitemixturemodel based

on the stick-breaking process is illustrated in the le� plot of Figure 4.5. he corresponding

generative process of the inûnitemixturemodel can be described as:

π ∼ GEM(α)

zn ∼ Categorical(π)

θm ∼ G0

xn ∼ p(x|θzn) (4.35)

where the mixture weights π = {πm}∞m=1 are given by the stick-breaking process (4.26),

and zn is the indicator variable that denotes with which component the nth observation is

associated. Categorical(·) is the categorical distribution, which is the generalisation of the

Bernoulli distribution with multiple possible outcomes (rather than two).

he graphical model of the inûnite mixture model based on the Chinese restaurant

process is illustrated in the right plot of Figure 4.5. he corresponding generative process

of the inûnitemixturemodel can be described as:

z ∼ CRP(α)

θm ∼ G0, ∀m ∈ z
xn ∼ p(x|θzn) (4.36)

where the indicators z = {z1, · · · , zN} are sampled from the Chinese restaurant process

(4.28). In the inûnite mixture model, typically, the density p(x|θ) is an exponential fam-

ily distribution [16], and the base distribution G0 is the conjugate prior for p(x|θ). his
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xn

G0

θm

N

∞

α

z

xn

G0

θm
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|z|

Figure 4.5:he graphical models of the inûnitemixturemodels based on diòerent representa-
tions of the Dirichlet process. he le� graphical model is based on the stick-breaking process,
and the right model is based on the Chinese restaurant process. In the right plot, |z| denotes
the number of unique values in set z = {z1, · · · , zN}.

conjugacy leads to tractable posterior inference. When G0 is not the conjugate prior for

p(x|θ), eõciency inference also can also be made by using the sampling based scheme

with auxiliary parameters introduced by Neal [131].

4.3.4.1 Inûnite Limit of FiniteMixtureModels

heprevious section introduced inûnitemixturemodels and two representations of the inû-

nitemixturemodel based on the stick-breaking process and the Chinese restaurant process

(illustrated in Figure 4.5). In this section, a diòerent perspective on inûnite mixture mod-

els will be discussed. Inûnite mixture models can be viewed as the inûnite limit of ûnite

mixturemodels (when the number of components goes to inûnity).

Consider a mixture model with M (ûnite) components, and each component with a

density function p(x|θm). he mixture weights in the model are given by a symmetric

Dirichlet distribution: Dirichlet(α/M, · · · , α/M). hen, the generative process of the
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mixturemodel can be described as:

π ∼ Dirichlet(α/M, · · · , α/M)

zn ∼ Categorical(π)

θm ∼ p(θ)

xn ∼ p(x|θzn) (4.37)

where p(θ) is the prior distribution of θ, and Categorical(·) is the categorical distribution.

zn is the indicator variable that denotes with which component the observation xn is asso-

ciated.

Given the mixture weights π = {π1, · · · , πM}, the joint probability of the indicator

variables can be written as:

P (z1, · · · , zN |π1, · · · , πM) =
M∏

m=1

πNmm (4.38)

where Nm is the number of data associated with the mth component, namely Nm =
∑N

n=1 δ(zn,m), and δ(·) is the Kronecker delta. Bymarginalising out themixture weights

π, which are given by a Dirichlet distribution described in (4.37), the joint probability of

the indicator variables (4.38) can be further written as:

P (z1, · · · , zN |α) =

∫
P (z1, · · · , zN |π1, · · · , πM)p(π1, · · · , πM |α)d(π1, · · · , πM)

=
Γ(α)

Γ(N + α)

M∏

m=1

Γ(Nm + α/M)

Γ(α/M)
(4.39)

Given the joint distribution of the indicators (4.39), the conditional distribution of in-

dicator zN given otherN − 1 indicators {z1, · · · , zN−1} can be described as follows:

P (zN = m|z1, · · · , zN−1, α) = P (zN |z1, · · · , zN−1, α)|zN=m

=
P (z1, · · · , zN |α)

P (z1, · · · , zN−1|α)

∣∣∣∣
zN=m

=
Nm + α/M

N − 1 + α
(4.40)

So far,M is considered as a ûnite number. When the number of components goes to

inûnite, M → ∞, mixture models with inûnite number of components can be resulted.

Since the number of components becomes inûnite, the components can be divided up into

two groups: the represented components that have associated data and the unrepresented
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Figure 4.6:he graphical model of the inûniteGaussianmixturemodel. |z| denotes the num-
ber of unique values in set z = {z1, · · · , zN}.

components that have no associated data. hus,whenM →∞, the conditional distribution
of the indicator P (zN = m|z1, · · · , zN−1, α) described in equation (4.40) can be further

described as [149]:

P (zN = m|z1, · · · , zN−1, α) =





Nm

N − 1 + α
, whenm is a represented component

α

N − 1 + α
, whenm is an unrepresented component

(4.41)

his is the Chinese restaurant process described in (4.28). hus, when the number of com-

ponentsM goes to inûnite, the sequence of indicators z = {z1, · · · , zN} is obtained from

the Chinese restaurant process, namely z ∼ CRP(α)1. hen the generative process ofmix-

turemodels with inûnite number of components can be described as:

z ∼ CRP(α)

θm ∼ p(θ), ∀m ∈ z

xn ∼ p(x|θzn) (4.42)

his is the inûnite mixture model based on the Chinese restaurant process described in

(4.36) with base distribution G0 = p(θ). hus, inûnite mixture models are the limit of

ûnitemixturemodels (when the number of components goes to inûniteM →∞).

1 Given the exchangeability of the indicator variables, each indicator can be sampled (as the last one with
indexN ) given all otherN − 1 indicators.
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4.3.4.2 Relationships with Inûnite GMMs

he inûniteGaussianmixturemodel (iGMM)was ûrst introduced by Rasmussen [149]. he

inûnite GMM is a inûnite mixture model with Gaussian components. For each Gaussian

component of the inûnite GMM, themean µm and covarianceΣm are assumed to be in-

dependent of each other, and each gives a conjugate prior (the Gaussian distribution and

the inverseWishart distribution respectively) [77, 149]. he graphical model of the inûnite

GMMis illustrated inFigure 4.6, and the corresponding generativeprocess can be described

as:

z ∼ CRP(α)

µm ∼ N (µh,Σh), ∀m ∈ z

Σm ∼Wishart−1(β,Ω), ∀m ∈ z

xn ∼ N (µzn ,Σzn) (4.43)

whereN (·) is a Gaussian distribution, andWishart−1(·) is a inverseWishart distribution.

Comparedwith the inûnitemixturemodel described in (4.36), the base distribution for the

inûnite GMM isG0 = p(µ,Σ) = p(µ)p(Σ).

4.3.5 InûniteMixtures of Experts

In the previous section, inûnite mixture models based on Dirichlet processes were dis-

cussed. his type ofmodel is generative, which models the density of the data. For a classi-

ûcation task, discriminativemodels might be preferred [105, 132]. In this section, a type of

mixture of discriminativemodels based on the Dirichlet process called the inûnitemixture

of experts will be studied.

4.3.5.1 Mixtures of Experts

Rather than making predictions using a single classiûer (a conditional distribution), which

might be inadequate to model the whole training data, it is possible to choose diòerent

conditional distributions to make predictions according to diòerent inputs. If the choice is

input independent, the resulting model is called the conditional mixture model [16]. If the
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Figure 4.7:he framework of themixture of experts.

choice of the conditional distributions is input dependent, when the choice is a hard deci-

sion, this framework is known as a decision tree [16]; when the choice is given a probability

depending on the input, this is known as amixture of experts [16, 91, 99].

he framework for mixture of experts with M experts is illustrated in Figure 4.7. As

shown in this ûgure, the weight P (z|x,π,Θ) for each expert is input dependent and de-

termined by the gating network. If the gating network is based on aGaussianmixturemodel

(GMM), then the probability P (z|x,π,Θ) is the component posterior probability of the

GMM1:

P (z|x,π,Θ) =
πzN (x;θz)∑
z πzN (x;θz)

, z ∈ {1, 2, . . . ,M} (4.44)

where M is the number of experts, and z is the indicator variable, that denotes which

expert the input x is associated with. π = {π1, . . . , πM} are the mixture weights and

Θ = {θ1, . . . ,θM} are the model parameters of the components. N (x;θz) is the zth

Gaussian component with parameters θz .

he zth expert is a classiûer2 having conditional probability P (w|x,ηz) with parame-

ters ηz , where w is the class label. Given an input x, the overall conditional distribution of

1 Gating networks of (inûnite) mixtures of experts are assumed to be (inûnite) mixturemodels throughout
this thesis. More generally, any suitable input dependent function can be the gating network, e.g. a so�max
function adopted in [99] and the function based on a Dirichlet process andGaussian kernel functions in [150].

2 Experts are assumed to be classiûers throughout this thesis. Alternatively, they can also be regression
models [16].
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Figure 4.8: he graphical model of the mixture of experts. he plot associated with the red
dotted line represents the gating network, and the plot associated with the purple dotted line
represents the experts.

the class w for themixture of experts withM experts can be described as:

P (w|x,G) = P (w|x,π,Θ,H) =
∑

z

P (w|x,ηz)P (z|x,π,Θ), z ∈ {1, 2, · · · ,M}

(4.45)

where G = {π,Θ,H} are the parameters of thewholemodel, andH = {η1, . . . ,ηM} are
the parameters of all the experts. P (z|x,π,Θ) is the gating network described in (4.44).

When the gating network is given by the component posteriors of a Gaussian mixture

model and the number of experts is M , the graphical model of the mixture of experts is

illustrated in Figure 4.8, and the corresponding generative process of this model can be

described as follows:

π ∼ Dirichlet(α/M, · · · , α/M)

zn ∼ Categorical(π)

xn ∼ p(x|θzn)

wn ∼ P (w|xn,ηzn) (4.46)

where themixtureweightsπ = {π1, . . . , πM} are are drawn from a symmetric Dirichlet dis-

tribution [16] with concentration parameter α, and zn is the indicator variable that denotes

the nth observation is associated with which expert. Categorical(·) is the categorical distri-

bution which is the generalisation of the Bernoulli distribution withM possible outcomes.
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Figure 4.9:he graphical model of the inûnitemixture of experts based on the stick-breaking
process. he plot associatedwith red dotted line is the stick-breaking construction of the inûnite
mixturemodel.

p(x|θzn) is the density function for znth component, and P (w|xn,ηzn) is the conditional

distribution for the znth expert.

4.3.5.2 Inûnite Limit

As a parametric model, the number of experts M in the mixture of experts needs to be

given in advance. In order to bypass the problemof choosing model complexity, a Bayesian

non-parametric version of themixture of experts called an inûnitemixture of experts will

be studied. As discussed in section 4.3.4.1, an inûnite mixture model is the inûnite limit

of a ûnite mixture model (when the number of components goes to inûnite). In a similar

fashion, thenon-parametric counterpart of themixture of experts called the inûnitemixture

of experts can be derived, when the number of experts goes to inûnity in the mixture of

experts, namely M → ∞. Given an input x, the overall conditional distribution of the

class w described in (4.45) becomes summing over inûnite number of experts:

P (w|x,G) = P (w|x,π,Θ,H) =
∑

z

P (w|x,ηz)P (z|x,π,Θ) z ∈ {1, 2, · · · ,∞}

(4.47)

where G = {π,Θ,H} are the parameters of the whole model, π = {πm}∞m=1 are the

mixture weights, Θ = {θm}∞m=1 are the parameters of all the components, and H =

{ηm}∞m=1 are the parameters of all the experts.
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Figure4.10:he graphicalmodel of the inûnitemixture of experts based on theChinese restau-
rant process (CRP). he plot associated with red dotted line is the CRP construction of the
inûnitemixturemodel.

In section 4.3.4 two practical constructions of inûnitemixturemodels were discussed,

namely the inûnite mixture models based on the stick-breaking process and the Chinese

restaurant process. Inûnitemixtures of experts can also be described by these two processes.

he graphical model of the inûnitemixture of experts based on the stick-breaking process

is illustrated in Figure 4.9. he corresponding generative process of the inûnitemixture of

experts can be described as:

π ∼ GEM(α)

zn ∼ Categorical(π)

θm ∼ G1, ηm ∼ G2

xn ∼ p(x|θzn)

wn ∼ P (w|xn,ηzn) (4.48)

where the mixture weights π = {πm}∞m=1 are given by the stick-breaking process (4.26),

and zn is the indicator variable that denotes with which expert the nth observation is asso-

ciated. Categorical(·) is the categorical distribution. G1 and G2 are base distributions of

the Dirichlet process, namely G0 = G1G2. p(x|θzn) is the density function of the znth

component, and P (w|xn,ηzn) is the conditional distribution of the class w given by the

znth expert.
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In addition to the stick-breaking process, the Chinese restaurant process provides a

mechanism to draw samples from the Dirichlet process without specifying the underlying

distribution. Based on the Chinese restaurant process, the graphical model of the inûnite

mixture of experts is illustrated in Figure 4.10. he corresponding generative process of the

inûnitemixture of experts can be described as:

z ∼ CRP(α)

θm ∼ G1, ηm ∼ G2, ∀m ∈ z

xn ∼ p(x|θzn)

wn ∼ P (w|xn,ηzn) (4.49)

where the indicators z = {z1, · · · , zN} corresponding to observations {x1, · · · ,xN} are
given by theChinese restaurant processwith concentration parameterα described in (4.28).

To summarise, the inûnitemixture of experts deûnes an inûnitemixture of conditional

models (experts). For the inûnitemixture of experts, each expert is a discriminativemodel,

and the gating network is given by an inûnite mixture model based on the Dirichlet pro-

cess, which is a generative model. For discriminative models, the conditional distribution

of the class w is modelled directly without considering the underlying distribution of the

observations. In contrast, the inûnitemixture of experts gives the conditional distribution

of the class, but the underlying distribution of the observations also is modelled by the gat-

ing network. hus, the inûnitemixture of expert discussed in this section is a combination

of generativemodels (gating network) and discriminativemodels (experts).

4.3.5.3 Relationships with Inûnite SVMs

he inûnite support vector machine1, ûrst introduced by Zhu [213], is an example of the

inûnite mixture of experts discussed in the previous section. For the inûnite SVM, the

gating network is given by an inûnite mixture model based on the stick-breaking process

discussed in section 4.3.4, and each expert is a maximum entropy discrimination (MED)

[90, 93] large margin classiûer (which is discussed in Appendix B.1.1). hus, the inûnite

SVM can be described as an inûnitemixture of experts based on the stick-breaking process

illustrated in Figure 4.9 [213].

1 he inûnite support vector machine is discussed in detail in Appendix B.
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For the inûnitemixture of experts described in section 4.3.5.2, each expert is a discrimi-

nativemodel, which gives the conditional distribution of the class labelw given input x. In

contrast, for the inûnite SVM, each expert is a discriminant function, which gives a map-

ping from the inputx to the class labelw. Analogous to the overall conditional distribution

given by the inûnite mixture of experts described in equation (4.47), the overall discrimi-

nant function for the inûnite SVM can be described as [213]:

F (w,x;G) = F (w,x;π,Θ,H) =
∑

z

F (w,x;ηz)P (z|x,π,Θ) z ∈ {1, 2, · · · ,∞}

(4.50)

where F (w,x;ηz) is the discriminant function for the zth expert. the weight from the

gating network P (z|x,π,Θ) is deûned in (4.44)with component numberM =∞,which

is the component posterior of the inûnitemixturemodel. he inûnite SVM is discussed in

detail in appendix B.he commonly used processes such as hierarchicalDirichlet processes

and beta processes are also discussed in appendices C and D.

4.4 Some Applications in Speech Processing

Bayesiannon-parametricmodels have beenwidely and successfully employed in various ar-

eas [28, 50, 168]. Since this thesis focuseson speech recognition, examplesofnon-parametric

models used in speech processing will be discussed in this section.

4.4.1 TopicModelling

Topic modelling has been widely used in the ûeld of information retrieval [35, 206]. One

of the most successful examples is Internet search engines. Topic modelling is employed

to model the text corpora and other collections of discrete data, and the purpose is to ûnd

short descriptions of the members of a collection that enable eõcient processing of large

collections [21].

When modelling the word occurrences in a set of documents, one simple solution is

to place each document with a single topic. However, it is more appropriate to allow each

document to contain more than one topics. For instance, the travel book might contain

topics aboutweather, travel information, tourist destinations and history. hus, itwould be
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Figure 4.11:he graphical model of latent Dirichlet allocation.

more appropriate to assign several topics to one document. Assume there areM topics, and

the probability of choosing one topic is given by the topic proportion π = {π1, . . . , πM}:

z ∼ Categorical(π) (4.51)

where the indicator variable z denotes which topic is chosen, and Categorical(·) is the Cat-

egorical distribution,which is the generalisation of the Bernoulli distributionwithmultiple

possible outcomes. Given the indicator variables, aword in this document then can be con-

sidered as being generated from the chosen topic. he process of generating the words for

each document can described as the follows:

zn ∼ Categorical(π)

θm ∼ Q

wn ∼ P (w|θzn) (4.52)

where P (w|θzn) is the words distribution given the topic zn with parameters θzn , and it is

typically amultinomial distribution. he parametersθm are placedwith a prior distribution

Q.

In latent Dirichlet allocation (LDA) [21], the topic proportion πj is given a symmetric

Dirichlet distribution. Assume there are J documents, the generative process for LDA can
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be described as the follows:

πj ∼ Dirichlet(α)

zjn ∼ Categorical(πj)

θm ∼ Q

wjn ∼ P (w|θzjn) (4.53)

where the parameters θm are distributed according to a Dirichlet distributionQ. Alterna-

tively, θm can be treated as unknown but ûxed parameters, and estimated in an empirical

Bayesian fashion as described in (4.9). P (w|θzji) is amultinomial distribution. he corre-

sponding graphical model of LDA is illustrated in Figure 4.11.

In LDA thewords for each documents are given by amixture of topics, and these topics

are shared among documents. hus, LDA extends standard mixture models by sharing a

common set of components among diòerent related groups. In LDA, the number of topics

is set to a ûxed valueM . In order to circumvent the problem of setting model complexity,

a Bayesian non-parametric model can be employed. In LDA diòerent documents share a

common set of topics. he hierarchicalDirichlet process (HDP)1 provides amechanism to

link groups of data by sharing components. hus, by using the framework of theHDP, LDA

can be extended to be a Bayesian non-parametricmodel called HDP-LDA [175]:

c ∼ GEM(β)

πj ∼ DP(α, c)

zjn ∼ Categorical(πj)

θm ∼ Q

wjn ∼ P (w|θzjn) (4.54)

where GEM(·) is the stick-breaking process described in (4.26), and P (w|θzjn) is the dis-

tribution over words for the zjnth topic. he corresponding graphical model ofHDP-LDA

is illustrated in Figure 4.12. In this graphical model, J is the number of documents, Nj is

the number of words in the jth document. In addition to use the framework of the HDP,

extending LDA by employing a nested Chinese restaurant process is discussed in [20].

1 he hierarchical Dirichlet process is discussed in detail in Appendix C.
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Figure 4.12:he graphical model of HDP-LDA.

4.4.2 Word Segmentation

Word segmentation is the problem of discovering word boundaries in continuous speech

or text. his problem is non-trivial, since some languages do not have explicitword bound-

aries, such asChinese and Japanese [80, 114]. In [75] statistical approaches are proposed for

word segmentation: the Dirichlet process is employed in the unigram modelling assump-

tion ofworddependencies, and thehierarchicalDirichletprocess in the bigram assumption.

Under the unigram modelling assumption, the words in an utterance are independent

from each other. hus word sequence can be generated according to the following process:

G ∼ DP(α,Q)

wn ∼ G (4.55)

where the base distributionQ can be described as:

Q =
∞∑

m=1

πmδ(w,wm) (4.56)

πm = P (wm) = P0(1− P0)
l−1

l∏

i=1

P (mi) (4.57)

where the wordwm is composed of the phoneswm = {m1, · · · ,ml}, P (mi) is the proba-

bility of phonemi, andP0 is the probability of theword boundary. In [75] utterance bound-

aries are given, and each utterance has been converted to a phonemic representation using

a phonemic dictionary. hus each utterance to be segmented is a sequence of phones.
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Under the bigrammodelling assumption, the probability of generating the currentword

wn is only dependent on the previous word wn−1. hus, a hidden Markov model (HMM)

can be employed to model the dependencies of words, where each latent state of theHMM

corresponds to a word. Since there are an unbounded number of potential words, it would

bemore appropriate to have inûnite possible number of states in theHMM.hus the frame-

work of the hierarchical Dirichlet process (HDP) can be applied. he word sequence then

can be generated according to aHDP-HMM:

G0 ∼ DP(β,Q)

Gw ∼ DP(α,G0)

wi|wi−1 ∼ Gwi−1 (4.58)

his is the direct description of theHDP-HMM.An alternative stick-breaking construction

of the HDP-HMM is described in (C.13), and the corresponding graphical model is illus-

trated in Figure C.5. As demonstrated in [75], signiûcant improvements in segmentation

accuracy can be achieved by employing this HDP-HMM approach.

4.4.3 SpeakerDiarisation

Speaker diarisation is the problemof segmenting an audio recording into time intervals cor-

responding to individual speakers and assigning speaker labels [50, 195]. Speakerdiarisation

is a joint problem of segmenting and clustering, this makes the HMM a suitable model in

which themodel transitions among stateswhich are associatedwith diòerent speakers [50].

In standard HMMs, the number of states needs to be set in advance. If each state corre-

sponds to a speaker, the number of speakers must be given. his is limited, since normally

there is no priori knowledge on the number of the speakers in ameeting. hus, in a speaker

diarisation problem, itwould bemore appropriate to employ the framework of hierarchical

Dirichlet processes (HDP), which allows inûnite possible number of states (speakers).

As discussed in [50, 51], the HDP-HMM is o�en inadequate to model temporal per-

sistence of the states, as the HDP-HMM tends to rapidly switch between redundant states.

his leads to a poor performance in speakerdiarisation [51]. To solve this problem, the sticky

HDP-HMM [49, 50] was proposed to increase the prior probability of self-transitions. he
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Figure 4.13:he graphical model of the sticky HDP-HMM.

model can jointly segment and cluster the audio into speaker homogenous regionswith bet-

ter performance. he graphical model of the stickyHDP-HMM is illustrated in Figure 4.13,

and the corresponding generative process can be described as the follows:

c ∼ GEM(β)

πm ∼ DP
(
α+ κ,

αc+ κδ(m,m)

α+ κ

)

sn|sn−1 ∼ Categorical(πsn−1)

θm ∼ Q

xn ∼ p(x|θsn) (4.59)

where the weights c = {c1, c2, . . .} are generated according to the stick-breaking process

described in (4.26), and sn is the state indicator. Given the state indicator sn, the observa-

tion xn is distributed according to p(x|θsn) which is a Gaussian distribution, and θsn is

generated according to the base distributionQ. Compared with the standard HDP-HMM

described in (C.13) of AppendixC, an extra parameter called the self-transition bias param-

eter κ is introduced in the sticky HDP-HMM. By introducing κ, the expected probability

of self-transition can be increased [50].

In speaker diarisation, since each speaker is associated with a state of the HMM. Gen-

erally, theHMMwith high performance employsGaussianmixturemodels (GMMs) as the

distributions of the emitting states [200]. hus, it would bemore appropriate to use amix-

ture model as the emitting state distribution in the sticky HDP-HMM. hen each speaker

corresponds to amixturemodel,more speciûcally a Dirichlet processmixturemodelwhich

gives all possibles of distributions. he graphical model of the sticky HDP-HMM with
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Figure 4.14: he graphical model of the sticky HDP-HMM with Dirichlet process mixture
model emissions.

Dirichlet processmixturemodel emissions is illustrated in Figure 4.14, and the correspond-

ing generative process can be described as follows [49, 50]:

c ∼ GEM(β)

πm ∼ DP
(
α+ κ,

αc+ κδ(m,m)

α+ κ

)

sn|sn−1 ∼ Categorical(πsn−1)

ρm ∼ GEM(σ)

zn ∼ ρsn
θmj ∼ Q

xn ∼ p(x|θsnzn) (4.60)

where the weights c = {c1, c2, . . .} and ρm = {ρm1, ρm2, . . .} are generated according to

the stick-breaking process described in (4.26). Again sn is the state indicator, and each state

of theHDP-HMM is given a DPmixturemodel. he component indicator zn is introduced

to denotewithwhich component the observation is associated. Given the state indicator sn
and the component indicator zn, the observationxn is distributed according to p(x|θsnzn)

which is a Gaussian distribution, and θsnzn is generated according to the base distribution

Q. By using this type of stickyHDP-HMMs with special treatments of self-transitions, the

state-of-the-art diarisation performance can be achieved [50].
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4.5 Summary

In this chapter, motivations of Bayesian non-parametric models and de Finetti’s theorem

were discussed in section 4.1. he basic ideas of Bayesian inference and conditionalBayesian

inference were introduced in section 4.2. Section 4.3 introduced the Dirichlet process, and

two representations of this process called the Chinese restaurant process and the stick-

breaking process. he frameworks of mixture models and mixture of experts based on

Dirichlet processes were discussed in detail in section 4.3.4 and 4.3.5 respectively. he inû-

nite Gaussian mixturemodel and inûnite support vector machine can be subsumed under

these two frameworks. Finally, some applications of the Bayesian non-parametric models

in speech processing were brie�y discussed in section 4.4.
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Chapter 5

Inûnite Structured DiscriminativeModels

InChapter 4, Bayesian inferencewas introduced and some of the commonly used Bayesian

non-parametric models were brie�y discussed. In this chapter, a criterion-based perspec-

tive on Bayesian inference will be introduced. Here Bayesian inference is interpreted as

a minimisation criterion consisting of two terms: one representing the prior beliefs; and

a second representing information from the observations. Furthermore, this minimisa-

tion criterion can be subsumed under a general criterion (with a log-likelihood criterion

function). his general criterion allows diòerent forms of criterion functions to be used.

Finally, training of the inûnite structured discriminativemodels using the general criterion

with diòerent criterion functions will be discussed in detail in this chapter.

5.1 Criterion-based Perspectives on Bayesian Inference

As discussed in section 4.2, Bayesian inference is the analysis of beliefs. Before any data

is observed, the prior distribution over model parameters is used to express the available

knowledge (or prior beliefs) on the data generation process; and the beliefs can be updated

when observing new evidence. hemost naturalway of combining new evidencewith prior

beliefs is the application of Bayes’ rule. here are two factors in Bayesian inference: prior

beliefs before observing data and updating beliefswhen observing new evidence. In section

4.2, the posterior distribution of the model parameters obtained through Bayes’ rule was
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discussed. In [93, 214] an alternative posterior distribution (which diòers from the posterior

distribution obtained through Bayes’ rule) is interpreted as being obtained from a criterion.

As described by Zellner [205], the posterior distribution obtained through Bayes’ rule is

equivalent to a distribution obtained from aminimisation criterion (which consists of two

terms: one term represents the prior beliefs and another term represents information from

the observations). his minimisation criterion can be subsumed under a general criterion

with a criterion function consisting of log-likelihoods. With diòerent forms of criterion

functions, this general criterion can result in diòerent meaningful criteria, e.g. the large

margin training criterion. his type of criterionwill be discussed in detail in the rest of this

section.

For a generativemodel, the posterior distribution of themodel parameters G can be de-
scribed as minimising the Kullback-Leibler (KL) divergence KL

(
q(G)||p(G|D)

)
between

the distribution q(G) to be estimated and the posterior distribution p(G|D) obtained by

Bayes’ rule [205]: p(G|D) ∝ p(G)p(D|G). LetD = {x1, . . . ,xN}be trainingdata, p(D|G) =
∏
n p(xn|G) the likelihood, and p(G) the prior distribution. When the estimated distribu-

tion q(G) equals the posterior distribution p(G|D) obtained by Bayes’ rule, the KL diver-

gence KL
(
q(G)||p(G|D)

)
by deûnition is zero andminimised. According to the deûnition

of the KL divergence, the following expression can be derived:

KL
(
q(G)||p(G|D)

)
=

∫
q(G) log

q(G)

p(G|D)
dG

=

∫
q(G) log

q(G)

p(G)
dG −

∫
q(G) log p(D|G)dG + log p(D) (5.1)

Since the log probability of the training data log p(D) is not a function of q(G),minimising

the KL divergence KL
(
q(G)||p(G|D)

)
is equivalent to the following expression:

arg min
q(G)

{
KL
(
q(G)||p(G)

)
︸ ︷︷ ︸

prior

−
∫
q(G) log p(D|G)dG

︸ ︷︷ ︸
evidence

}
(5.2)

s.t. q(G) ∈ Pprob

where Pprob is a set consisting of all possible valid distributions over G. he criterion de-

scribed in (5.2) can be related to standard Bayesian inference. he prior beliefs are given

by the ûrst term. When new evidence (given by the second term in the form of the log-

likelihood) is observed, the beliefs can be updated in the form of the posterior distribution
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by minimising the criterion (5.2). Since this criterion is equivalent to minimise the KL di-

vergence KL
(
q(G)||p(G|D)

)
, the solution that minimise criterion (5.2) is:

q̂(G) = p(G|D) ∝ p(G)p(D|G) = p(G)
∏

n

p(xn|G) (5.3)

hus, the posterior distribution obtained by minimising criterion (5.2) is equivalent to the

posterior distribution through Bayes’ rule described in (4.8) in section 4.2.1.

A similar approach can be adopted for discriminative models, where the conditional

distribution of a class w is of interest. For a discriminative model P (w|x,G) with model

parameters G, given the training data D = {X ,W} = {(x1, w1), . . . , (xN , wN)}, it is

possible to formulate a criterion similar to that for a generative model described in (5.2).

he posterior distribution q̂(G) can be estimated by minimising this criterion:

arg min
q(G)

{
KL
(
q(G)||p(G)

)
︸ ︷︷ ︸

prior

−
∫
q(G) logP (W|X ,G)dG

︸ ︷︷ ︸
evidence

}
(5.4)

s.t. q(G) ∈ Pprob

where p(G) is the prior distribution, P (W|X ,G) =
∏
n P (wn|xn,G) is the conditional

likelihood, and Pprob is the set of all possible valid distribution over G. Analogous with

(5.3), the solution that minimise criterion (5.4) is:

q̂(G) = p(G|D) = p(G|X ,W) ∝ p(G)P (W|X ,G) = p(G)
∏

n

P (wn|xn,G) (5.5)

his is the same as the posterior distribution obtained through Bayes’ rule described in

(4.15) in section 4.2.2.

5.2 heGeneral Criterion

As discussed in section 5.1, the application of Bayes’ rule to obtain the posterior distribution

is equivalent to theminimisation criteria described in (5.2) and (5.4),whereprior beliefs and

evidence are embodied by the ûrst and second term respectively. More generally, the opti-

mal distribution can be viewed as a distribution obtained through aminimisation criterion
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which consists of prior beliefs and evidence:

arg min
q(G)

{
KL
(
q(G)||p(G)

)
︸ ︷︷ ︸

prior

−
∫
q(G)F(G;D)dG

︸ ︷︷ ︸
evidence

}
(5.6)

s.t. q(G) ∈ Pprob

where F(G;D) is the criterion function. his function must be real valued and represents

the information from evidence. Moreover, the selection of the criterion function should

guarantee to yield a valid distribution q(G). For example, the integral over exp
(
F(G;D)

)

should be ûnite, that ensures the normalisation term of q(G) is ûnite, which will be dis-

cussed in section 5.2.1. hus, the selection of the criterion function F(G;D) is highly con-

strained. he Gibbs inûnite SVM [207] is a speciûcation of this general criterion, where

the criterion function consists of the hinge loss function and log-likelihoods. his general

criterion is also related to regularised Bayesian [214] and the maximum entropy discrimi-

nation (MED) [90, 93], which will be discussed later. In this thesis, only three forms of the

criterion function will be investigated, i.e. the hinge loss function, log-likelihoods and the

combination of these two.

heminimisation criteria (5.2) and (5.4) are speciûcations of this general criterion (5.6),

where the criterion functions are the logarithms of the likelihood and the conditional like-

lihood respectively:

F(G;D) = logP (D|G) =
∑

n

logP (xn|G) (5.7)

and

F(G;D) = logP (W|X ,G) =
∑

n

logP (wn|xn,G) (5.8)

In the general criterion (5.6), the criterion functionF(G;D) is allowed to have various

forms (real functions). One alternative is the hinge loss function, and the resulting criterion

is a largemargin training criterion which will be discussed in the following parts.

Let the criterion function F(G;D) be a hinge loss function:

F(G;D) = −
∑

n

[
max
w 6=wn

{
L(w,wn)− log

(P (wn|xn,G)

P (w|xn,G)

)}]

+

(5.9)
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whereL(w,wn) is the loss function,whichmeasures how diòerent the labelsw andwn are,

and
[
·
]
+

is the hinge loss, which satisûes:

[
f(x)

]
+

=

{
0 when f(x) < 0
f(x) when f(x) ≥ 0

(5.10)

When the criterion function is the hinge loss function (5.9), the general criterion de-

scribed in (5.6) becomes a largemargin training criterion:

arg min
q(G)

{
KL
(
q(G)||p(G)

)
+

∫
q(G)

∑

n

[
max
w 6=wn

{
L(w,wn)−

log
(P (wn|xn,G)

P (w|xn,G)

)}]

+

dG
}

(5.11)

s.t. q(G) ∈ Pprob

his largemargin training criterion is related to themaximum entropydiscrimination (MED)

criterion [90, 93], which is discussed in appendix B.1.1. he main diòerence is that, in the

MED criterion, the integral over themodel parameters G is inside themaximisation. Since

the maximum of the integral of a function is less than or equal to the integral of the max-

imum of that function, the large margin training criterion in (5.11) is an upper bound of

the MED criterion. In criterion (5.11), the maximisation is inside the integral, hence the

maximums need to be found for all possible G. his minimisation criterion is usually com-

putationally intractable. hus, approximations to this criterion need to be applied.

One approximate method is to assume the distribution q(G) is a Dirac delta function,

namely q(G) ≈ δ(G, Ĝ) with parameters Ĝ. Substituting this delta function into criterion

(5.11), yields:

arg min
q(G)

{∫
δ(G, Ĝ) log δ(G, Ĝ)dG − log p(Ĝ) +

∑

n

[
max
w 6=wn

{
L(w,wn)−

log
(P (wn|xn, Ĝ)

P (w|xn, Ĝ)

)}]

+

}
(5.12)

he ûrst termis thenegative of the delta function’s entropy,which is an inûnite, but constant,

value. hen the criterion to beminimised becomes:

− log p(Ĝ) +
∑

n

[
max
w 6=wn

{
L(w,wn)− log

(P (wn|xn, Ĝ)

P (w|xn, Ĝ)

)}]

+

(5.13)

his is the largemargin training criterion for the discriminativemodels described in [209,

210]. WhenP (w|x,G) is a log-linearmodel, the denominator terms of the log-linearmodel

101



CHAPTER 5. INFINITE STRUCTURED DISCRIMINATIVEMODELS

can be cancelled out in criterion (5.13). his criterion becomes the training criterion of the

structured SVM discussed in section 3.2.5, and can be eõciently solved with the cutting-

plane algorithm [96].

5.2.1 Solutions to the General Criterion

It is possible to consider a general solution the optimisation criterion (5.6) in the previous

section. he criterion functionF(G;D) canbewritten asF(G;D) = log
(

exp
(
F(G;D)

))
,

hence the general criterion described in (5.6) can be expressed as:

arg min
q(G)

{
KL
(
q(G)||p(G)

)
︸ ︷︷ ︸

prior

−
∫
q(G) log

(
exp

(
F(G;D)

))
dG

︸ ︷︷ ︸
evidence

}
(5.14)

s.t. q(G) ∈ Pprob

Analogous with the solutions to the criteria (5.2) and (5.4) for standard Bayesian inference,

the solution that minimises the general criterion described in (5.14) can be written as the

product of the prior and the exponential of the criterion function:

q̂(G) ∝ p(G) exp
(
F(G;D)

)
(5.15)

In order to ensure the righthand sideof (5.15) isnormalisable, the integral over exp
(
F(G;D)

)

should be ûnite. To distinguish from the posterior distribution p(G|D) obtained from

Bayes’ rule, the distribution q̂(G) that minimises the general criterion (5.14) is called the

optimal distribution in this thesis.

In the rest of this section, discriminative models will be used, but similar conclusions

can be drawn for generativemodels. Whenmaking predictions, given the optimal distribu-

tion q̂(G), the class posterior distribution can be obtained bymarginalising out all themodel

parameters [17, 92, 105]:

P (w|x,D) =

∫
P (w|x,G)q̂(G)dG (5.16)

However when calculating this class posterior distribution, normally, neither the optimal

distribution q̂(G) described in (5.15) nor the integral in (5.16) is tractable. hus, approximate

methods need to be applied. Two approaches will be brie�y discussed in the rest of this

section.
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Monte Carlo Methods Monte Carlo methods are sampling based schemes, in which the

samples {G(k)}Kk=1 are drawn from the optimal distribution q̂(G). he integral in the class

posterior distribution described in (5.16) then can be approximated by summing over these

samples:

P (w|x,D) ≈ 1

K

K∑

k=1

P (w|x,G(k)) (5.17)

Gibbs sampling is one form of the Markov chain Monte Carlo methods [6], which are a

class of algorithms for sampling from a probability distribution based on constructing a

Markov chainwhose equilibrium distribution is the desired distribution. Rather than sam-

pling from the joint distribution q̂(G) = q̂(g1, . . . , gM) directly (where themodel param-

eters G can be decomposed as G = {g1, . . . , gM}), in Gibbs sampling samples are itera-

tively drawn from the conditional distribution of each parameter gm in turn. Following a

suõcient burn-in period (say T steps), the chain converges to the stationary distribution

regardless ofwhere it begins. his is called the equilibrium distribution. hen, the samples1

are from the joint distribution q̂(G), but not independent.

In addition to implementing theMonte Carlo method directly, in [95] the joint distri-

bution q(G) is factorised, and theMonte Carlo approach is applied to one of the factorised

distributions. Compared with the variational methods having full factorisation, a weaker

assumption is made:

q(G) ≈ q(gm)q(G−gm) (5.18)

where gm is one parameter in set G = {g1, . . . , gM}, and G−gm are all the parameters

except gm in G. By using this factorisation, inference can be simpliûed, especially when it is

impractical to sample from the joint distribution q(G) directly. he optimisation procedure

then can be described as alternatively performing the following two steps:

• Given q̂(gm), estimate q̂(G−gm) by minimising the general criterion in (5.6).

• Given q̂(G−gm), estimate q̂(gm) by minimising the general criterion in (5.6).

1 he consecutive samples are correlatedwith each other, and independent samples are desired. hus, these
samples are thinned by only storing every lth value a�er the burn-in period.
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O�en the distribution of a singleparameter q̂(gm)has a simple form,whereas the distri-

bution q̂(G−gm)may be complicated and have no closed form. Monte Carlo approaches can

be implemented [95], where the distribution q̂(G−gm) is approximated by samples. hen

the integral in the class posterior distribution described in (5.16) can be calculated. In sec-

tion 5.4, an application of this method to the inûnite structured discriminative model will

be discussed in detail.

Variational Inference As an alternative toMonte Carlo approaches, variational inference

can be applied to approximate the optimal distribution q̂(G). he mean ûeld variational

inference [19] is commonly used, in which parameters G = {g1, . . . , gM} are assumed to

be independent from each other. he optimal distribution q̂(G) is approximated by a fully

factorised variational distribution qv(G):

q̂(G) ≈ qv(G) = qv(g1, . . . , gM) =

M∏

m=1

qv(gm) (5.19)

where the form of each variational distribution qv(gm) is determined bymodel parameter

vm. In inference, each parameter vm is updated in turn iteratively by performing coor-

dinate descent of the general criterion described in (5.6). A�er converging, the optimised

variational distribution can be used in computing the class posterior distribution described

in (5.16). Since the variational distribution is fully factorised and normally has a simple

form (say the exponential family), the integral becomes tractable to compute. An example

of variational inference for the inûnite support vector machine is given in Appendix B.

5.3 Inûnite Structured DiscriminativeModels

he framework for inûnite mixtures of experts was discussed in section 4.3.5. In the fol-

lowing sections, the applications of inûnite mixtures of experts to speech recognition will

be discussed in detail. In the previous sections, the input and corresponding label were de-

noted as x and w respectively. Since speech utterances are data sequences and class labels

are sentences, the notation for the input utterance (observation sequence) and correspond-

ing class label (sentence) are changed to O and W respectively. When label structure1 is

1 he sentences are structured labels, which can be broken down into atomic units, e.g. words or phones.
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5.3 Inûnite Structured DiscriminativeModels

introduced, the inûnitemixture of experts described in equation (4.47) becomes an inûnite

structured discriminativemodel:

P (W |O,G) = P (W |O,π,Θ,H)

=
∑

z

P (W |O,H, z)P (z|O,π,Θ) z ∈ {1, 2, · · · ,∞} (5.20)

where G = {π,Θ,H} are the parameters of the wholemodel. z is the indicator variable,

that denotes which expert the input variableO is associated with. P (z|O,π,Θ) is known

as the gating network, which is a function of the input variableO with parameters {π,Θ}.
If the gating network is based on a Gaussian mixturemodel (GMM) with inûnite number

of components, π = {πm}∞m=1 aremixture weights,Θ = {θm}∞m=1 are the parameters of

all the components. P (z|O,π,Θ) is the component posterior of the inûnite GMM:

P (z|O,π,Θ) =
πzN

(
ϕ(O);θz

)
∑

z πzN
(
ϕ(O);θz

) , z ∈ {1, 2, . . . ,∞} (5.21)

where N
(
ϕ(O);θz

)
is the zth Gaussian component with parameters θz , πz is the mix-

tureweight corresponding to the zth Gaussian component, and ϕ(O) is a feature function,

which maps the input O with various length to a feature with ûxed dimension, e.g. the

log-likelihood feature function described in section 3.5.2.1 can be used.

In the inûnite structured discriminativemodel described in (5.20), P (W |O,H, z) is a

structured discriminativemodel1,which is discussed in section 3.2.H = {ηm}∞m=1 are the

parameters of all the experts. Since the class label of the utteranceW is a sentence, the pos-

sible number of classes for an utterance can be exponentially large in the vocabulary size. In

order to solve this problem, structure is introduced by breaking the sentence label into sub-

sentence units, e.g. words or phones with associated segmentation of the sentence. Given

one possible segmentation (or alignment)ρwhich segments the sentence into sub-sentence

units, the input utterance and sentence can be decomposed into O = {O(1), . . . ,O(|ρ|)}
andW = {w1, . . . , w|ρ|}, where |ρ| is the number of segments. As discussed in section

3.2, the structured discriminativemodel P (W |O,H, z) in (5.20) can be described as:

P (W |O,H, z) = P (W |O,ηz) =
1

Z(ηz,O)

∑

ρ∈PW
exp

(
ηT
zΦ(O,W,ρ)

)
(5.22)

1 In structured discriminativemodels, the structure of the class label is considered, and the parameters for
any classes (sentences) can be constructed from a common set of basic units [209].
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where Z(ηz,O) is a normalisation term:

Z(ηz,O) =
∑

W∈W

∑

ρ∈PW
exp

(
ηT
zΦ(O,W,ρ)

)
(5.23)

where the setW consists of all possible hypotheses for the inputO, and the setPW consists

of all possible segmentations corresponding to the hypothesis W . Φ(O,W,ρ) is the joint

feature space, which characterises the dependence between the inputO and hypothesisW ,

andmaps the inputO with variable length to a ûxed dimension [209, 210]. Various forms

of the joint features were discussed in detail in section 3.5.

he structured discriminativemodeldescribed in equation (5.22) is the conditional aug-

mented (CAug) model or segmental CRF [106, 109, 215] discussed in section 3.2.3. In this

model, the summation over all possible segmentations results in ineõciency in training.

Similar to Viterbi decoding, where the likelihood is approximated by only considering the

most likely state sequence, here the most likely segmentation ρλ from the HMM is used

instead of summing over all possible segmentations [147, 199]. hen the structured dis-

criminativemodel described in (5.22) can be approximated as a log-linear model:

P (W |O,H, z) = P (W |O,ηz) ≈
1

Z(ηz,O)
exp

(
ηT
zΦ(O,W,ρλ)

)
(5.24)

When the experts are log-linear models, the inûnite structured discriminative model de-

scribed in (5.20) is an inûnite log-linear model. Given the generative model (HMM) with

parameters λ, themost likely segmentation ρλ can be obtained by maximising [54]:

ρλ = arg max
ρ

P (ρ)p(O|λ,ρ) (5.25)

where p(O|λ,ρ) is the likelihood given by the HMM. In this work, the probabilities of

choosing diòerent segments are supposed to be equal, namely P (ρ) is a uniform distri-

bution. Alternatively, the optimal segmentation can also be obtained from discriminative

models [210]. he optimal segmentation is not considered in this thesis.

5.3.1 Bayesian Inference with Gibbs Sampling

he previous section discussed the inûnite structured discriminative model, which is an

inûnite mixture of experts with structured discriminative model experts. he log-linear

model, which is a simpliûed form of the CAug model, was also studied. his section will
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discuss Bayesian inference of the inûnite structured discriminativemodel, and the inûnite

log-linear model1 will be given as an example.

5.3.1.1 Classiûcation

In order to motivate inference, classiûcation will be discussed ûrst. In classiûcation, given

an input utterance O, the corresponding class label (sentence) W needs to be predicted.

Consider a training set consisting of utterance and reference pairs D = {(O1,W1), . . . ,

(ON ,WN )}, where On is the nth training utterance (observation sequence) and Wn is

the corresponding class label. As discussed in section 4.2, in Bayesian approaches the class

posterior distribution ofW can be calculated by marginalising out over all the model pa-

rameters. hus the class posterior distribution for the inûnite structured discriminative

model can be obtained:

P (W |O,D) =

∫
P (W |O,G)p(G|D)dG (5.26)

where G = {π,Θ,H} = {πm,θm,ηm}∞m=1 are the parameters of the wholemodel, and

the posterior distribution p(G|D) can be obtained according to Bayes’ rule:

p(G|D) ∝ p(G)p(D|G) (5.27)

where p(G) is the prior distribution of themodel parameters, and in this work thesemodel

parameters are assumed to be independent from each other in the prior distribution. O�en,

the posterior distribution (5.27) does not have a closed form, and the integral in the class

posterior distribution (5.26) is intractable. Common approaches to address this problem are

to useMonte Carlo methods or variational inference. In variational inference, the trunca-

tion ismade in inference [19, 213],where the number of components is truncated toM . And

in the mean ûeld variational inference which is most commonly used, the fully-factorized

variational distributions are used which break the dependencies between the parameters.

Alternatively, Monte Carlo approaches are sampling-based methods, where the integral,

such as in (5.26), is approximated by the sum over samples, and any desired accuracy can

be achieved with enough samples. In this work, only Monte Carlo approaches are studied.

1 Again, the inûnite log-linearmodel is an inûnite structured discriminativemodel having log-linearmod-
els as experts.
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Given the deûnition of the inûnite structured discriminative model (5.20), and let the

integral in the class posterior distribution (5.26) be approximated by the sum overK sam-

ples, then yields:

P (W |O,D) ≈ 1

K

K∑

k=1

P (W |O,G(k))

≈ 1

K

K∑

k=1

Mk∑

z=1

P (W |O,H(k), z)P (z|O,π(k),Θ(k)) (5.28)

where the samples G(k) = {π(k),Θ(k),H(k)}Kk=1 are drawn from the posterior distribu-

tion of the model parameters p(G|D). Since G = {π,Θ,H} are the parameters of the

whole inûnite structured discriminativemodel, there are inûnite number of parameters in

set {π,Θ,H}. In training (limited by the ûnite number of training data), the number of

represented expertsMk (which are the experts that have associated data) is ûnite. In classiû-

cation, only the represented experts are considered (and the reason will be discussed in the

next paragraph). hen each draw {π(k),Θ(k),H(k)} ≈ {π(k)m ,θ
(k)
m ,η

(k)
m }Mk

m=1
1 deûnes a

mixture of experts as described in section 4.3.5.1, and classiûcation is averaged overK mix-

ture of experts. In the rest of this section, the reason for only considering the represented

experts will be discussed.

In the class posterior distribution (5.28),Mk is the number of the represented experts

(which are the experts that have associated data) for the kth draw. his means the unrep-

resented experts (which are the experts that have no associated data) are ignored in classi-

ûcation. Since there is no associated data for the unrepresented experts, the parameters of

the unrepresented experts are sampled from the prior distribution, and all unrepresented

experts can be treated as a single expert. hus, in the following discussion, we can consider

the unrepresented experts as a single expert. For the kth draw, the conditional probability

Punrep(W |O,G(k)) contributed from the unrepresented experts can be described as:

Punrep(W |O,G(k)) = P (W |O,H(k), z)P (z|O,π(k),Θ(k))

= P (W |O,η(k)z )P (z|O,π(k),Θ(k)), z = Mk + 1 (5.29)

1 he mth mixture weight π(k)
m is proportional to the number of data associated with that expert N (k)

m

which can be obtained in training, and the total weight satisûes
∑
m π

(k)
m = 1.
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Let π(k)Mk+1
1 denote the mixture weight corresponding to the unrepresented experts.

Empirically, themixtureweight π(k)Mk+1 corresponding to the unrepresented experts is small.

his leads to a small component posterior probability P (z|O,π(k),Θ(k)) deûned in (5.21).

Moreover, if the unrepresented experts are considered in classiûcation, in the conditional

distribution P (W |O,η(k)z ), η(k)z is drawn the prior distribution p(η), and the prior might

be chosen for mathematical simplicity rather than based on the prior beliefs or we hold no

prior information about the parameter. his leads to inaccuracy when the unrepresented

experts are taken into account. Due to the small value of P (z|O,π(k),Θ(k)) and inaccu-

racy of the conditional probabilityPunrep(W |O,η(k)z ) described in (5.29), the unrepresented

experts are not considered in classiûcation in this study.

5.3.1.2 Bayesian Inference

As discussed in the previous section, the joint posterior distribution over the model pa-

rameters, p(G|D), of the inûnite structured discriminative model described in (5.27) does

not have a closed form. However, Gibbs sampling [6, 190] can be applied to draw sam-

ples from this joint posterior distribution. In inference of the inûnite structured discrim-

inative model, the representation based on the Chinese restaurant process (CRP) is used,

and the graphical model of this representation is illustrated in Figure 4.10, where themix-

ture weights π = {πm}∞m=1 are marginalised out, and the latent variables (the indicator

variables corresponding to the training data) z = {z1, . . . , zN} are introduced. hus, the

posterior distribution p(Θ,H, z|D) will be inferred in training. Gibbs sampling is ap-

plied to draw samples {Θ(k),H(k), z(k)} from this posterior distribution p(Θ,H, z|D).

As discussed in the previous section, {π(k),Θ(k),H(k)} are the samples of interest in clas-

siûcation. As discussed in [6, 172], the marginal samples {Θ(k),H(k)} can be obtained

by sampling {Θ(k),H(k), z(k)} according to p(Θ,H, z|D) and subsequently ignoring

the samples z(k). When the sampled indicators z(k) are given, the number of the repre-

sented experts Mk can be determined, which is the number of the unique values in set

z(k), namely Mk = |z(k)|. Given z(k), the number of data N (k)
m associated with each

1 When the unrepresented experts are considered, themixtureweight π(k)
Mk+1 corresponding to the unrep-

resented experts is proportional to α which is the concentration parameter of the Dirichlet process; the weight
π
(k)
m corresponding to a represented expert is proportional to the number of data associated with that expert
N

(k)
m . he total weight satisûes

∑
m π

(k)
m = 1.
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Algorithm 1: the sampling process for the inûnite structured discriminativemodel

Initialise: {Θ(0),H(0), z(0)}
repeat

for n ∈ {1, . . . , N} do
sample z(k)n ∼ P (zn|z(k)−n,Θ(k−1),H(k−1),D)

end
he number of represented experts is:Mk = |z(k)|.
form ∈ {1, . . . ,Mk} do

sample θ(k)m ∼ p(θm|z(k),D)

sample η(k)m ∼ p(ηm|z(k),D)

end
for the unrepresented experts do

sample θ(k)
Mk+1 ∼ p(θ)

η(k)
Mk+1 = arg maxη p(η)1

end

until converge;

represented expert also can be determined: N (k)
m =

∑N
n=1 δ(z

(k)
n ,m). As discussed in sec-

tion 5.3.1.1, only the represented experts are considered in classiûcation, themixtureweights

π(k) = {π(k)m }Mk
m=1

2 used in classiûcation then can be determined, where each weight

π
(k)
m is proportional to the number of associated data N (k)

m , and the total weight satisûes
∑

m π
(k)
m = 1, namely π(k)m = N

(k)
m
N whereN is the total number of training data.

In Gibbs sampling, samples are iteratively drawn from the conditional posterior dis-

tribution of each parameter in turn. he sampling process for the inûnite structured dis-

criminativemodel can be summarised inAlgorithm 1. he samples {Θ(k),H(k), z(k)} can
be obtained from this iterative process. By discarding the initial set of samples (in burn-in

period) to avoid starting biases, K thinned samples (obtained by only choosing one sam-

ple from every several consecutive samples) can be used to approximate the integral in the

class posterior distribution described in (5.26). In the following sections, the conditional

posterior distribution of each parameter will be discussed in detail.

2 Since only the represented experts are considered in classiûcation, the mixture weights π(k) has Mk

elements. Training is based on the CRP, where π are marginalised out, and inûnite number of experts are
considered. hus, there is no restriction on training.
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5.3.1.3 he Conditional Posterior Distribution of zn

he indicator variable zn denotes which expert the nth observation sequenceOn is associ-

atedwith. Given the training dataD = {(O1,W1), . . . , (ON ,WN )} and the samples of all

the other model parameters, the conditional posterior distribution of zn can be described

as follows:

P (zn = m|z(k)−n,Θ(k−1),H(k−1),D) ∝
P (zn = m|z(k)−n, α)p

(
ϕ(On)|θ(k−1)m

)
P (Wn|On,η

(k−1)
m ) (5.30)

where the set z(k)−n denotes all the indicators except z
(k)
n , namely

z
(k)
−n =

{
z
(k)
1 , . . . , z

(k)
n−1, z

(k−1)
n+1 , . . . , z

(k−1)
N

}
.

Θ(k−1) are the sampled parameters of the components in the gating network, andH(k−1)

are the sampled parameters of the experts. he ûrst term P (zn = m|z(k)−n, α) is given by

the Chinese Restaurant Process (CRP)1 with concentration parameter α described in sec-

tion 4.3.3:

P (zn = m|z(k)−n, α) =





N
(k)
m,−n

N − 1 + α
, whenm denotes an existing expert

α

N − 1 + α
, whenm denotes a new expert

(5.31)

where N is the total number of the training data, and N (k)
m,−n is the number of training

data associated with themth expert excluding the nth instance. In (5.30) the second term

p
(
ϕ(On)|θ(k−1)m

)
is the component likelihood,which is given by theGaussian distribution.

ϕ(·) is a feature function which transforms the input with various length to a vector with

ûxed dimension. he last term P (Wn|On,η
(k−1)
m ) is the conditional likelihood given by

the structured discriminativemodel, for example the log-linear model described in (5.24).

When zn indicates an existing expert (a represented expert), it is straightforward to

calculate the conditional posterior probability of zn through (5.30). When zn denotes a

new expert (anunrepresented expert), following themethod introduced byNeal [131],when

1 In order tomake the newly generated expert have good generalisation, η is set to be themode of its prior
distribution. Here, the mode of the prior distribution is the optimised parameter of the discriminative model
trained with the whole training set.

1 Given the exchangeabilityof theCRP, each zn canbe considered as the last customer in theCRPmetaphor.
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calculating the likelihood p
(
ϕ(On)|θ(k−1)m

)
, the parameter θ(k−1)m is sampled from its prior

distribution as an auxiliary parameter [131]. hus the likelihood can be easily obtained. In

order to ensure that the newly generated expert has good generalisation, when calculating

the last term P (Wn|On,η
(k−1)
m ), the parameter of the expert η(k−1)m is set to be themode

of the prior distribution. In this work, the prior distribution is aGaussian distribution, and

the mean of this distribution is the optimised parameter of the structured discriminative

model trained with the whole training set.

5.3.1.4 he Conditional Posterior Distribution of θm

he gating network is based on a Dirichlet process mixturemodel, i.e. an inûnite GMM in

this work. Given the sampled indicator variables z(k), the parameters of diòerent Gaussian

components are conditionally independent. Here the conditional posterior distribution of

themth Gaussian component parameters θm can be described as follows:

p(θm|z(k),D) ∝ p(θm)
∏

∀z(k)n =m

p
(
ϕ(On)|θm

)
(5.32)

where ∀z(k)n = m indicates all instances n ∈ {1, . . . , N} that satisfy z(k)n = m. p(θm) is

the prior distribution of θm, and p
(
ϕ(On)|θm

)
is the likelihood corresponding to themth

Gaussian component. Given the sampled indicators z(k), each parameter set of the Gaus-

sian component θ(k)m can be sampled independently according to the conditional posterior

distribution in (5.32). his conditional posterior distribution (5.32) is the same as the condi-

tional posterior distribution of the component parameters in the inûnite GMM [149], and

the detailed process of sampling the component parameters and their hyper parameters is

described in [77, 131, 149].

5.3.1.5 he Conditional Posterior Distribution of ηm

In this section, the experts are assumed to be log-linear models described in (5.24). Given

the sampled indicator variables z(k), the parameters of diòerent experts are conditionally

independent. hen the conditional posterior distribution of themth expert parameter ηm
can be described as follows:

p(ηm|z(k),D) ∝ p(ηm)
∏

∀z(k)n =m

P (Wn|On,ηm) (5.33)
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Algorithm 2: theMetropolis algorithm for sampling the parameter of the expert
Initialise: η0, t = 0

repeat
1. Sample a candidate from the proposal distribution η∗ ∼ p(η|ηt), which is a
symmetric distribution satisfying p(η|ηt) = p(ηt|η).
2. Calculate the ratio:

r =
p(η∗|z(k),D)

p(ηt|z(k),D)
=
p(η∗)

∏
∀z(k)n =m

P (Wn|On,η
∗)

p(ηt)
∏
∀z(k)n =m

P (Wn|On,ηt)
(5.34)

3. If r ≥ 1, accept the candidate. If r < 1, with probability r accept the
candidate, else reject it and go to step 1.
4. Let t = t+ 1, and ηt = η∗.

until converge;

where ∀z(k)n = m indicates all instances n ∈ {1, . . . , N} that satisfy z(k)n = m. p(ηm) is

the prior distribution of the expert parameter, which is a Gaussian distribution p(ηm) =

N (ηm;µη,Ση). In this work, the mean µη is the optimised parameter of a structured

discriminative model trained with the whole training set, and the covariance is a scaled

identity matrix Ση = CI . P (Wn|On,ηm) is the conditional likelihood of a structured

discriminative model, e.g. the log-linear model described in (5.24). Given the sampled

indicators z(k), the parameter of each expert η(k)m can be sampled independently according

to the conditional posterior distribution described in (5.33). heMetropolis algorithm [125,

126] can be applied to sample from this conditional posterior distribution, and the sampling

process is detailed in Algorithm 2.

Asdescribed inAlgorithm 2, in step 1 the candidateη∗ for thenext sample isdrawn from

the proposal distribution (or candidate-generating distribution) p(η|ηt),which is a symmet-

ric distribution satisfying p(η|ηt) = p(ηt|η), e.g. a Gaussian distribution centred at ηt:

N (η;ηt, Σ). In step 2, when calculating the ratio r described in (5.34), the denomina-

tor term of the log-linear model P (W |O,η) can be calculated eõciently by applying the

forward algorithm on the denominator lattice [196].

By repeating the sampling process in Algorithm 2, a Markov chain {η0,η1, . . .} can
be built. Following the burn-in period (e.g. T steps), the chain approaches its stationary

distribution. hen {ηT+1,ηT+2, . . .} are samples from distribution p(ηm|z(k),D).
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Each time the ratio r is calculated, Nm (the amount of data associated with the mth

expert) calls of the forward algorithm are required to calculate the denominator term of

P (Wn|On,η
∗). However, the value of the product of the posterior probabilities

∏
∀z(k)n =m

P (Wn|On,η
∗) can be cached for the next calculation of r, here

∏
∀z(k)n =m

P (Wn|On,ηt) does not need to be calculated, given that the cached value can

be used. However, generating a valid sample by using theMetropolis algorithm is still com-

putationally expensive. Since the Metropolis algorithm is a Markov chain Monte Carlo

(MCMC) approach, this chain might be slow to converge and the iterative calculation of

the ratio r described in (5.34) is computationally expensive. his motivates an approximate

approach to be used, and this approach will be discussed in the following section.

5.3.2 MAP Estimation for Each Expert

In section 5.3.1, a MCMC approach (i.e. Gibbs sampling detailed in Algorithm 1) is in-

troduced to draw samples from the posterior distribution p(Θ,H, z|D). When sampling

from the conditional posterior distribution of each expert’s parameter p(ηm|z(k),D), the

Metropolis algorithm described in Algorithm 2 is applied. In this algorithm, each instance

of calculating the ratio r described in (5.34) requires the forward algorithm to be imple-

mented. his leads to ineõciency in training. In order to make training more eõcient, an

approximatemethod will be discussed in this section.

Rather thandrawing samples from the conditional posteriordistribution p(ηm|z(k),D)

described in (5.33), the maximum a posteriori (MAP) estimate can be used to approximate

the samples from this posterior distribution. heMAP estimate is the mode of the condi-

tional posterior distribution of ηm described in (5.33):

arg max
ηm

FMAP(ηm) = arg max
ηm

{
log
(
p(ηm|z(k),D)

}

= arg max
ηm

{
log p(ηm) +

∑

∀z(k)n =m

logP (Wn|On,ηm)
}

(5.35)

his is the same as the CML training criterion of the CAug model with a prior [106, 147].

hen the eõcient training approaches used by the CAug model can be applied, such as the

RPROP algorithm [151]. When theprior is aGaussiandistribution p(ηm) = N (ηm;µη,Ση)
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with mean µη and a scaled identity covariancematrixΣη = CI , theMAP (or CML) esti-

mation described in (5.35) can be further described as:

arg max
ηm

FMAP(ηm) = arg max
ηm

{
− ||ηm − µη||

2

C
+

∑

∀z(k)n =m

logP (Wn|On,ηm)
}

(5.36)

By using an appropriate prior, improved generalisation can be achieved. In this work, the

mean of the prior µη is set to be the optimised parameter of the log-linear model (5.24)

trained on the whole training set using the CML criterion.

As discussed in this section, in training the inûnite log-linear model (iLLM),MAP (or

CML) estimation is applied to estimate the parameter of each expert by replacing sampling

from the conditional posterior distribution p(ηm|z(k),D) in Algorithm 1.

In this approximatemethod, the parameter of each expert is estimated according to the

MAP (or CML) criterion, and this estimate is used to approximate the sample drawn from

the conditional posterior distribution p(ηm|z(k),D). By using this approximation, the

samplesH(k) drawn from the conditional posterior distributions are replaced with the pa-

rameters trainedwith theMAP criteriondescribed in (5.36). hus, the samples {Θ(k),H(k)}
are not drawn from the joint posterior distribution p(Θ,H|D) obtained from Bayes’ rule,

but from a distribution with more narrow support. he resulting samples might converge

to a local maximum of p(Θ,H|D). his might limit the ability of themodel exploring the

whole parameter space andmitigating over-ûtting.

5.3.3 LargeMargin Training for Each Expert

In section 5.3.2, the parameters of the experts are obtained by using a MAP estimator. In

order to take advantage of the largemargin classiûer, with good generalisation yielding the

state-of-the-art performance, in this section, largemargin training is applied to estimate the

parameters of each expert by replacing sampling from the conditional posterior distribution

p(ηm|z(k),D) in Algorithm 1. his type of system has been called the inûnite structured

SVM in the previous work [197].

In large margin training of the log-linear model described in (5.24), the margin is de-

ûned as the log-posterior ratio of the log-linear model between the referenceWn and the

most competing hypothesisW . Given the sampled indicators z(k), and introducing a prior
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p(ηm), the parameter of themth expert can be estimated byminimising the following large

margin training criterion:

FLM(ηm) = − log p(ηm) +
∑

∀z(k)n =m,∀n

[
max

W,ρ6=Wn,ρn

{
L(W,Wn)−

log
(P (Wn|On,ηm)

P (W |On,ηm)

)}]

+

(5.37)

where, for each training instance, the most competing hypothesis and segmentation pair

(W,ρ) is found over all possible hypotheses and segmentations1 except the reference with

the corresponding segmentation (Wn,ρn), andρn is themost likely segmentation obtained

by the HMM as described in equation (5.25). L(W,Wn) is the loss, which measures how

diòerent the hypothesis W and the reference Wn are. When the prior p(ηm) is a Gaus-

sian distribution p(ηm) = N (ηm;µη,Ση) with mean µm and scaled identity covariance

matrix Ση = CI , substituting the log-linear model (5.24) into the large margin training

criterion (5.37), the denominator term of the log-linear model can be cancelled out. hen,

the training criterion can be further described as minimising:

FLM(ηm) =
1

2
||ηm − µη||2 + C

∑

∀z(k)n =m,∀n

[
max

W,ρ 6=Wn,ρn

{
L(W,Wn)+

ηTmΦ(On,W,ρ)
}
− ηTmΦ(On,Wn,ρn)

]

+

(5.38)

his is the training criterion of the structured SVM [180, 181] with the training data as-

sociated with the mth expert. In order to train the expert with limited training data and

ensure good generalisation, in this work themean of the Gaussian prior µη is set to be the

optimised parameter of the structured SVM trained with the whole training set.

As discussed in this section, in Gibbs sampling, sampling for each expert is replaced by

largemargin training. hus, this is not a validGibbs sampling approach, but an approxima-

tion. his type of largemargin training for each expert can be viewed as a special example

of largemargin training for all the experts, which is discussed in detail in Appendix E.

5.3.4 Relationships with the General Criterion

In section 5.3.1, Bayesian inference of the inûnite log-linear model was studied. In infer-

ence, the framework of inûnite mixtures of experts based on the Chinese restaurant pro-
1 hese possible hypotheses and segmentations can be obtained from a denominator lattice [147, 209].
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cess (CRP) (illustrated in Figure 4.10) is used, where the mixture weights π = {πm}∞m=1

are marginalised out, and the indicator variables z = {z1, . . . , zN} corresponding to the

training data D = {(O1,W1), . . . , (ON ,WN )} are introduced. hus, the posterior dis-

tribution of the model parameters to be inferred is p(Θ,H, z|D), and Gibbs sampling is

employed to sample from this distribution. As discussed in section 5.2, the model poste-

rior distribution obtained through Bayes’ rule can be interpreted as the application of the

general criterion (5.6) with a log-likelihood criterion function:

arg min
q(Θ,H,z)

{
KL
(
q(Θ,H, z)||p(Θ,H, z)

)
−
∫ ∑

z

q(Θ,H, z)F(Θ,H, z;D)d(Θ,H)

}

(5.39)

s.t. q(Θ,H, z) ∈ Pprob

As discussed in section 4.3.5, the inûnite mixture of experts (based on the CRP) is a mix-

ture of discriminativemodels, but not a discriminativemodelwhichmodels the conditional

distribution of the labelW given the observationsO directly without considering the un-

derlying distribution of the observations [132]. For the inûnite log-linear model, the distri-

bution of the observations is modelled by the gating network, which is an inûniteGaussian

mixture model. he inûnite log-linear model is a combination of generative models (gat-

ing network) and discriminative models (experts). hus, the criterion function criterion

function F(Θ, H, z;D) can be written in the form of a combination of likelihoods and

conditional likelihoods:

F(Θ,H, z;D) = log p(D|Θ,H, z) =
∑

n

log p(On,Wn|Θ,H, zn)

=
∑

n

(
log p(On|Θ, zn) + logP (Wn|On,H, zn)

)
(5.40)

As shown shown in (5.15), the solution that minimises criterion (5.39) is the product of the

prior and the exponential of the criterion function:

q̂(Θ,H, z) = p(Θ,H, z) log
(
F(Θ,H, z;D)

)

= p(Θ,H, z)P (D|Θ,H, z) = p(Θ,H, z|D) (5.41)

his is the posterior distribution obtained through Bayes’ rule, and it is the distribution to

be inferred in standard Bayesian inference discussed in section 5.3.1.
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5.4 LargeMargin Training of Inûnite Log-linear Models

In section 5.3.1, Bayesian inference of the inûnite structured discriminativemodelwas stud-

ied. Section 5.3.4 discussed a criterion-based interpretation of Bayesian inference for the

inûnite log-linear model, inwhich the general criterion has a log-likelihood criterion func-

tion. his section will discuss the application of the general criterion to the whole inûnite

log-linear model, the experts and the gating network.

5.4.1 he Training Criterion

As discussed in section 5.3.4, Bayesian inference of the inûnite log-linear model can be in-

terpreted as a criterion-based training approach, where the training criterion is the general

criterion (5.39)with a log-likelihood criterion function (5.40). his criterion function is the

combination of likelihoods (for the gating network) and conditional likelihoods (for the

experts) as described in (5.40):

F(Θ,H, z;D) =
∑

n

(
log p(On|Θ, zn) + logP (Wn|On,H, zn)

)
(5.42)

AppendixEdiscussed (largemargin) training of the experts for the inûnite log-linearmodel,

where the general criterionwith ahinge loss criterion function is applied only to the experts,

and this criterion function is described in (E.2):

F(H;D) = −
∑

n

[
max

W,ρ6=Wn,ρn

{
L(W,Wn)−M(W,Wn;H,On)

}]

+

(5.43)

In this section, a largemargin training criterionwill be applied to thewhole inûnite log-

linear model. his largemargin training criterion is a speciûcation of the general criterion,

and has the same form as the general criterion for Bayesian inference described in (5.39):

arg min
q(Θ,H,z)

{
KL
(
q(Θ,H, z)||p(Θ,H, z)

)
−
∫ ∑

z

q(Θ,H, z)F(Θ,H, z;D)d(Θ,H)

}

s.t. q(Θ,H, z) ∈ Pprob (5.44)

but the criterion function has a diòerent form, which is the combination of the likelihood
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function (for the gating network) and the hinge loss function (for the experts):

F(Θ,H, z;D) =
∑

n

(
log p(On|Θ, zn)−

[
max

W,ρ 6=Wn,ρn

{
L(W,Wn)−M(W,Wn;On,H, zn)

}]
+

)
(5.45)

his criterion function (5.45) is called the combined criterion function in thiswork. he gen-

eral criterion described in (5.44) with this combined criterion function (5.45) has a similar

form to the criterion for regularised Bayesian inference [212, 214], and the hinge loss func-

tion (the second term of (5.45)) is related to the regularisation term in regularised Bayesian

inference.

For the combined criterion function (5.45), [·]+ is the hinge loss function deûned in

(5.10). In this hinge loss, for each training instance, the best competing hypothesis and seg-

mentation pair (W,ρ) is found over all possible hypotheses and segmentations except the

reference with the corresponding segmentation (Wn,ρn), and ρn is the most likely seg-

mentation obtained by the HMM as described in equation (5.25). L(W,Wn) is the loss

between the hypothesis W and the referenceWn. M(W,Wn;On,H, zn) is the margin,

which determines how well the input labelWn can be correctly separated with the hypoth-

esisW . In the training criterion of the structured SVM [210], themargin is deûned as the

log-posterior ratio of the log-linear model deûned in (5.24). In this margin deûnition, the

normalisation terms of the log-linear models can be cancelled out. Analogously, in this

work themargin for the inûnite log-linear model is deûned as the log ratio of the log-linear

models:

M(Wn,W ;On,H, zn) = log
P (Wn|On,H, zn)

P (W |On,H, zn)
(5.46)

where P (W |O,H, z) is the log-linear model deûned in (5.24). Other possible deûnitions

of the margin were discussed in appendix E.1.1, where large margin training is applied in

training the experts of the inûnite log-linear model. In this section, large margin training

is applied to the whole inûnite log-linear model (an overall training criterion for the gating

network and experts).

5.4.2 he Solution to the Criterion

In the previous section, large margin training for the whole inûnite log-linear model was

discussed. his largemargin training criterion is the general criterion (5.44) with the com-
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bined criterion function described in (5.45). As discussed in section 5.2.1, the solution that

minimises the general criterion is the product of the prior and the exponential of the cri-

terion function. hus,minimising the general criterion (5.44) with the combined criterion

function (5.45), yields:

q̂(Θ,H, z) ∝ p(Θ,H, z) exp
(
F(Θ,H, z;D)

)
(5.47)

where p(Θ,H, z) is the prior distribution of themodel parameters, and in thiswork these

model parameters are assumed to be independent from each other in the prior distribution.

Substituting the deûnition of the combined criterion function (5.45) in, this solution (5.47)

can be further written as:

q̂(Θ,H,z) ∝ p(Θ,H, z)
∏

n

(
p(On|Θ, zn)·

exp
(
−
[

max
W,ρ6=Wn,ρn

{
L(W,Wn)−M(W,Wn;On,H, zn)

}]
+

))
(5.48)

his distribution is intractable, hence a Monte Carlo approach is implemented to sample

from the un-normalised distribution as illustrated on the right hand side of (5.48). Because

of themaximisation in the distribution q̂(Θ,H, z), it is impractical to draw samples from

this distribution directly. As discussed in section 5.2.1, an indirect Monte Carlo method

can be applied. In this Monte Carlo approach, the joint posterior distribution is factorised.

hen, samples can be drawn from the factorised distributions. In thiswork, aweak assump-

tion is made [95]:

q(Θ,H, z) ≈ q(H)q(Θ, z) (5.49)

Under this assumption, the training process can be summarised in Algorithm 3, and train-

ing will be discussed in detailed in the following sections.

5.4.2.1 he Estimation of q̂(H)

Given q̂(Θ, z), the optimal distribution q̂(H) for the experts’ parameters can be estimated

by minimising the general criterion (5.44) with the combined criterion function (5.45).

Since q̂(Θ, z) is given, this general criterion can be simpliûed as the following largemargin
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Algorithm 3: Largemargin training for the inûnite log-linear model
Initialise: q̂(Θ, z) and q̂(H)

repeat
1. Given q̂(Θ, z), by minimising the general criterion (5.44) with the combined
criterion function (5.45), the optimal distribution q̂(H) can be estimated.
2. Given q̂(H), the optimal distribution q̂(Θ, z) can be obtained by
minimising the general criterion (5.44). hen the samples are drawn from the
distribution q̂(Θ, z).

until converge;

training criterion:

arg min
q(H)

{
KL
(
q(H)||p(H)

)
+

∫ ∑

z

q̂(z)q(H)
N∑

n=1

[
max

W,ρ6=Wn,ρn

{
L(W,Wn)−

M(W,Wn;On,H, zn)
}]

+

dH

}
(5.50)

s.t. q(H) ∈ Pprob

where the marginM(W,Wn;On,H, zn) is deûned in (5.46). Substituting the deûnition

of the log-linear model (5.24) into this margin, the denominator terms of the log-linear

models can be cancelled out, then yields:

M(W,Wn;On,H, zn) = ηT
znΦ(On,Wn,ρn)− ηT

znΦ(On,W,ρ) (5.51)

For the inûnite log-linear model, the distribution q̂(Θ, z) does not have a closed form,

hence in training samples {Θ(k), z(k)} are drawn from this distribution, whichwill be dis-

cussed in detail in section 5.4.2.2. In the large margin training criterion (5.50), K samples

{z(k)}Kk=1 are used to approximate the distribution q̂(z), and substituting margin (5.51) in,

the largemargin training criterion (5.50) then can be approximated as follows:

arg min
q(H)

{
KL
(
q(H)||p(H)

)
+

∫
1

K

K∑

k=1

q(H)

N∑

n=1

[
max

W,ρ 6=Wn,ρn

{
L(W,Wn)−

ηT

z
(k)
n

Φ(On,Wn,ρn) + ηT

z
(k)
n

Φ(On,W,ρ)
}]

+

dH

}
(5.52)

s.t. q(H) ∈ Pprob

Since themost competing hypothesisW and corresponding segmentationρ are found over

all possible H , this large margin training criterion (5.52) is intractable. Approximations
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need to be made. As discussed in section 5.2, the large margin training criterion becomes

tractable, when the posterior distribution q(H) is assumed to be a Dirac delta function:

q(H) = δ(H, Ĥ) =
∞∏

m=1

δ(ηm, η̂m) (5.53)

his delta function has point mass at Ĥ = {η̂m}∞m=1, and they are the parameters of the

delta function. Substituting the deûnition of theKL divergence and this delta function (5.53)

in, the largemargin training criterion (5.52) can be further written as minimising:

∫
q(H) log q(H)dH −

∫
q(H) log p(H)dH +

1

K

K∑

k=1

N∑

n=1

[
max

W,ρ 6=Wn,ρn

{
L(W,Wn)−

η̂T

z
(k)
n

Φ(On,Wn,ρn) + η̂T

z
(k)
n

Φ(On,W,ρ)
}]

+

(5.54)

where the ûrst term is the negative of the Shannon entropy. Since q(H) = δ(H, Ĥ) is

a Dirac delta function, this entropy is a constant but inûnite value. hen the large margin

training criterion (5.54) can be simpliûed to be the same as the training criterion for large

margin training of the experts described in (E.14):

− log p(Ĥ) +
1

K

K∑

k=1

N∑

n=1

[
max

W,ρ 6=Wn,ρn

{
L(W,Wn)−

(
η̂T

z
(k)
n

Φ(On,Wn,ρn)− η̂T

z
(k)
n

Φ(On,W,ρ)
)}]

+

(5.55)

Given the sampled indicators {z(k)}Kk=1, he number of the represented experts can be

determined: M =
∣∣{z(k)}Kk=1

∣∣, which is the number of unique values in set {z(k)}Kk=1.

he prior distribution ofH is assumed to be p(H) =
∏∞
m=1 p(ηm). For the unrepresented

experts (having index m > M ), minimising criterion (5.55) yields the mode of the prior

distribution p(ηm). For the represented experts (having indexm ≤ M ) with parameters

Ĥr = {η̂m}Mm=1, analogous to the criterion (E.15) for largemargin training of the experts,

the largemargin training criterion (5.55) can be described as the followingM minimisation

criteria:

FLM(Ĥr) =
M∑

m=1

FLM(η̂m) (5.56)

122



5.4 LargeMargin Training of Inûnite Log-linear Models

where:

FLM(η̂m) = − log p(η̂m)+
1

K

K∑

k=1

∑

∀z(k)n =m,∀n

[
max

W,ρ 6=Wn,ρn

{
L(W,Wn)−

η̂TmΦ(On,Wn,ρn) + η̂TmΦ(On,W,ρ)
}]

+

(5.57)

In this work, the prior distribution of each expert’s parameter is assumed to be a Gaus-

sian distribution p(ηm) = N (ηm;µη, Ση) with mean µη and a scaled identity matrix

covariance Ση = CI . In order to train the experts with limited training data and ensure

good generalisation, the mean µη is set to be the optimised parameter of the structured

SVM trained with all the training data. Substituting the deûnition of the prior distribution

p(ηm) in, themth criterion can be further written as minimising:

FLM(η̂m) ∝ 1

2
||η̂m − µη||2 +

C

K

K∑

k=1

∑

∀z(k)n =m,∀n

[
max

W,ρ 6=Wn,ρn

{
η̂TmΦ(On,W,ρ)+

L(W,Wn)
}
− η̂TmΦ(On,Wn,ρn)

]

+

(5.58)

his criterion (5.58) is the same as the largemargin training criterion (E.17) for training the

experts of the inûnite log-linear model. In this large margin training criterion (5.58), the

bound of summation is for all k ∈ {1, . . . ,K}. As discussed in section E.2, this means the

training data are replicatedK times. For the nth training instance, it might be allocated to

the same expertm for diòerent k. hus, themost competing hypothesisW can be cached,

and the cached hypothesis can be reusedwhen this training instance is allocated to the same

expert again.

5.4.2.2 he Estimation of q̂(Θ, z)

Given the optimal distribution of the experts’ parameters q̂(H) = δ(H, Ĥ) deûned in

(5.53), the general criterion (5.44)with the combined criterion function (5.45) can bewritten

as follows:

arg min
q(Θ,z)

{
KL
(
q(Θ, z)||p(Θ, z)

)
−
∫ ∑

z

F(Θ, z;D)q(Θ, z)dΘ

}
(5.59)

s.t. q(Θ, z) ∈ Pprob
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where

F(Θ, z;D) =
∑

n

(
log p(On|Θ, zn)−

[
max

W,ρ 6=Wn,ρn

{
L(W,Wn)−M(W,Wn;On, Ĥ, zn)

}]
+

)
(5.60)

As discussed in section 5.2.1, the solution that minimises the general criterion is propor-

tional to the product of the prior and the exponential of the criterion function. hus,min-

imising criterion (5.59) yields:

q̂(Θ,z) ∝ p(Θ, z) exp(F(Θ, z;D))

= p(Θ, z)

N∏

n=1

p(On|Θ, zn)·

exp
(
−
[

max
W,ρ6=Wn,ρn

{
L(W,Wn)−M(W,Wn;On, Ĥ, zn)

}]
+

)
(5.61)

As discussed in section 5.3.4, in Bayesian inference of the inûnite log-linear model dis-

cussed, the posterior distribution of the model parameters obtained from Bayes’ rule is

equivalent to the solution that minimises the general criterion with the log-likelihood cri-

terion function described in (5.41):

q̂(Θ,H, z) ∝ p(Θ,H, z) exp(F(Θ,H, z;D))

= p(Θ,H, z)
N∏

n=1

p(On|Θ, zn)P (Wn|On,H, zn) (5.62)

In Bayesian inference of the inûnite log-linear model, for the posterior distribution (5.62),

the probability contributed from the expert is P (Wn|On,H, zn), which is the conditional

distribution given by the log-linear model described in (5.24). By contrast, for the optimal

distribution (5.61) in largemargin training of the inûnite log-linear model, the probability

contributed from the expert is the exponential of the hinge loss function. his results from

the hinge loss function in the deûnition of the combined criterion function deûned in (5.45).

Since the distribution q̂(Θ, z) described in (5.61) is intractable, Gibbs sampling is ap-

plied to sample from this distribution q̂(Θ, z), and the conditional distribution of each

parameter will be discussed in detail in the rest of this section.
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he ConditionalDistribution of θm Given the prior distribution p(Θ, z) = p(Θ)p(z)

and the sampled indicators z(k) = {z(k)1 , . . . , z
(k)
N }, the conditional distribution q̂(Θ|z(k))

can be derived from the joint distribution q̂(Θ, z) described in (5.61):

q̂(Θ|z(k)) ∝ p(Θ)
N∏

n=1

p(On|Θ, z(k)n ) (5.63)

where Θ = {θm}∞m=1 are the parameters of the Gaussian components1, and p(Θ) =
∏
m p(θm) is the prior distribution. Given the sampled indicators z(k), the parameter of

each component θm is conditional independent. For the represented components (that

have associated data), the conditional distribution of each parameter θm can be written as:

q̂(θm|z(k)) ∝ p(θm)
∏

∀z(k)n =m

p
(
ϕ(On)|θm

)
(5.64)

his conditional distribution (5.64) is the same as the conditional posterior distribution of

θm (5.32) inBayesian inference of the inûnite log-linearmodel asdiscussed in section 5.3.1.4.

he diòerence between the joint distributions for largemargin training and Bayesian infer-

ence of the inûnite log-linear model, described in (5.61) and (5.62) respectively, is the term

corresponding to the experts. Since the terms corresponding to the experts (the last terms)

in the joint distributions (5.61) and (5.62) are not functions of θm, the resulting conditional

distributions of θm from these joint distributions (5.61) and (5.62) are identical.

he Conditional Distribution of zn Given the sampled parameters of the gating net-

work Θ(k−1), according to the optimal joint distribution q̂(Θ, z) described in (5.61), the

conditional distribution of the nth indicator variable zn can be derived:

q̂(zn = m|z(k)−n) ∝ P (zn = m|z(k)−n, α)p
(
ϕ(On)|θ(k−1)m

)
·

exp
(
−
[

max
W,ρ6=Wn,ρn

{
L(W,Wn)−M(W,Wn;On, Ĥ, zn)

}]
+

)
(5.65)

where the set z(k)−n denotes all the indicators except z(k)n , namely z(k)−n =
{
z
(k)
1 , . . . , z

(k)
n−1,

z
(k−1)
n+1 , . . . , z

(k−1)
N

}
. In (5.65), the ûrst term P (zn = m|z(k)−n, α) is given by the Chinese

restaurant process described in (5.31), and the second term p
(
ϕ(On)|θ(k−1)m

)
is the com-

ponent likelihood, which is given by the Gaussian distribution.

1 Again, the gating network is an inûnite GMM.
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In Bayesian inference of the inûnite log-linearmodel discussed in section 5.3.1, the con-

ditional posterior distribution of the indicator variable is described in (5.30):

q̂(zn = m|z(k)−n) ∝ P (zn = m|z(k)−n, α)p
(
ϕ(On)|θ(k−1)m

)
P (Wn|On,η

(k−1)
m ) (5.66)

he diòerence between these two conditional distributions (5.65) and (5.66) is the third

term corresponding to the expert. his results from the diòerent deûnitions of the criterion

function given in (5.45) and (5.42), in which the hinge loss and the log-likelihood are used

respectively.

When the indicator variable zn indicates to an existing expert (the represented expert),

the conditional posterior distribution of zn can be obtained from (5.65) directly. When the

indicator variable zn indicates to a new expert (the unrepresented expert), similar to the

method used in Bayesian inference of the inûnite log-linear model model discussed in sec-

tion 5.3.1, in calculating the likelihood p
(
ϕ(On)|θ

)
, the parameter θ is sampled from its

prior distribution [131]. In order to ensure the newly generated expert has good generali-

sation, the parameter of the expert η is set to be the optimised parameter of the structured

SVM trained with the whole training set.

5.4.3 Inûnite Structured SVMs

In standard Bayesian inference, the model itself is probabilistic. A prior distribution is

placed on the model parameters to express the uncertainty, and posterior distribution is

obtained according to Bayes’ rule, in which the (conditional) likelihood of the model is a

probability. In section 5.4.1, an overall criterion is used in training the whole inûnite log-

linear model. Since training is a minimisation problem which does not require the model

to be probabilistic, then discriminant functions (structured SVMs) can be employed as the

experts of the inûnitemixture of experts. his type ofmodel is called the inûnite structured

SVM in this work, and will be discussed in the rest of this section.

A discriminant function is a function that maps the input O directly to a class W by

choosing the class that maximises this function. Let the experts of the inûnite log-linear

model be discriminant functions, then the discriminant function for the zth expert can be

described as:

F (W ;O,H, z) = F (W ;O,ηz) = ηT
zΦ(O,W,ρ) (5.67)
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whereH = {ηm}∞m=1 are the parameters of all the experts, and ηm is the parameter of

themth. Φ(O,W,ρ) is the joint feature vector, which is discussed in detail in section 3.5.

Similar to the conditional probability of the inûnite structured discriminativemodel (5.20),

the overall discriminant function of the inûnite structured SVM can be described as:

F (W ;O,π,Θ,H) =
∑

z

F (W ;O,H, z)P (z|O,π,Θ) (5.68)

For the inûnite structured SVM, the training criterion is still the general criterion (for

the inûnite log-linear model) described in (5.44) with the combined criterion function

(5.45), but themargin is deûned as the diòerence of the discriminant functions:

M(Wn,W ;On,H, zn) = F (Wn;On,H, zn)− F (W ;On,H, zn) (5.69)

Substituting the deûnition of the discriminant function (5.67) in, this margin (5.69) can be

written as:

M(W,Wn;On,H, zn) = ηT
znΦ(On,Wn,ρn)− ηT

znΦ(On,W,ρ) (5.70)

his margin (5.70) is identical to the margin (5.51) for the inûnite log-linear model, where

the margin is deûned as the log ratio of the log-linear models as described in (5.46). he

denominator terms of the log-linear models can be cancelled out, and the resulting margin

becomes a linear function of ηzn that is the same as the margin in (5.70) for the inûnite

structured SVM. his means largemargin training of the inûnite log-linear model and the

inûnite structured SVM are identical. hus, the training process for the inûnite structured

SVM is the same as that for the inûnite log-linear model discussed in section 5.4.2.

5.4.4 Classiûcation

he (large margin) training process of the inûnite log-linear model is summarised in Al-

gorithm 3. A�er converging, the optimal distribution q̂(Θ,H, z) ≈ q̂(H)q̂(Θ, z) can be

obtained, where Θ = {θm}∞m=1 are the parameters of the Gaussian components, H =

{ηm}∞m=1 are the parameters of the experts, and z = {z1, . . . , zN} are the indicator vari-

ables corresponding to the training data. Since both themodel discussed in this section and

the one discussed in Appendix E are inûnite log-linear models (but have diòerent training

approaches), given the optimal distribution q̂(Θ,H, z), in classiûcation the class poste-

rior distribution for the inûnite log-linear model (with large training of the whole model)
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is the same as that for the inûnite log-linear (with large training of the experts) described

in (E.22):

P (W |O,D) ≈ 1

K

K∑

k=1

Mk∑

z=1

P (W |O, Ĥ, z)P (z|O,Θ(k), z(k)) (5.71)

where z is the indicator variable corresponding to the inputO, and Ĥ are the parameters

of q̂(H), which is a Dirac delta function. Mk is the number of the represented experts,

namelyMk = |z(k)| which is the number of the unique values in set z(k). P (W |O, Ĥ, z)

is the conditional likelihood of the zth expert described in (5.24), and P (z|O,Θ(k), z(k))

is the component posterior distribution as described in (E.21):

P (z|O,Θ(k), z(k)) =
π
(k)
z N

(
ϕ(O);θ

(k)
z

)
∑

z π
(k)
z N

(
ϕ(O);θ

(k)
z

) , z ∈ {1, . . . ,Mk} (5.72)

In this component posterior distribution πz = N
(k)
z /N ,whereN (k)

z is the number of train-

ing data associated with the zth expert. N (·) is a Gaussian distribution.

Inûnite Structured SVMs For the inûnite structure SVM discussed in section 5.4.3, each

expert is a discriminant function as described in (5.67). In classiûcation, the overall dis-

criminant function has a similar form to the class posterior distribution described in (5.71):

F (W ;O,D) ≈ 1

K

K∑

k=1

Mk∑

z=1

F (W ;O, Ĥ, z)P (z|O,Θ(k), z(k)) (5.73)

where F (W ;O, Ĥ, z) is the discriminant function for the zth expert described in (5.67),

and P (z|O,Θ(k), z(k)) is the component posterior distribution described in (5.72). Com-

pared with inûnite log-linear models, classiûcation for inûnite structured SVMs is more

eõcient, given that the discriminant function is a linear function of the expert’s parameter

ηz , and it does not have a normalisation term as that in the log-linear model.

5.5 Summary

In this chapter, a diòerent perspective on Bayesian inference is introduced in section 5.1,

where Bayesian inference is interpreted as aminimisation criterion. Section 5.2 introduces
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the general criterion. heminimisation criterion for Bayesian inference is the general cri-

terion with a log-likelihood criterion function. With diòerent deûnitions of the criterion

function, various training criteria can be resulted. Section 5.3 discusses the application of

the inûnite structured discriminative model to speech recognition. Standard Bayesian in-

ference of the inûnite log-linear model is detailed in section 5.3.1, and two approximation

methods with MAP estimation and largemargin training are discussed in section 5.3.2 and

5.3.3 respectively. In these approximations, the parameter of each expert is estimated by the

MAP estimator and large margin training criterion respectively, replacing the process of

sampling the parameter of each expert. Training of the inûnite log-linear model with the

general criterion having diòerent criterion functions is also detailed. Large margin train-

ing of each expert (in a Gibbs sampling style training process discussed in section 5.3.3) is

a special example of training all the experts with the general criterion having a hinge loss

criterion function (discussed in Appendix E). Section 5.4 discusses the application of large

margin training, in which the criterion is the general criterion with the combined criterion

function, to the whole inûnite log-linear model, the gating network and experts.
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Chapter 6

Experiments

In the previous chapters, the log-linearmodel and the inûnite log-linearmodelwith various

training approaches were detailed. he experiments of these models carried on diòerent

corpora (i.e. AURORA 2, AURORA 4 and the Babel corpora)will be studied in this chapter.

On these data sets, the performances of the baseline systems, the log-linear models and the

inûnite log-linear model will be compared. In all experiments, the baselineHMM systems,

i.e. tandem, hybrid and VTS compensated ones, are taken from various projects which

involve a group of people working on. All the tandem, hybrid and joint decoding systems

used in experiments have the state-of-the-art performance.

AURORA 2 is a noise-corrupted continuous digit corpus with vocabulary size 12 (one

to nine, plus zero, oh and silence). On this small vocabulary task, some preliminary experi-

mentswere carried, e.g. the unstructured discriminativemodels and the inûnite structured

discriminative models discussed in section 5.3. AURORA 4 is a noise-corrupted medium

to large vocabulary database based on the Wall Street Journal (WSJ) data. It is impracti-

cal to apply the unstructured discriminative model to this task. hus, only the structured

discriminative models and their inûnite counterparts were examined on AURORA 4 set.

Moreover, in order to make training of themodelswith largemargin training criteriamore

eõcient (or practical), the constraint set propagation approach was also applied. In or-

der to examine the performances of the structured discriminative models (the log-linear

model and structured SVM) and the inûnite structured discriminative models described
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in section 5.3 on real world data, experiments were also conduced on the Babel corpora,

which cover a range of diverse languages and are recorded in real-life scenarios, such as

conversational telephone speech, over a range of acoustic conditions, such as mobile phone

conversation made from car [64].

6.1 Experiments on AURORA 2

In this section, experiments conducted on the AURORA 2 corpus will be discussed. Since

AURORA 2 is a small vocabulary noise corrupted continuous digit data set, the unstruc-

tured discriminative model, such as the SVM, can be implemented. Comparisons of the

performanceswill bemade between the unstructured discriminativemodels and the struc-

tured discriminative models. his section will also give the performances of the inûnite

structured discriminativemodels described in section 5.3 on the AURORA 2 corpus. In or-

der to make training more eõcient, constraint set propagation was applied in training the

inûnite structured discriminative model described in section 5.3.3. Eõciency comparison

will also bemade between the inûnitemodels with and without constraint set propagation.

6.1.1 he AURORA 2 Corpus

he AURORA 2 corpus [137] is designed to evaluate the performance of speech recognition

algorithms in various noisy conditions. AURORA 2 is based on the TIDigits database [111]

with noise artiûcially added, and the vocabulary size is 12 (from “one” to “nine”, plus “zero”,

“oh” and “silence”). In this database, 8 real-world noises are added to the utterances over a

variety of signal to noise ratios (SNRs).

here are two types of training data in the AURORA 2 database. he ûrst is the clean

training data with 8840 utterances recorded from 55 male and 55 female adults. he second

is themulti-condition training data with 8840 utterances, which are the clean training data

corrupted using diòerent noises and SNRs. he multi-condition training data are divided

into 20 subsets with 422 utterances each, according to 4 noises (N1, N2, N3 and N4) and

5 SNRs (20dB, 15dB, 10dB, 5dB and the clean speech). hese 4 noises are suburban train,

babble, car and exhibition hall respectively.
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For the test data in AURORA 2, 4004 utterances recorded from 52 male and 52 female

speakers are divided into 4 subsets with 1001 utterances in each. here are 3 test sets called

test set A, test set B and test set C, and they are comprised of these 4 subsets. Test set A

consists of the 1st subset corrupted by 4 noises (N1, N2, N3 and N4) and 7 SNRs (20dB,

15dB, 10dB, 5dB, 0dB, -5dB and the clean speech). hese 4 noises are the same as the noises

in themulti-condition training data, namely suburban train, babble, car and exhibition hall.

Test set B consists of the 2nd subset corrupted by 4 noises (N5,N6,N7 andN8) and 7 SNRs.

hese 4 noises are restaurant, street, airport and train station respectively. Test setC consists

of the 3rd and 4th subsets. Each subset is corrupted with channel distortion by one type of

noise and 7 SNRs. hese noises (N9 andN10) are suburban train and street respectively. In

this thesis, a subset of the test data is used. All the experiments are conduced with test sets

having SNRs 20dB, 15dB, 10dB, 5dB and 0dB. hus, the number of utterances in test set A,

B and C are 20020, 20020 and 10010 respectively.

6.1.2 Experiments Setup

he baseline system used in the experiments is the vector Taylor series (VTS) compen-

sated HMMs. he clean trained HMMs are trained on the clean data with 8840 utterances

recorded from 55 male and 55 female adults. he feature vectors used by the HMMs have

39 dimensions. hese features consist of 12 MFCCs appended with zeroth cepstrum, and

delta and delta-delta coeõcients are used. he HMMs are 16 emitting state whole word

digit models, and the output distribution of each state is a GMM with 3 mixtures and diag-

onal covariancematrices. Because of themismatch between the clean training data and the

noise corrupted test data, theVTSmodel-based compensation [2] described in section 2.4.3

is applied. In theVTS compensation, the noisemodel parameters for each utterance are es-

timated based on the Maximum Likelihood (ML) noise estimation scheme [63, 115]. he

word error rate (WER) of the clean trainedHMMs and VTS-compensatedHMMs is listed

in Table 6.1.

In all the experiments (except the clean trained andVTS-compensatedHMMs), a sub-

set of the multi-condition training data is used. he training data contains 4 noises (N2,

N3 and N4) and 3 SNRs (20dB, 15dB and 10dB). he test data is also a subset, which only

contains the sets having SNRs 20dB, 15dB, 10dB, 5dB and 0dB.
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System
Test Set WER(%)

Avg (%)
A B C

clean HMM 43.90 46.60 35.70 43.30
VTS-HMM 9.84 9.11 9.53 9.48

Table 6.1:he performance of the clean trainedHMMs and theVTS-compensatedHMMs on
the AURORA 2 corpus.

6.1.3 he Inûnite GMM

In this subsection, some preliminary experimentswith the inûniteGMMs (iGMMs),which

were introduced in section 4.3.4, will be discussed. he iGMMs can be used as classiûers

in an acoustic code-breaking fashion (discussed in section 3.1.3), where utterances are seg-

mented into segments, and each segment is treated independently and classiûed separately.

he iGMM cannot be directly applied to the temporal sequence data (even for segments).

In to handle the dynamic aspect of the data, the features (or scores) based on generative

models were used. By using this type of features, the noise robust technologies used by the

generativemodels can also be employed in generating the features. In this work, these fea-

tures are log-likelihood features generated by the VTS compensated HMM system, which

was discussed in section 2.4.3 and has the same conûguration as [63]. his type of features

was discussed in detail in section 3.5.2.1.

Given the segmentation (from the VTS compensated HMM system), the utterance O

can described as O = {O(1), · · · ,O(I)}, where I is the number of segments, and each

segmentO(i) is one word (or silence). As deûned in (3.69), the log-likelihood features for

segmentO(i) can be expressed as follows:

ϕ
(
O(i)

)
=




log p
(
O(i)|v1

)
...

log p
(
O(i)|vL

)


 (6.1)

where {v1, · · · , vL} are thewhole vocabularieswith sizeL, and p
(
O(i)|vl

)
is the likelihood

for segmentO(i) associated with word vl. Based on the log likelihood features, the features
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used by the iGMM are normalised, which are the “log-posterior” features1:

xi = ϕ′(O(i)) = log
exp

(
aϕ(O(i))

)

sum
(

exp(aϕ(O(i)))
) (6.2)

where exp(·) is the element-wise exponential function performed to all elements of the

vector, and sum(A) denotes the summation of elements in A. he “acoustic deweighting”

factor a is empirically chosen as 0.1 in this work.

he iGMM is a generativemodel, in classiûcation the posterior distribution of the class

label (word), which can be derived according to Bayes’ rule, is used:

ŵ = arg max
w

P (w|x,Dw) = arg max
w

P (w)p(x|Dw) (6.3)

where w is the word to be estimated and w ∈ {v1, . . . , vL}. P (w) is the prior of the

word (languagemodel), which is considered as a uniform distribution for all digits in this

work, namely P (w) = 1/L. p(x|Dw) is the the likelihood given by the iGMM associated

with word w. In this likelihood, all model parameters Gw are marginalised out. Since the

marginalisation is intractable for the inûnite GMM, the integral (over model parameters)

is approximated by summing overK samples:

p(x|Dw) =

∫
p(x|Gw)p(Gw|Dw)dGw ≈

1

K

K∑

k=1

p(x|G(k)w ) (6.4)

where G(k)w ∼ p(Gw|Dw), and p(Gw|Dw) is the joint posterior distribution of the model

parameters for the iGMM. Since this joint posterior distribution is highly complicated, here

Gibbs sampling is used to sample these parameters [131, 149]. In classiûcation, similar to the

inûnite log-linear model discussed in section 5.3.1.1, only represented components (which

are theGaussian components thathave associated data) are considered. hus, the likelihood

p(x|G(k)w ) is given by a GMM and G(k)w are the corresponding model parameters.

By substituting the likelihood (6.4) and P (w) = 1/L into equation (6.3), classiûcation

with iGMM can be expressed as follows:

ŵ ≈ arg max
w

1

K

K∑

k=1

p(x|G(k)w ) (6.5)

1 In order to simplify the notation, the feature vector for an segment is denoted as x here.
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Figure 6.1:he change of log-likelihood

6.1.3.1 Convergence and Correlation

In inference (Gibbs sampling) of the iGMM, the samples {G(k)w , . . . ,G(K)
w } are aimed to

be drawn from the true posterior distribution of the parameters p(Gw|Dw) and they are

not correlated to each other. However, neither of these is true [190]. In Gibbs sampling, it

takes a long time to converge and consecutive samples are positively correlated with each

other. hus, before using these samples, convergence of theMarkov chain1 need to be de-

tected. A�er converging, only part of the samples are used to reduce the correlation among

samples2.

In order to detect whether the sampler is converged, a number of formal tests, such as

the Geweke test [71], can be used. In the test, a�er removing the samples drawn from the

burn-in period3, two sets of samples can be obtained from the remaining samples, i.e. the

ûrst 10% and the last 50% of the samples. If the sampler converges, themeans of these two

sets should be equal. Empirically, this formal test is too strict and rarely can be satisûed,

hence the log-likelihood is used to diagnose convergence. Figure 6.1 illustrates the log-

likelihood given by the iGMM in diòerent iterations of Gibbs sampling. According the

1 Gibbs sampling is one form of theMCMCmethods, which are a class of algorithms for sampling from a
probability distribution based on aMarkov chain whose equilibrium distribution is the desired distribution.

2 In order to reduce computation, fewer number of independent samples are preferred, rather than a large
amount of correlated ones.

3 In the burn-in period, the sampler is not converged, and the samples drawn during this period bias to
the starting point.
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System Train Adapt Test Adapt
Test Set WER (%)

Avg (%)
A B C

VTS-HMM – – 9.84 9.11 9.53 9.48

iGMM
– – 11.47 10.95 11.63 11.30
– CMLLR 9.49 9.38 9.54 9.46

CMLLR CMLLR 9.62 9.67 9.72 9.62

Table 6.2:he performance of the iGMM on the AURORA 2 corpus.

ûgure, the ûrst 3000 samples can be considered as in the burn-in period and they will be

discarded.

he adjacent samples from Gibbs sampler are positively correlated [190], and indepen-

dent samples are preferred. In order to reducing the correlation among samples, only a part

of the samples are used by storing every ith sample (i ≥ 1) and discarding the others. his

process is also known as thinning. he eòective sample size gives an estimate of the equiv-

alent number of independent data from the correlated samples, and it can be expressed as

follows [123]:

Ne = N
1− r1
1 + r1

(6.6)

where Ne is the eòective sample size, N the size (number) of correlated samples, and r1

is the ûrst order autocorrelation coeõcient. he ratio 1−r1
1+r1

is a scaling factor multiplied

by the original sample size to compute the eòective sample size [123]. he autocorrelation

coeõcient r1 is deûned as follows:

r1 =

∑N−1
n=1 (θn − θ̄)(θn+1 − θ̄)∑N

n=1(θn − θ̄)2
(6.7)

where θn is one sampled parameter, such as the number of represented components for the

iGMM. θ̄ = 1
N

∑N
n=1 θn is themean. In the convergence test, for example, if r1 = 0.974,

then the scaling factor is 0.013, and these samples can be thinned by storing every 77th

sample ( 1
0.013 ≈ 77). On the AURORA 2 corpus, empirically, every 100th sample is stored

in the thinning process.
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6.1.3.2 Preliminary Experiments

Given the sampled parameters, the iGMM can be viewed as a “gigantic” GMM which con-

sistsofK GMMs asdescribed at the righthand sideof expression (6.4). his allows standard

adaptation approaches (discussed in section 2.4) to be applied to the iGMM. In this work,

global CMLLR1 [55] was used. As discussed in section 2.4.2.2, CMLLR can be operated in

the formof transforming the input features. hus, the sampling process for iGMM does not

need to be changed, but using the transformed features.

In experiments, both adaptation and adaptive training (discussed in section 2.4.4)were

implemented, anddiagonal covariancematriceswereused for the iGMM.heperformances

of the iGMM with and without adaption are tabulated in the second block of Table 6.2. In

this block, the ûrst row gives results for the iGMM without adaptation; For the second row,

adaptationwas applied to the test data,where the CMLLR transformwas estimated for each

noise condition and signal-to-noise ratio (SNR) separately; he third row uses both adap-

tation and adaptive training. In this work unsupervised adaptation was used. he labels of

the test data were estimated by the baseline system, which is the VTS compensated HMM

system [63], and the performance of this baseline is given in the ûrst block of Table 6.2.

In all conûgurations, the iGMM has poor performance. Although by using adaptation

and adaptive training, the word error rate (WER) can be reduced, the performance is still

bad compared with the baselineVTS-HMM system. he iGMM is a generativemodel, and

might be limited for a classiûcation task using generative features. As reported in [63, 208],

by using discriminativemodels based on the generative features, such as the log-likelihood

features used by the iGMM, considerable performance gains can be achieved compared

with the baselineVTS-HMM system. hismotivates the application of discriminativemod-

els, which directly models the conditional distribution of the class given the input.

6.1.4 heUnstructured DiscriminativeModels

he previous subsection discussed the application of the iGMMs (generativemodels) to the

AURORA 2 corpus. he iGMMswere used in an acoustic code-breaking fashion,where ut-

terances are segmented into segments, and each segment is treated independently and clas-

1 It is not possible to use standard regression classes, as the component number and parameters are not
ûxed. However, it is possible to use class-speciûc transforms.
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System Criterion Features
Test Set WER (%)

Avg (%)
A B C

VTS-HMM ML MFCC 9.84 9.11 9.53 9.48

LLM LargeMargin
Log-like

8.29 7.90 8.61 8.20
iLLM LargeMargin∗ 8.25 7.87 8.53 8.15

LLM LargeMargin
Derivative

8.28 7.85 8.63 8.18
iLLM LargeMargin∗ 8.05 7.81 8.44 8.04

Table 6.3: he performance of the unstructured discriminative models on the AURORA 2
corpus. he LLM with large margin training can be interpreted as a multi-class SVM. For
the iLLM, largemargin training is applied to each expert. his is an approximate approach. ∗
indicates approximations aremade in Gibbs sampling, and “LargeMargin∗” denotes sampling
for each expert is replaced by largemargin training.

siûed separately. For a classiûcation task, discriminative models might be preferred [132].

Alternative to generativemodels, unstructured discriminativemodels will be examined in

this subsection. For unstructured discriminative models, the structure of the label is not

considered. hus, classiûcation of the whole sentence is impractical. Analogous to the

iGMM discussed in the previous subsection, unstructured discriminative models can be

implemented in an acoustic code-breaking fashion. Also, the segmentations are the most

likely segmentations given by the VTS compensatedHMM system.

In addition to the log-likelihood features, the derivative features described in section

3.5.2.1 were also used by the unstructured discriminative models. To keep training with

derivative features feasible, only the ûrst element of the derivativewith respect to eachmean

were used. In this thesis, the unstructured discriminative models examined are the (un-

structured) log-linear model1 (LLM) discussed in section 3.1.1 and the inûnite log-linear

model2 (iLLM) discussed in section 5.3. Large margin training of the (unstructured) log-

linear model was studied, which can be interpreted as a multi-class SVM as discussed in

section 3.1.2.1. For the iLLM, each expert of the inûnitemodel were trained with largemar-

gin criterion as discussed in section 5.3.3. he results of these unstructured discriminative

models are given in Table 6.3. In this table, for the iLMM, ∗ indicates approximations are

1 It is also known as multinomial logistic regression.
2 In this subsection, only unstructuredmodels are considered, hence each expert (log-linear model) of the

inûnitemodel is multinomial logistic regress discussed in section 3.1.1.
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made in Gibbs sampling, and “LargeMargin∗” denotes sampling for each expert is replaced

by largemargin training as discussed in section 5.3.3. For the iLLM, the class posterior dis-

tribution used in classiûcation can be described in a same form as the inûnite structured

model (5.28):

P (w|O,D) ≈ 1

K

K∑

k=1

Mk∑

z=1

P (w|O,η(k)z )P (z|O,π(k),Θ(k)) (6.8)

where the probability P (w|O,η(k)z ) is given by the unstructured log-linear model (multi-

nomial logistic regression) discussed in section 3.1.1, andP (z|O,π(k),Θ(k)) is the compo-

nent posterior distribution (5.21) given by the gating network. K is the number of samples

used in classiûcation, and Mk is the number of represented experts for the kth draw. In

experiments, the number of samplesK is 10.

As shown in Table 6.3, all discriminative models outperform the VTS compensated

HMM baseline system. On the log-likelihood feature space and derivative feature space,

the iLLMs have better performance than the LLMs. One possible reason for this gain is

that the iLLM explores the distribution of the training data and infers the number of ex-

perts, then applies diòerent experts focus on diòerent regions of the feature space to make

an ensemble decision, rather than using a single classiûer on the whole feature space. An-

other reason might be the iLLM employs multiple experts to yield an overall non-linear

decision boundary, rather than a linear one from the LLM. By using derivative features,

more information, such as long-span dependences of observations [48], is provided, better

performance can be achieved compared with using log-likelihood features.

For the iLLM, each expert was trained with the largemargin training criterion, and the

training criterion is the one for themulti-class SVM1 as described in expression (3.25). Dif-

ferent experts of the iLLM share the sameC (which is a trade-oò between the regularisation

term and the hinge loss), and in this work the optimal C was tuned on the test set A. Fig-

ure 6.2 illustrates theWER of the iLLM on diòerent feature spaces with various C . Since

the parameter of each expert is given a Gaussian prior with non-zero mean µη (which is

optimal parameter of the multi-class SVM trained with all training data), the iLLM only

achieves the baseline performance of themulti-class SVMwhen theC is small, and the op-

timised conûguration can be obtained by gradually increasingC . hus, by introducing this
1 Again, largemargin training of the unstructured log-linear model (multinomial logistic regression) can

be interpreted as amulti-class SVM as discussed in section 3.1.2.2.
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Figure 6.2:he performance of the iLLMwith largemargin training of each expert on the test
set A of the AURORA 2 corpus with diòerent C .

non-zero mean µη , the iLLM can at least achieve the performance of themulti-class SVM.

Without this mean µη , the iLLM could have poor performance, as not all the experts have

enough associated data.

In experiments,when comparing the performance of diòerent algorithms, the variabil-

ity and uncertainty of the algorithms need to be considered. For example, two algorithms

have the same true error rate. heymay give diòerent error rate on a test set due to variabil-

ity. In this thesis, the algorithmswere tested on diòerent corpora, and consistent gains have

been observed, which will be shown in the following sections. More formally, a statistical

hypothesis test, such as theMcNemar’s test or thematched-pairs test [73, 122], can be used

to verify whether the performance diòerence of the algorithms is statistically signiûcant. In

statistical hypothesis testing, statistical signiûcance is attainedwhen the p-value1 is less than

the signiûcance level2. he results are said to be statistically signiûcant at given conûdence

level, when the computed conûdence interval fails to contain the value speciûed by the null

hypothesis [194].

1 he p-value is the probability of obtaining at least as extreme results given that the null hypothesis is true,
and it measures how extreme the observation is.

2 he signiûcance level is the probability of rejecting the null hypothesis given that it is true.
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6.1.5 he Structured DiscriminativeModels

In the previous subsections, classiûcation with the unstructured models are examined on

the AURORA 2 corpus. In speech recognition, inputs are sequential data and class labels are

sentences. In order to classify the whole utterance, the label structure needs to be consid-

ered. In the structuredmodel, rather than treating each sentence as a single class, sentences

can be broken into word (or sub-word) units. his section will discuss the performance of

various structured discriminativemodels on the AURORA 2 corpus. he practical issues of

largemargin training the inûnite structured discriminativemodel described in section 5.3.3

will also be discussed.

6.1.5.1 Constraint Set Propagation

As discussed in section 5.3.3, for the inûnite log-linear model (iLLM), largemargin training

is applied to each expert which is a log-linear model. he training criterion for each expert

is equivalent to the largemargin criterion for a structured SVM. hus, the eõcient training

approaches, such as the 1-slack cutting plane algorithm [96], for structured SVMs can also

be appliedwhen it comes to the iLLM (with largemargin training of each expert). By using

the 1-slack cutting plane algorithm, the number of constraints becomes much fewer [96],

training thus becomesmore eõcient. he 1-slack cutting plane algorithm for themth expert

is detailed in Algorithm 41. In this algorithm, the process of ûnding the best competing

hypotheses described in equation (6.11) can be paralleled.

As described in the 1-slack cutting plan algorithm (Algorithm 4), initially the constraint

set is empty. Rather than starting from an empty set, this initial constraint set can be gen-

erated or bemodiûed from the constraint set in the last iteration of optimising that expert’s

parameter, and the detail is described in Algorithm 5.

In the 1-slack cutting plane algorithm, each iteration of solving the quadratic prob-

lem (6.9), the inequality constraints in (6.10) are applied. For the inequalities, each sum is

treated as a whole. hus, the form of the constraint set described in (6.12) can be expressed

as:

W←W ∪ {V ; s} (6.13)

1 he prior of the expert’s parameter with zero mean is discussed here. he non-zero meanµη will lead to
a similar form [210].
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Algorithm 4:he 1-slack cutting plane algorithm
input : {On,Wn,ρn}∀zn=m, C and precision ε;
Initialisation:W← φ

repeat

{ηm, ξ} ← arg min
ηm,ξ≥0

1

2
||ηm||2 + Cξ (6.9)

s.t. ∀ elements inW : ηTm
∑

zn=m

∆Φn ≥
∑

zn=m

L(W,Wn)− ξ (6.10)

where ∆Φn = Φ(On,Wn;ρn)− Φ(On,W;ρ)

for ∀zn = m do /* ûnd the best competing hypotheses */

W ∗n ,ρ
∗
n←arg max

W,ρ
{L(W,Wn)+ηTmΦ(O,W ;ρ)} (6.11)

end

W←W ∪ {W ∗n ,ρ∗n}∀zn=m (6.12)
until /* no constraint can be found that is violatedmore than ε */

∀ elements inW :
∑

zn=m
L(W,Wn)− ηTm

∑
zn=m

∆Φn ≤ ξ + ε;
return: ηm

In this constraint set deûnition (6.13), V =
∑

zn=m

(
Φ(On,Wn;ρn)− Φ(On,W

∗
n ;ρ∗n)

)

is a vector, and s =
∑

zn=m
L(W ∗n ,Wn) is a scalar. W ∗n and ρ∗n are the best competing

hypothesis and corresponding segmentation obtained according to (6.11) by given the cur-

rent value of ηm. hus, once the values of ηm in diòerent iterations of the cutting plane

algorithm are given, the constraint setW can be determined. hus, in order to generate set

W, a set G can be deûned, which consists of the values of ηm in diòerent iterations of the

cutting plane algorithm (Algorithm 4). he set G can be obtained along with set W, then

expression (6.12), which deûnes W, can be written as:

W←W ∪ {V, s} ; G← G ∪ ηm (6.14)

For the iLLM (with largemargin training of each expert), the current constraint set W

cannot be directlyused as the initial constraint set in thenext iteration of training the expert,

given that the assignment of the data to experts might be changed, namely the training data

associate with one expert might be diòerent. Although the initial constraint set can be

generated according to (6.11) and (6.13) givenG, when the number of training data is large,

this constraint set generalisation approach becomes quite ineõcient. hus, amore elegant
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Algorithm 5:Modify the constraint set

input :W(k)
m = {Vj , sj}Jj=1,A

(k)
m , B(k)m , andW(k+1)

m = φ;

for ηj ∈ G(k)
m do

for n ∈ A(k)
m do /* remove data from constraints */

W ∗j,n,ρ
∗
j,n ← arg max

W,ρ
{L(W,Wn) + ηTj Φ(On,W ;ρ)}

Vj = Vj −
(
Φ(On,Wn;ρn)− Φ(On,W

∗
j,n;ρ∗j,n)

)

sj = sj − L(W ∗j,n,Wn)

end

for n ∈ B(k)m do /* add data to constraints */

W ∗j,n,ρ
∗
j,n ← arg max

W,ρ
{L(W,Wn) + ηTj Φ(On,W ;ρ)}

Vj = Vj +
(
Φ(On,Wn;ρn)− Φ(On,W

∗
j,n;ρ∗j,n)

)

sj = sj + L(W ∗j,n,Wn)

end
W(k+1)
m ←W(k+1)

m ∪ {Vj , sj}
end
return:W(k+1)

m

and eõcient constraint set modiûcation method is applied to obtain the initial constraint

set in this work.

Let A(k)
m be the index of the data associated with the mth expert and to be allocated

to other experts in the next iteration of training this expert, and B(k)m the index of the data

associated with other experts and to be assigned to the mth expert in the next iteration.

Given the current constraint set W(k)
m = {Vj , sj}Jj=1, the corresponding parameter set

G(k)
m = {ηj}Jj=1, and index setsA(k)

m and B(k)m , the initial constraint setW(k+1)
m in the next

iteration of training themth expert can be obtained according to Algorithm 5.

In Algorithm 5, the best competing hypothesisW ∗j,n and the corresponding segmenta-

tionρ∗j,n can be found throughViterbi algorithm [210]. Let |A(k)
m | be the number of items in

set |A(k)
m |, and |B(k)m | the number of items in set B(k)m . In order to obtain one constraint for

every expert,
∑

m(|A(k)
m |+|B(k)m |) calls of theViterbi algorithm are required to ûnd the best

competing hypotheses. LetN (k)
c denote the number of indicatorswhose sampled values are

changed, since the change for one indicator aòects the associated data of two experts, the

number of calls for the Viterbi algorithm is twice the number of indicators whose sampled
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C
Time (hour) Avg. change Avg. active

without with of indicators constraint #

1e-06 1.68 1.45 1.66% 1.00
1e-05 2.31 1.47 1.67% 3.55
1e-04 5.81 1.58 1.70% 7.09
1e-03 14.48 3.26 1.67% 14.62
1e-02 >24 7.83 1.69% 29.08

Table 6.4: Computational time of the iLLM (with largemargin training of each expert) train-
ing with and without constraint set propagation on the AURORA 2 corpus.

values are changed, namely
∑

m(|A(k)
m |+ |B(k)m |) = 2N

(k)
c . However, for the constraint set

generalisation approach, theViterbi algorithm needs to be appliedN times,whereN is the

number of thewhole training data. Normally, 2N (k)
c is far smaller thanN , so the constraint

set modiûcation method is much more eõcient than the generalisation approach.

Table 6.4 describes the eõciency of iLLM (with large margin training of each expert)

trainingwith andwithout constraint set propagation in 1000Gibbs sampling iterationswith

various C (having the same precision ε in the 1-slack cutting plane algorithm), and the

constraint set modiûcation approach described in Algorithm 5 was used.

Training of the iLLM can be divided into two parts: the gating network and the experts

(LLMs). For diòerent C , the time of training the gating network can be viewed as a con-

stant, but the time of training the experts varies. When C is small, this results in a small

number of constraints, and training of experts is very fast. hus, the time of training the

iLLM is dominated by training of the gating network. hus, when C is small, the time of

training the iLLM with and without constraint set propagation is similar as shown in Table

6.4. AsC grows, the training time increases, but the iLLM trainedwith constraint set prop-

agation is much more eõcient. he reason is that, for the iLLM training with constraint set

propagation, rather than starting from an empty initial constraint set, the active constraint

set [181] (that aòects the solution) in the last iteration of training the expert is modiûed to

be the current initial constraint set. he computational time of obtaining the initial con-

straint set is determined by both the number of active constrains and the number of the

indicators whose values are changed. As shown in Table 6.4, for various C , the average ra-

tio of the changed indicators to all training data is very small, i.e. around 1.7%. hus, the
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System Criterion
Test Set WER(%)

Avg.
A B C

VTS-HMM ML 9.83 9.11 9.53 9.48

LLM
CML 8.21 7.74 8.36 8.05

LargeMargin 7.97 7.54 8.31 7.86

Bayesian 8.19 7.71 8.36 8.03
iLLM CML∗ 8.22 7.71 8.35 8.04

LargeMargin∗ 7.69 7.39 7.98 7.63

Table 6.5:he performance of diòerent systems on the AURORA 2 corpus. “Bayesian” denotes
Bayesian inference of the iLLM, where Gibbs sampling is used. “∗” indicates approximations
are made in Gibbs sampling. “CML∗” means sampling for each expert is replaced by CML
training, and “Large Margin∗” denotes sampling for each expert is replaced by large margin
training.

time of obtaining the initial constraint set ismainly determined by the number of the active

constrains.

As shown in Table 6.4, by using constraint set propagation, the system eõciency can be

improved signiûcantly, especially when C is large. Since large margin training of the log-

linearmodel (or structured SVM) is a convex optimisation problem, the ûnal optimumwill

not be aòected by the initial status. hus, the performance of the systems with and without

constraint set propagation should stay the same.

6.1.5.2 Experimental Results

In this subsection, the experimental results of the iLLMs discussed in section 5.3 will be

presented, i.e. Bayesian inference of the iLLM, and two approximate approaches. In these

two approximate methods, conditional maximum likelihood (CML) estimation and large

margin training were used to replace sampling for each expert. he experimental results of

these approaches are given in Table 6.5, in which the performance of the baseline paramet-

ricmodels are also given. In the top block are the baseline numbers: theVTS compensated

HMM, and the single log-linear model (LLM) using the log-likelihood features from that

HMM, trained probabilistically or with a large-margin criterion. he bottom block has

inûnite models. he row labelled “Bayesian” is Bayesian inference of the iLLM discussed
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Figure 6.3:he change of the number of represented experts.

in section 5.3.1, where Gibbs sampling is used. his approach does not yield a signiûcant

improvement over CML on one expert: the additional nonlinearity does not help perfor-

mance. he next two rows use approximations in Gibbs sampling. When each expert is

trained with CML, this replaces the sampling from the expert parameters by ûnding the

maximum posterior estimate given the other model parameters discussed in section 5.3.2.

hough this is not exact, it is easier to implement. he results are similar. he bottom row

shows the result of replacing Gibbs sampling with large-margin training for the expert pa-

rameters discussed in section 5.3.3. Training the mixture of experts this way compared to

training a single expert yields a 0.23% absolute improvement in word error rate (WER).

As shown in Table 6.5, compared with the LLMs (with “CML” and “LargeMargin” cri-

teria), the overall performance gains for the iLLMs (with “CML∗” and “Large Margin∗”

criteria) are limited, from 8.05% and 7.86% to 8.04% and 7.63%. he iLLM is amixture-of-

expert model, which employs multiple experts to yield a non-linear decision boundary in

the classiûcation task. For the iLLM, there could be unbounded number of experts, and a

complicated decision boundary can be produced. Although the iLLM can take advantage

of the non-linearity, the performance gains are still limited. One possible reason is the lim-

itation of the gating network, which gives the probabilities of observations associated with

diòerent experts. In this work, the gating network is based on the iGMM (as described in

sections 4.3.5 and 5.3). Figure 6.3 illustrates the change of the number of the represented ex-

perts in training. As shown in the ûgure, a�er around 400 iterations, the number of experts
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one two three four ûve six seven eight nine zero oh Del
one 5516 12 36 131 18 4 21 2 113 15 19 218
two 1 5510 67 15 2 54 8 29 10 55 35 229
three 2 167 5603 13 6 14 7 31 12 13 12 120
four 41 29 13 5581 8 19 6 6 7 21 80 99
ûve 8 5 11 11 5802 7 18 2 114 4 81 47
six 3 72 41 22 7 5541 29 40 4 20 15 141

seven 11 16 14 11 4 44 5728 3 14 28 25 62
eight 9 44 84 22 9 97 12 5136 33 14 86 329
nine 21 8 20 5 38 3 12 7 5656 17 21 107
zero 5 79 17 10 1 11 8 7 18 5739 26 99
oh 1 10 17 109 30 2 18 19 26 42 5455 221
Ins 4 85 37 27 15 121 11 88 25 21 103 –

Table 6.6: he confusion matrix corresponds to the results of the iLLM (Large Margin∗) on
the test set A of the AURORA 2 corpus.

becomes stable. he gating network might not be able to fully explore the space. Diòerent

forms of the gating network can be studied as a future work.

he classiûcation errors can also be presented in the form of a confusion matrix, which

characterises how o�en a presented word (or phone) was recognised or confused with re-

sponse alternatives [127]. Table 6.6 shows the confusionmatrix corresponding to the results

of the iLLM (LargeMargin∗) (given in Table 6.5) on the test setA of the AURORA 2 corpus.

hematrix elementCij denotes how o�en theword in row i is classiûed as theword in col-

umn j. hus, the diagonal elements show the number of correctly classiûed words, and the

oò-diagonal elements show the number of misclassiûcations, i.e. substitution (Sub), dele-

tion (Del) and insertion (Ins) errors [162, 186]. As shown in Table 6.6, the iLLM tends to

have high deletion errors,which are given in the last column. hus, the high deletion errors

limit the performance of the iLLM.

6.2 Experiments on AURORA 4

In the previous section, the experiments conducted on the AURORA 2 corpus were dis-

cussed. Since AURORA 2 is a small vocabulary noise corrupted continuous digit database,

the unstructuredmodels can be applied. Each utterance is segmented intowordswhich are

treated independently, then each isolatedword can be recognised by using the unstructured
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models. he performance of the structured models were also examined in the previous

section, and the structured models outperform the unstructured models. Since AURORA

4 is a medium vocabulary continuous speech recognition task, isolated word recognition

becomes impractical. hus, only the results of structured discriminative models will be

discussed in this section.

6.2.1 he AURORA 4 Corpus

AURORA 4 is a noise-corruptedmedium vocabulary corpus. here are two types of train-

ing sets, namely the clean training set and the multi-condition training set. he clean set

is the standard SI-84 WSJ0 set, which consists of 7138 utterances from 83 speakers and has

14 hours of speech. hemulti-condition training set is artiûcially corrupted from the clean

training set with diòerent noise and channel conditions. he test set is based on the devel-

opment set of 1992 November NIST evaluation, and it is artiûcially corrupted by using 6

types of noise under 2 channel conditions. he test set consists of 4 sets: A, B, C and D. Set

A is clean, set B has 6 types of additive noise, set C has channel distortion, and set D has

both additive noise and channel distortion.

6.2.2 Experiments Setup

For theVTS compensatedHMM system, the 39-dimensional features are used, which con-

sist of 12 MFCCs, appended with zeroth cepstrum, delta and delta delta coeõcients. he

HMMs are initially trained with the clean training data, and then compensated with VTS

compensation [2]. he cross-word context-dependent triphonemodels are used, and each

model has 3 emitting states. Decision tree based state clustering [202] is applied to deûne

3143 states, and each one has 16 Gaussian components.

In order to examine the performance of the log-linear models based on diòerent sys-

tems, the tandem and hybrid systems are also used, and they are trained with the multi-

condition training data. For the tandem system, context-dependent triphone HMMs with

3 emitting states are used, and there are 3033 distinct states (deûned by decision tree based

state clustering) with an average of 8 Gaussian components per state. he input features

are 65 dimensions, and the features consists of the 26 dimensional MLP features and the 39
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System Criterion
Test Set WER(%)

Avg.
A B C D

VTS-HMM ML 7.05 15.21 11.89 23.03 17.74

LLM
CML 7.16 14.86 11.39 22.78 17.46

LargeMargin 7.55 14.22 11.31 21.89 16.83

Tandem MPE 7.15 11.06 14.37 24.54 16.79

LLM
CML 6.95 11.00 14.29 24.39 16.68

LargeMargin 7.02 10.92 14.16 24.28 16.60

Hybrid MPE 3.96 7.64 7.79 18.51 12.05

LLM
CML 3.94 7.53 7.36 18.38 11.91

LargeMargin 3.66 7.59 7.47 17.99 11.76

Table6.7:he performance of the LLMs based on theVTS-HMM, tandem and hybrid systems
on the AURORA 4 corpus

dimensional PLP features (including zeroth cepstrum, delta, delta-delta and triples coeõ-

cients followed by aHLDA projection [116]). For the hybrid system, there are 3033 context-

dependent distinct states, and the features are 72-dimensional FBK+∆+∆2 features1. he

structure of the deep neural network (DNN) is 792 × 20005 × 3033, and 11 consecutive

frames are concatenated as the input of the DNN.

6.2.3 he Structured DiscriminativeModels

In experiments, the joint features for the structured discriminativemodels are based on the

log-likelihood features. As discussed in section 3.5, the form of the joint feature vector can

be expressed as:

Φ(O,W,ρ) =




∑I
i=1 δ(wi, v1)ϕ

(
O(i)

)
...∑I

i=1 δ(wi, vL)ϕ
(
O(i)

)

log
(
P (W )

)


 (6.15)

whereO = {O(1), . . . ,O(I)} is an utterance,W = {w1, . . . , wI} is the sentence label and

ρ is the corresponding segmentation. P (W ) is the probability given by the languagemod-
1 he FBK stands for the ûlter bank. he FBK features have 24 dimensions; ∆ and∆2 denote the delta and

delta-delta coeõcients.
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System Criterion
Test Set WER(%)

Avg.
A B C D

Tandem
MPE

4.78 7.63 8.93 19.14 12.45
Hybrid 3.75 6.70 7.68 17.62 11.24
Joint Manual 3.79 6.47 7.86 17.34 11.04

LLM
Manual 3.74 6.57 7.88 17.12 10.98
CML 3.66 6.56 7.88 17.06 10.94

LargeMargin 3.64 6.56 7.04 16.83 10.79

Table 6.8:he performance of the log-linearmodels based on the joint decoding system on the
AURORA 4 corpus

els. In thiswork, the tri-phonemodels for the generativemodels are tied to bemono-phones

for the discriminative models. hus, in the joint feature deûnition (6.15), {v1, . . . , vL} are
all the mono-phones in the vocabulary, and the log-likelihood features ϕ

(
O(i)

)
are based

on the tri-phone models as described in equation (3.70). In experiments the VTS-HMM,

tandem and hybrid systems were used in the feature generation.

In training the log-linear models (LLM), the conditional maximum likelihood (CML)

estimation (described in section 3.3.1) and large margin training (in section 3.2.5.1) were

used. Table 6.7 gives the performance of diòerent LLMs based on the VTS compensated

HMM, tandem and hybrid systems. As shown in this table, training the log-linear model

with conditional maximum likelihood results in a 0.1-0.3% absolute improvement. Using

a large-margin criterion instead consistently improves performance further. 0.9% absolute

for the VTS-HMM system, and around 0.1% absolute for the tandem and hybrid systems.

Most notably, on the sequence-trained hybrid system the log-linear model improves from

12.05 to 11.76%.

6.2.3.1 Based on Multiple Systems

In the previous subsection, the log-likelihood features are based on the likelihoods gen-

erated by the VTS-HMM, tandem or hybrid system. As discussed in section 3.5.2.2, the

log-likelihood features can also be based on multiple systems. In this section, the features

generated by both the tandem and hybrid systems will be examined. hen, in the joint
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System
Test Set WER(%)

Avg.
A B C D

VAT [193] 5.60 11.00 8.80 17.80 13.40
DNN [40] 5.60 8.80 8.90 20.00 13.40

DNN + dropout [159] 5.40 8.30 7.60 18.50 12.40
Joint (this thesis) 3.79 6.47 7.86 17.34 11.04

Table 6.9: Comparison of diòerent systems in the literature on the AURORA 4 corpus
Tandem

PLP
Bottleneck

Filterbank
Context
Dependent
Targets

Structured
Log-linear

Model

Hybrid

Figure 6.4:he system framework used for the AURORA 4 corpus.

feature vector described in (6.15), the log-likelihood features ϕ
(
O(i)

)
can be expressed as:

ϕ
(
O(i)

)
=

[
log ptandem

(
O(i)|wi

)

log phybrid

(
O(i)|wi

)
]

(6.16)

wherewi is the corresponding label ofO(i). In thiswork, only the log-likelihoods associated

with the correct label were used in the features based on multiple systems, and two systems

were used in the feature generation, i.e. the tandem and hybrid systems.

he experimental results of the LLMs using the features based on the tandem and hy-

brid systems were tabulated in Table 6.8. Compared with the tandem and hybrid systems

in Table 6.7, better baseline systems were used for the LLMs based on multiple systems as

shown in Table 6.8, i.e. 12.25% and 11.24%WER for the tandem and hybrid systems respec-

tively. he performance gains aremainly due to the use of 40 dimensional FBK rather than

24 dimensional FBK features for the hybrid system, and the use of bottle neck features based

on the FBK rather than on the PLP features for the tandem system [199]. he system frame-
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System Criterion
Test Set WER(%)

Avg.
A B C D

VTS-HMM ML 7.05 15.21 11.89 23.03 17.74

LLM
CML 7.16 14.86 11.39 22.78 17.46

LargeMargin 7.55 14.22 11.31 21.89 16.83

Bayesian 7.2 14.85 11.42 22.72 17.43
iLLM CML∗ 7.16 14.85 11.4 22.79 17.46

LargeMargin∗ 7.55 14.17 11.39 21.81 16.77

Table 6.10: he performance of the iLLMs on the AURORA 4 corpus. “Bayesian” denotes
Bayesian inference of the iLLM, where Gibbs sampling is used. “∗” indicates approximations
are made in Gibbs sampling. “CML∗” means sampling for each expert is replaced by CML
training, and “Large Margin∗” denotes sampling for each expert is replaced by large margin
training.

work is illustrated in Figure 6.4. he baseline joint decoding system used in this thesis has

the state-of-the-art performance. A comparison between the published results is given in

Table 6.9.

In Table 6.8, “Joint” denotes the joint decoding system introduced in section 2.2, where

the log-likelihoods are combined at frame level as described in equation (2.10). In experi-

ments, the system combinationweightsweremanually set to be 0.2 and 1.0 (corresponding

to the tandem and hybrid systems respectively). By using joint decoding, 0.2%performance

gains can be achieved comparedwith the baseline hybrid system. For the LLM, the segment

level log-likelihoodswere used. In themanual setting theweights corresponding to the tan-

dem and hybrid systems were set to be 0.2 and 1.0 respectively. he LLM (with themanual

setting) can achieve around 0.1% WER reduction compared with joint decoding. By using

CML estimation, theWER can be further reduced, i.e. 10.94% on average. Most notably, by

using largemargin training, theWER can be reduced from 11.04% to 10.79%.

6.2.4 he Inûnite Structured DiscriminativeModels

In this subsection, the experimental results of the inûnite structured discriminativemodels

will be discussed. Same as those on theAURORA 2 corpus, Bayesian inference of the inûnite

log-linear model (iLLM) discussed in section 5.3.1 and two approximate approaches will be
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Language ID Release
Swahili 202 IARPA-babel202b-v1.0d

Tok Pisin 207 IARPA-babel207b-v1.0b
Lithuanian 304 IARPA-babel304b-v1.0b
Javanese 402 IARPA-babel402b-v1.0b

Table 6.11:he Babel languages used in this thesis.

examined. For these approximatemethods, sampling of the each expert’s parameters were

replaced byCML estimation or largemargin training, as described in sections 5.3.2 and 5.3.3.

he experimental results are given in Table 6.10, in which the performance of the baseline

parametricmodels are also given. his table shows the same set of experiments carried on

the AURORA 2 corpus. he results are similar. here is no discernible diòerence between

methods that train a probabilistic criterion, whether Bayesian or CML. However, the large

margin criterion shows a good improvement, and optimising a largemargin criterion inside

an inûnitemixture of experts yields a small additional improvement.

6.3 Experiments on Babel

In the previous sections, the experiments conduced on theAURORA 2 andAURORA 4 cor-

pora have been discussed. For these two corpora, the noises are artiûcially added, and the

language used is English. In this section the experiments carried on the Babel corpora will

be discussed. In this work, two types of Babel data were used, i.e. the very limited language

pack (VLLP) and the full language pack (FLP), which contain up to 3 hours and 60 hours

of transcribed conversational telephone speech data respectively. Four diòerent languages

were used in experiments, i.e. Swahili, Tok Pisin, Lithuanian and Javanese. he oõcial re-

leases of these languages are given in Table 6.11. All the baseline systems (including hybrid

and tandem systems) are built by the Cambridge speech group in the Babel program. hese

baseline systems were used in Babel evaluation, and have the state-of-the-art performance

[36, 124].

154



6.3 Experiments on Babel

Tandem

PLP
Pitch

Bottleneck

Filterbank
Pitch

Context
Dependent
Targets

A
AAK

CMLLR
�
���

Structured
Discriminative

ModelPLP
Pitch

StackedHybrid

Figure 6.5:he system framework used for the Babel corpora.

6.3.1 Experiments Setup

According to the rules of the Babel program, no phonetic lexica may be used. herefore

the systems used graphemic lexica generated using an approach which is applicable to all

Unicode characters [59]. he language models were estimated only on the transcripts of

the training data. he front-end is an MRASTA based neural network [182], which is ini-

tially trained with the data from 11 Babel full language packs, generating 62 dimensional

bottleneck features. he input features contain the bottleneck features, 13 PLP coeõcients

with dynamics of orders 1, 2, and 3, and pitch and probability-of-voicing features (estimated

with theKaldi toolkit [142])with dynamic coeõcients of orders 1 and 2. Two sets of acoustic

models are constructed. One is a speaker independent (SI) model, which is based on the

tandem features. he other is estimated using speaker adaptive training (SAT) [5]. SAT is

performed using global constrainedmaximum-likelihood linear regression (CMLLR) [55]

on themaximum-likelihood trainedmodels, followed byMPE.During training, the super-

vision for CMLLR is the reference. During testing, the SI model with a tri-gram language

model is used to produce hypotheses. he resulting CMLLR transforms are used to obtain

speaker-normalised features,which are then input to the Tandem-SATmodel. he number

of context-dependent states is 1000; each state has an average of 16 components.

As illustrated in Figure 6.5, the stacked hybrid system use the same features as the tan-

dem system, derived from the CMLLR transforms generated by the tandem SAT system.

he input to the hybrid DNN is a concatenation of 9 consecutive feature vectors. he net-

work has layer sizes of 963×10004×1000 and is initialised by layer-wise pre-trainingwith
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Language System Criterion dev set TER (%)

Swahili

Hybrid SI MPE 61.3
LLM LargeMargin 60.7

Hybrid SAT MPE 60.5
LLM LargeMargin 59.9

Tok Pisin
Hybrid SAT MPE 52.7

LLM LargeMargin 52.5

Lithuanian
Hybrid SAT MPE 63.2

LLM LargeMargin 62.9

Table 6.12:he performance of the log-linear model on diòerent Babel VLLP corpora

context-independent targets. Finetuning is done using the frame-level cross-entropy crite-

rion with context-dependent targets. he number of context-dependent states is the same

as in the tandem system. hen, sequence training using theMPE criterion is applied for fur-

ther improvement. As a comparison, a joint decoding system [191],which applies log-linear

combination of the tandem and hybrid systems at the frame level, is used. he frame-level

log-likelihoods from the tandem system aremultiplied by 0.25, and those from the hybrid

system by 1. hey are then added at the frame level and used instead of the normal HMM

log-likelihoods, as described in (2.10).

6.3.2 he Structured DiscriminativeModels

In experiments, similar to the LLMs used on the AURORA 4 corpus, features based on log-

likelihoodswereused. For the experiments on the Babel corpora, graphemes areused rather

than phones. he joint features have the same format as those discussed in section 3.5.2,

which also applies to graphemes. Same as the experiments on AURORA 4, the graphemes

with context information are used for the generative models, and they are tied to be the

central graphemes for the discriminativemodels, namely for the joint features as described

in (6.15), central graphemes vl are used, but the likelihoods are based on the graphemes

with context information.

Table 6.12 gives the results of LLMs on diòerent languages of Babel VLLP corpora. he

ûrst block (4 rows) examine the eòect of speaker-dependent transformations of the acoustic

features for a hybrid system on the performance of the LLM. he ûrst two rows give results

156



6.3 Experiments on Babel

System Criterion
Test Set TER(%)
dev set eval set

Tandem SAT
MPE

62.5 63.0
Hybrid SAT 60.5 59.4
Joint Decoder Manual 59.4 58.3

LLM
Manual 58.9 57.9

LargeMargin 57.9 56.8

Table 6.13: he results on the Babel 202 Swahili VLLP corpus. For the manual setting, the
weights corresponding to the hybrid log-likelihoods are set to 1, and the weights corresponding
to the tandem log-likelihoods are set to 0.25.

of the speaker-independent system. he LLM improves performance by 0.6% absolute. he

third and fourth lines have the same contrast, but based on a speaker-dependentHMM.he

increase of performance from the LLM is also 0.6%. Speaker-dependent transformations

therefore do not appear to decrease the usefulness of the features derived from the HMM.

he rest of the table examines how performance improvement varies for diòerent languages.

For Tok Pisin, the improvement is 0.2, and for Lithuanian 0.3. hough the performance

increase does vary with languages, there is consistently an increase.

Resultsof experimentswith combining tandem andhybrid systemsonBabel 202 Swahili

VLLP are in Table 6.13. he top block repeats the tandem and hybrid HMM baselines.

he next block shows the performance of the joint decoding system [191], which performs

frame-level combination. he weights are ûxed to 0.25 for the tandem system and 1 for the

hybrid. he next line shows the result of the LLM that uses the samemanual conûguration

(0.25 and 1 for the tandem and hybrid systems respectively). On the development set, per-

formance improves by 0.5% compared to the joint system, probably caused by the diòerence

in the assignment of the underlying HMM states to time frames. Firstly, the likelihoods are

used, so the sumover all paths instead of the one best path is used, and secondly, those paths

can be diòerent between the tandem and hybrid systems, allowing a more optimal align-

ment for both. When the parameters of the log-linearmodel are trained, for the bottom line

of Table 5, performance increases further by 1%. he absolute improvement over the joint

system is 1.5%. When applying the LLMswith the same conûgurations to the evaluation set,

the same trend can be observed. he LLMwithmanual setting outperforms joint decoding,
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System Criterion dev set TER(%)

Tandem SAT
MPE

60.8
Hybrid SAT 60.0
Joint Decoder Manual 58.6

LLM
Manual 58.5

LargeMargin 57.7

Table 6.14: he results on the Babel 402 Javanese FLP corpus (46 hours). For the manual
setting, the weights corresponding to the hybrid log-likelihoods are set to 1, and the weights
corresponding to the tandem log-likelihoods are set to 0.25.

and 0.4% performance gain can be achieved. When the LLM are trained with largemargin

criterion, further gain can be obtained,with 1.1% absolute token error rate (TER) reduction.

Same set of experimentswere also carried on the Babel 402 Javanese FLP corpus,which

contains 46 hours’ speech data. As tabulated in Tabel 6.14, the performance of the LLM is

consistent with that on the Babel 202 Swahili VLLP corpus. he LLM with the manual

setting slightly outperforms joint decoding, with 0.1% TER reduction. By applying large

margin training to the LLM, the TER can be further decreased by 0.8%.

In order to ensure eõcient training, in this work, all training data (numerator and de-

nominator lattices) are loaded in thememory. When applying FLP data to LLMs, thismight

be a problem. As shown in Table 6.15, if all data are loaded, thememory use is 230 GB. By

using a subset of the training data, trainingwould bemore practical. Table 6.15 gives the re-

sults of the LLMswith various amount of training data. hese subset are randomly sampled

from the whole training data, and equal amount of data are sampled for each speaker. he

second block of Table 6.15 gives the performance of the LLM trained with various amount

of data. As the increase of the amount of training data, the token error rate (TER) reduces.

When the data amount increases to around 2 hours (with memory use around 11 GB), the

TER cannot be further lowered. Trainingwithmore data, the performance of the LLM stays

the same (with TER 57.7%). hus,when the amount of training data is large, a subset can be

used in training. As shown in this table, with relatively small amount of data, the LLM also

yield performance gains. his motives the application of LLMs to adaptation, which would

be one option for the future work.
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System Criterion DataHours Mem Use (GB) Test Set TER(%)

Joint Decoder Manual 46.8 — 58.6
LLM LargeMargin 46.8 230.0 57.7

LLM LargeMargin

4.52 22.69 57.7
2.26 11.23 57.7
1.49 8.14 58.2
1.13 5.6 58.2
0.68 3.5 58.5
0.23 1.3 58.5

Table 6.15: he performance of the log-linear with various hours of training data on the BA-
BEL 402 Javanese FLP corpus. For themanual setting, theweights corresponding to the hybrid
log-likelihoods are set to 1, and theweights corresponding to the tandem log-likelihoods are set
to 0.25.
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Chapter 7

Conclusions

his thesis investigated structured discriminativemodels for speech recognition. he pre-

vious work in this area has been extended in two directions. First is the study of the fea-

tures generated by a single system and multiple systems based on deep neural networks

(DNNs), the form of these features were discussed in section 3.5. In experiments, LLMs

using these features were examined on various type of datasets with diòerent training cri-

teria, and consistent performance gains can be achieved. he second extension is the use

of the mixture-of-experts framework. By using this framework, LLMs can be extended to

inûnite LLMs,where diòerent experts are employed to focus on diòerent regions of the fea-

ture space to make an ensemble decision, and an non-linear overall decision boundary can

be yielded. his thesis also discussed a criterion based perspective on Bayesian inference,

where Bayesian inference can be viewed as aminimisation criterion, which consists of two

terms that represent prior beliefs and information from the observations as discussed in

section 5.2. By using this criterion, diòerent criterion function (which represents informa-

tion from the observations) can be used, and various meaningful training criteria can be

resulted, such as large margin training. As discussed in sections 5.3 and 5.4, these criteria

can be applied to the inûnite LLM. In experiments Bayesian inference of the inûnite LLM

and its variants (discussed in section 5.3) were examined. Bayesian inference of the iLLM

doesnot yield signiûcant performance gains. When each expert is trainedwith largemargin

criterion, small gains can be achieved.
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7.1 FutureWork

hese are many possible directions for the future work, and a number of suggestions are

given as follows:

• In this thesis, the features used by the LLMs are atmost based on two systems, i.e. the

tandem and hybrid systems. Using features from two systems might be too limited.

In the future work, features based on more than two systems can be used.

• As discussed in section 3.5, in general the features for discriminative models can be

categorised into two groups, i.e. the frame level and segment level features. In exper-

iments, only the segmental level features were examined, and the study of the frame

level features can be one possible direction for the future work.

• When applying Large margin training to LLMs, which are equivalent to structured

SVMs, performance gains can be achieved with a small amount of training data, as

shown inTable 6.15. hismotivates the application of LLMs (with largemargin train-

ing) to adaptation, where only a small amount of data for target speaker is available.

• In this work, tri-phonemodels are used for the generativemodels (HMMs), and the

tri-phones are tied to bemono-phones for the discriminativemodels. hemore gen-

eral parameters tying approach based on decision trees [148] can be used as a future

work.

• In the past few years, models with deep architecture, such as deep neural networks

(DNNs), have been extensively used in speech community, and signiûcant perfor-

mance gains have been achieved comparedwith themodels having shallow architec-

ture. In this thesis, although the features extracted from the DNNs are used by the

structured discriminative models, the models themselves only have shallow archi-

tecture. By introducing deep architecture into the structuredmodels, themodelling

capacity can be improved signiûcantly.

• For the inûnite LLMs, in experiments only Bayesian inference and its two variants

(approximate approaches) discussed in section 5.3 were examined. In these two ap-

proximate approaches, sampling for each expert’s parameters are replaced by CML

estimation and large margin training, and large margin training can yield the best

results for the inûnite LLMs. his motives the application of large margin training
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to the whole inûnite LLM (the gating network and the experts), and the training ap-

proach was discussed in section 5.4.

• For the inûnite LLMs discussed inChapter 5, the indicator variable corresponding to

each utterance is a scalar,where the inputs to gating network are utterances and all the

segments in an utterance share the same indicator. his might limit the �exibility of

the gating network. In order to make better use of the data, amore granular (vector)

indicator can be introduced. By doing so, amixture of experts for each sub-sentence

unit (such as word or phone) could be built, and this type of model is called the

structured inûnite discriminativemodel, which is discussed in Appendix F.
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Appendix A

ProbabilityMeasures

In mathematics, ameasureG is a function that assigns a non-negative real number to sub-

sets of a set Θ, which is sometimes called the sample space. It must assign 0 to the empty

set ∅, and be countably additive. A measure is a generalisation of the concepts of length,

area, and volume. If measureG assigns 1 to the entire measurable set Θ, measureG is a

probability measure (or probability distribution). Formally, the probability measure can be

deûned as follows [87, 184]:

A probabilitymeasure is a non-negative functionG deûned for countable collections of

mutually disjoint sets {An}Nn=1 withAn ∈ ΣΘ andA = ∪nAn that satisûes the following

properties:

G(An) ≥ 0 (A.1)

G(Θ) = 1 and G(∅) = 0 (A.2)

G(A) =
∑

n

G(An) (A.3)

G(Ac
n) = 1−G(An) (A.4)

whereAc
n is the complement ofAn, namelyAc

n = Θ \An. ΣΘ is a σ-algebra on set Θ,

which is a collection of subsets of Θ that is closed under countably many set operations

(complement, union of countably many sets and intersection of countably many sets). he

members of ΣΘ are called measurable sets, the pair (Θ,ΣΘ) is called a measurable space,
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and the triple (Θ,ΣΘ,G) is called a probability space. More generally, the triple is called a

measure space without requiring themeasureG to be a probability measure.
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Appendix B

Inûnite SupportVectorMachines

Section 4.3.5 introduced the framework of the inûnitemixture of experts with a gating net-

work based on the inûnite mixture model. he inûnite support vector machine (iSVM) in-

troduced by Zhu [213] is a speciûcation of this framework, where each expert (or the zth)

is a discriminant function:

F (w,x;H, z) = F (w,x;ηz) = ηT
zφ(x, w) (B.1)

where x is the input variable, and w is the corresponding class label, which takes value

from the set {1, . . . , L}. H = {ηm}∞m=1 are the parameters of the the experts. z is the

indicator variable that denotes which expert the input x is associated with. he feature

function φ(x, w) is deûned as:

φ(x, w) =



δ(w, 1)x

...
δ(w,L)x


 (B.2)

where δ(·) is a Kronecker delta. In a discriminant function, given an input, the class label

can be obtained bymaximising this discriminant function. In (B.1), a discriminant function

for the zth expert is described. he overall discriminant function for the iSVM can be

described as a summation over all experts:

F (w,x) =
∑

z

∫
F (w,x;H, z)q̂(H, z)dH z ∈ {1, 2, · · · ,∞} (B.3)
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where q̂(H, z) is an optimal distribution obtained in training, which will be discussed in

detail in the following sections.

B.1 he Training Criterion

he iSVM is a speciûcation of the inûnitemixture of experts discussed in section 4.3.5. An

mixture of experts consists of two parts, namely the gating network and experts. In this

section, training criteria for the gating network and experts will be introduced ûrst, and an

overall criterion for the iSVM will be discussed subsequently.

B.1.1 he Training Criterion for the Experts

In training the iSVM, maximum entropy discrimination (MED) [90, 93] is applied. MED

is a large margin training approach, through which an optimal distribution of the model

parameters (such as q̂(η)) can be estimated rather than optimal values (such as η̂). Take a

single classiûerwith discriminant function F (w,x;η) for example, given the training data

D = {(x1, w1), · · · , (xN , wN)}, theMED training criterion can be described as:

arg min
q(η)

{
KL
(
q(η)||p(η)

)
+ C

∑

n

[
max
w 6=wn

{
L(w,wn)+

∫
q(η)

(
F (w,xn;η)− F (wn,xn;η)

)
dη
}]

+

}
(B.4)

s.t. q(η) ∈ Pprob

where the best competing hypothesis w is found for all possible labels except the correct

one wn. KL
(
q(η)||p(η)

)
is the Kullback-Leibler (KL) divergence 1, and p(η) is the prior

distribution. [·]+ is the hinge loss which is deûned in (5.10). he loss L(w,wn) measures

how diòerent between the labels w and wn. Pprob is the set consisting of all possible valid

distribution over η. he discriminant function F (w,x;η) is deûned in (B.1). C is a non-

negative constant,which is used to balance the regularisation term(theKL divergence)with

the training loss (the hinge loss function).

As discussed in section 4.3.5.3, the iSVM is a speciûcation of the inûnite mixture of

expert. In inference of the iSVM, a representation of the iSVM based on the stick-breaking

1 he KL divergence is deûned as: KL
(
q(η)||p(η)

)
=
∫
q(η) log

( q(η)
p(η)

)
dη.
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G1 α G2

θm π ηm
∞∞

xn zn wn
N

Figure B.1: he graphical model of the iSVM. he plot associated with the red dotted line is
the stick-breaking construction of the inûnitemixturemodel.

process is used, and this representation is illustrated in Figure B.1, which is the same as the

graphical model of the inûnitemixture of expert described in Figure 4.9. Analogous to the

generative process of the inûnite mixture of expert described in (4.48), in the iSVM, the

process of determining which expert is used to classify an observation can be described as

follows [213]:

vm ∼ Beta(1, α) (B.5)

πm = vm

m−1∏

i=1

(1− vi) (B.6)

ηm ∼ G2 (B.7)

zn ∼ Categorical(π) (B.8)

where the mixture weights π = {πm}∞m=1 are given by the stick-breaking process (4.26),

which is normally denoted as π ∼ GEM(α) [138, 160]. G2 is the prior distribution. zn
is the indicator variable that denotes with which expert the nth observation is associated.

Beta(·) is the beta distribution. Categorical(·) is the categorical distribution, which is the

generalisation of the Bernoulli distribution with multiple possible outcomes.

When applying the MED training criterion described in (B.4) to the iSVM which has

inûnite number of experts, in order to specify which expert the input is associated with,

indicator variables z = {z1, . . . , zN} corresponding to the training data are introduced.

hen, for the iSVM, the hinge loss function in theMED criterion can be described as fol-
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lows [213]:

R
(
q(H, z)

)
=

N∑

n=1

[
max
w 6=wn

{
L(w,wn)+

∫ ∑

zn

q(H, zn)
(
F (w,xn;H, zn)− F (wn,xn;H, zn)

)
dH

}]

+

(B.9)

Analogous to theMED criterion (B.4) for a single classiûer, theMED criterion for the iSVM

can be described as follows [213]:

arg min
q(H,z)

{
KL
(
q(H, z)||p(H, z)

)
+ CR

(
q(H, z)

)}
(B.10)

s.t. q(H, z) ∈ Pprob

where the hinge loss functionR
(
q(H, z)

)
is deûned in (B.9).

B.1.2 he Training Criterion for the Gating Network

As illustrated in Figure B.1, in the iSVM the underlying distribution of the observations

{x1, . . . ,xN} is also modelled by the gating network, which is a mixture model in the

iSVM.According to the graphical model of the gating network,which is the plot associated

with the red dotted line in Figure B.1, the generative process corresponding to the gating

network can be described as follows:

π ∼ GEM(α) (B.11)

θm ∼ G1 (B.12)

zn ∼ Categorical(π) (B.13)

xn ∼ p(x|θzn) (B.14)

where theπ = {πm}∞m=1 are generated in the stick-breaking process described in (B.5) and

(B.6). he component likelihood p(x|θ) is given by a broad class of distributions called the

exponential family [11, 43] having the following form:

p(x|θ) = h(x) exp
(
θTx−A(θ)

)
(B.15)

where θ is called the natural parameter of the distribution. h(x) and A(θ) are known

functions, and A(θ) can be interpreted as the coeõcient that ensures that the distribution
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isnormalised [16]. InBayesian inference, theposteriordistribution of themodel parameters

for the gating network is p(v,Θ, z|D)1. hus, in variational inference the (approximate)

distribution to be inferred for the gating network is:

arg min
q(v,Θ,z)

KL
(
q(v,Θ, z)||p(v,Θ, z|D)

)
(B.16)

s.t. q(v,Θ, z) ∈ Pprob

where v = {vm}∞m=1 are the weights in the stick-breaking process as described in (B.5),

which are beta distributed.

B.1.3 heOverall Training Criterion for the iSVM

he training criteria for the experts (B.10) and gating network (B.16) were discussed in the

previous sections. Given these two criteria, the overall training criterion for thewhole iSVM

(both the gating network and experts) can be described as the combination of the two cri-

teria [213]:

arg min
q(v,Θ,H,z)

{
KL
(
q(H, z)||p(H, z)

)
+ CR

(
q(H, z)

)
+ C2KL

(
q(v,Θ, z)||p(v,Θ, z|D)

)}

(B.17)

s.t. q(v,Θ,H, z) ∈ Pprob

whereC2 is another non-negative constant, which is used to trade oò between theminimi-

sation criteria for the gating network and experts. R
(
q(H, z)

)
is the hinge loss function

deûned in (B.9). By sharing the same indicators, the gating network and the experts are

closely coupled. By minimising the overall training criterion (B.17), the optimised model

is expected to discover the underlying distribution of data and make predictions well on

unseen data [213].

B.2 Optimisation with Coordinate Descent

In order to ensure the overall training criterion (B.17) for the iSVM tractable, themean-ûeld

assumption [98, 188] and truncated stick-breaking representation [19] are used. hus, the

1 As described in equation (B.6), the weights v and π aremutually convertible.
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distribution to be inferred q(v,Θ,H, z) is assumed to be fully factorised as follows:

q(v,Θ,H, z) ≈
M−1∏

m=1

q(vm)

M∏

m=1

q(θm)

M∏

m=1

q(ηm)

N∏

n=1

q(zm) (B.18)

whereM is the number ofmixture weights in the truncated stick-breaking process, where

theM th breaking ratio equals 1, namely q(vM) = 1. his implies that themixture weight

πm = 0 for all m > M , namely the number of components is limited to M . hus, the

parameters for the components and experts are limited to be ûnite sets Θ = {θ1, . . . ,θM}
and H = {η1, . . . ,ηM}. Again, z = {z1, . . . , zN} are the indicator variables corre-

sponding to the training data D = {(x1, w1), · · · , (xN , wN)}. In the variational distribu-

tion (B.18), q(zn) is the categorical distribution with parameters ϕn = {ϕn,1, . . . , ϕn,M},
which is a generalisation of the Bernoulli distribution with multiple possible outcomes.

q(vm) = Beta(cm,1, cm,2) is the beta distribution. In mean-ûeld variational inference, co-

ordinate descent is performed, inwhich the parameters of each variational distribution (say

the parameters of q(vm) ) are updated in turn by iterativelyminimising the overall training

criterion (B.17). he process of updating each set of variational parameterswill be discussed

in the following sections.

B.2.1 Updating q̂(vm) and q̂(θm)

he optimal distributions q̂(vm) and q̂(θm) can be obtained by minimising the overall

training criterion described in (B.17) given all other variational distributions (such as q(H)

and q(z)). Since the ûrst two terms KL
(
q(H, z)||p(H, z)

)
and CR

(
q(H, z)

)
are not

functions of q(vm) and q(θm), these two terms can be omitted in updating q̂(vm) or q̂(θm).

herefore, the optimal distributions q̂(vm) and q̂(θm) can be obtained by minimising the

following simpliûed criterion:

arg min
q(v,Θ)

KL
(
q(v,Θ, z)||p(v,Θ, z|D)

)
(B.19)

his is the standard training criterion in variational inference of the inûnitemixturemodel

[19].
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B.2.2 Updating q̂(ηm)

When optimising q̂(ηm), all the other variational distributions (such as q̂(vm), q̂(θm) and

q̂(z)) are given. hen minimisation of the overall training criterion (B.17) becomes min-

imising:

arg min
q(H)

{
KL
(
q(H)||p(H)

)
+ CR

(
q(H, z)

)}
(B.20)

In the hinge loss function R
(
q(H, z)

)
deûned in (B.9), the sum over zn (where zn ∈

{1, . . . ,M}) is inside themaximisation, which means the best competing hypothesis w is

found for all experts. In order to make training more eõcient, the hinge loss can be relaxed

to an upper bound by moving out the sum over zn from themaximisation [213]:

R
(
q(H, z)

)
≤

N∑

n=1

∑

zn

q(zn)

[
max
w 6=wn

{
L(w,wn)+

∫
q(H)

(
F (w,xn;H, zn)− F (wn,xn;H, zn)

)
dH

}]

+

(B.21)

As discussed at the beginning of section B.2, q(zn) is a categorical distributionwith param-

eters ϕn = {ϕn,1, . . . , ϕn,M} and q(H) =
∏M
m=1 q(ηm). Substituting these deûnitions

and the upper bound of the hinge loss function (B.21) in, the training criterion (B.20) can

be further written as:

arg min
q(H)

{ M∑

m=1

KL
(
q(ηm)||p(ηm)

)
+ C

N∑

n=1

M∑

m=1

ϕn,m

[
max
w 6=wn

{
L(w,wn)+

∫
q(ηm)

(
F (w,xn;ηm)− F (wn,xn;ηm)

)
dηm

}]

+

}
(B.22)

hus this criterion (B.22) can be written asM minimisation criteria:

arg min
q(H)

F
(
q(H)

)
=

M∑

m=1

arg min
q(ηm)

F
(
q(ηm)

)
(B.23)

where F
(
q(H)

)
is the criterion described in (B.22), and the criterion F

(
q(ηm)

)
for the

mth expert can be described as follows:

F
(
q(ηm)

)
= KL

(
q(ηm)||p(ηm)

)
+ C

N∑

n=1

ϕn,m

[
max
w 6=wn

{
L(w,wn)+

∫
q(ηm)

(
F (w,xn;ηm)− F (wn,xn;ηm)

)
dηm

}]

+

(B.24)
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his is the standardMED criterion as described in (B.4). It isworth noting thatϕn,m can be

merged into the loss function L(·) and discriminant function F (·). Let L′(·) = ϕn,mL(·)
andF ′(·) = ϕn,mF (·), the criterion (B.24) becomes an identical form to the standardMED

criterion. As discussed in [93, 213], inMEDwhen the prior distribution p(ηm) is aGaussian

distribution, the optimal distribution q̂(ηm) is also aGaussian distribution but with diòer-

ent mean. In the iSVM, the prior distribution over ηm is p(ηm) = N (0, I) (where I is the

identity matrix), hence the optimal distribution can be described as q̂(ηm) = N (µm, I).

Substituting the form of q̂(ηm) and the deûnition of the discriminant function (B.1) in, the

largemargin training criterion (B.24) can be further described as aminimisation criterion

to estimate µm:

F(µm) =
1

2
||µm||2 + C

N∑

n=1

ϕn,m

[
max
w 6=wn

{
L(w,wn)+

(
µT
mφ(xn, w)− µT

mφ(xn, wn)
)}]

+

(B.25)

Let L′(·) = ϕn,mL(·) and φ′(·) = ϕn,mφ(·), the largemargin training criterion (B.25) can

be written in the form of the SVM [31, 33]:

F(µm) =
1

2
||µm||2 + C

N∑

n=1

[
max
w 6=wn

{
L′(w,wn) +

(
µT
mφ
′(xn, w)− µT

mφ
′(xn, wn)

)}]

+

(B.26)

his is the training criterion of the SVM. he mean µ̂m can be estimated by minimising

this criterion, then the optimal distribution q̂(ηm) = N (µ̂m, I) can be obtained.

B.2.3 Updating q̂(zn)

In [213] optimisation of q(zn) based on the dual form of the largemargin training criterion

(B.17) is discussed. In this section an alternative approach, in which q(zn) is optimised

based on the primal form of (B.17), will be studied.

As described in the generative process (B.8), the prior distribution over zn is a categori-

cal distributionwith parametersπ. Again, as described in equation (B.6), theweights v and

π aremutually convertible. hus, without v (or π), the prior distribution p(zn) is hard to

evaluated. his leads to hard evaluation of the term KL
(
q(H, z)||p(H, z)

)
in the overall

training criterion (B.17). In order to simplify optimisation, this KL divergence is relaxed
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to an upper bound KL
(
q(v,H, z)||p(v,H, z)

)
. By using this upper bound, the overall

training criterion (B.17) is relaxed to [213]:

arg min
q(v,Θ,H,z)

{
KL
(
q(v,H, z)||p(v,H, z)

)
+ CR

(
q(H, z)

)
+

C2KL
(
q(v,Θ, z)||p(v,Θ, z|D)

)}
(B.27)

s.t. q(v,Θ,H, z) ∈ Pprob

whereR
(
q(H, z)

)
is thehinge loss functiondeûned in (B.9). Given all theother variational

distributions (such as q̂(vm), q̂(θm) and q̂(ηm)), when optimising q(z), minimisation of

the overall training criterion (B.27) is equivalent to the following minimisation criterion:

arg min
q(z)

{
KL
(
q(v, z)||p(v, z)

)
+ CR

(
q(H, z)

)
+

C2

(
KL
(
q(v, z)||p(v, z)

)
−
∑

z

∫
q(Θ, z) log p(D|Θ, z)dΘ

)}
(B.28)

Distribution q(z) can be factorised to
∏
n q(zn) as described in (B.18). herefore, for the

nth indicator zn, the optimal distribution can obtained by minimising:

arg min
q(zn)

{
(1 + C2)

∫ ∑

zn

q(v)q(zn) log
q(zn)

p(zn|v)
dv + CR

(
q(H, zn)

)
−

C2

∑

zn

∫
q(θzn)q(zn) log p(xn|θzn)dθzn

}
(B.29)

whereR
(
q(H, zn)

)
is the hinge loss function deûned in (B.9) for the nth instance:

R
(
q(H,zn)

)
=

[
max
w 6=wn

{
L(w,wn)+

∫ ∑

zn

q(H)q(zn)
(
F (w,xn;H, zn)− F (wn,xn;H, zn)

)
dH

}]

+

(B.30)

Since the distribution q(zn) to be estimated is inside the maximisation, it is intractable to

ûnd the best competing hypothesis w. In order to make optimisation of q(zn) tractable,

the hinge loss function (B.30) is relaxed to an upper bound bymoving out the sum over zn
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from themaximisation1:

Rup
(
q(H,zn)

)
=
∑

zn

q(zn)

[
max
w 6=wn

{
L(w,wn)+

∫
q(H)

(
F (w,xn;H, zn)− F (wn,xn;H, zn)

)
dH

}]

+

(B.31)

Since q̂(ηm) (which was discussed in the previous section) is given, substituting the def-

inition of the discriminant function (B.1) in, the hinge loss function (B.31) can be further

written as:

Rup
(
q(H,zn)

)
=
∑

zn

q(zn)

[
max
w 6=wn

{
L(w,wn) +

(
µT
znφ(xn, w)− µT

znφ(xn, wn)
)}]

+

(B.32)

whereµzn is themean of q̂(ηzn). By using this relaxed criterion (B.32), the best competing

hypothesis can be found. hus, by relaxing the hinge loss function (B.30) to the upper

bound, optimisation of q̂(zn) becomes tractable.

Since the formof the distribution q(zn) is given,which is a categorical distributionwith

parameters ϕn = {ϕn,1, . . . , ϕn,M}, estimation of q̂(zn) is to estimate these parameters.

Substituting q(zn), the hinge loss functionRup
(
q(H, zn)

)
(given in (B.32)) and the prior

distribution p(zn|v) (deûned in (B.6) and (B.8)) in, the minimisation criterion (B.29) can

be written as:

arg min
ϕn

{
(1 + C2)

∑

m

(
ϕn,m logϕn,m − ϕn,mEq(vm)

[
log vm

]
−

ϕn,m

m−1∑

i=1

Eq(vi)
[

log(1− vi)
])

+ C
∑

m

ϕn,mFn,m−

C2

∑

m

ϕn,m

(
log h(x) + Eq(θm)

[
θm
]T
x− Eq(θm)

[
A(θm)

])}
(B.33)

where:

Fn,m =

[
max
w 6=wn

{
L(w,wn) +

(
µT
mφ(xn, w)− µT

mφ(xn, wn)
)}]

+

(B.34)

1 An alternative approximate approach similar to [95] can be adopted. By using the optimal distribution
q̂(zn) in the last iteration, the best competing hypothesis can be obtained.
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By minimising (B.33), themth optimal parameter ϕ̂n,m can be described as:

ϕ̂n,m ∝ exp

{(
Eq(vm)

[
log vm

]
+
m−1∑

i=1

Eq(vi)
[

log(1− vi)
])
− C

1 + C2
Fn,m+

C2

1 + C2

(
Eq(θm)

[
θm
]T
x− Eq(θm)

[
A(θm)

])}
(B.35)

Since q(vm) = Beta(cm,1, cm,2) is a beta distribution (discussed at the beginning of sec-

tionB.2), in (B.35)Eq(vm)

[
log vm

]
= ψ(cm,1)−ψ(cm,1+cm,2), andEq(vi)

[
log(1−vi)

]
=

ψ(ci,2)−ψ(ci,1 + ci,2), where ψ(·) is the digamma function. q(θm) is an exponential fam-

ily distribution described in (B.15), andA(θm) is a ûxed function in the exponential family

distribution. For the data that cannot be classiûed correctly, the hinge loss Fn,m deûned in

(B.34) tends to have greater value, and this leads to a smaller value of ϕn,m given in (B.35).

hismeans the termFn,m biases the allocations of data towards the expertswhere they can

be better classiûed.

B.3 Classiûcation

In classiûcation, given an inputx, the class label can be predicted byminimising the overall

discriminant function of the iSVM described in equation (B.3):

ŵ = arg max
w

∑

z

∫
F (w,x;H, z)q̂(H, z)dH (B.36)

where z is the indicator variable corresponding to the input x. he optimal distribution

q̂(H, z) is an approximation to p(H, z|x,D), where D is the training data. his distribu-

tion p(H, z|x,D) can be written as:

p(H, z|x,D) = P (z|x,D,H)p(H|x,D) (B.37)

As discussed in section B.2, the optimal distribution q̂(H, z) can be factorised: q̂(H, z) =

q̂(H)q̂(z). Assume the parameters of experts H only depends on the training data D
(namely p(H|x,D) = p(H|D)), and the assignment of the input to which expert only

depends on the gating network (namely P (z|x,D,H) = P (z|x,D)) [213]. hus, the op-

timal distribution for the experts q̂(H) (an approximation to p(H|D)) can be obtained in
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training. he optimal distribution q̂(z) of the indicator needs to be inferred in classiûcation,

and variational inference can be applied:

arg min
q(z)

KL
(
q(z)||P (z|x,D)

)
(B.38)

Since without the parameters for the gating network (namely v and Θ), the distribution

over z is hard to evaluate. hus, the minimisation criterion (B.38) is relaxed to an upper

bound:

arg max
q(z)

KL
(
q(z)q(v)q(Θ)||p(z,v,Θ|x,D)

)
(B.39)

hen optimisation of q̂(z) becomes the same as standard variational inference for the inû-

nitemixturemodel [19]. Given the optimal distributions q̂(v) and q̂(Θ)which are obtained

in the training phase, q̂(z) can be obtained byminimising (B.39). It isworth noting that the

distributions q̂(v), q̂(Θ) and q̂(z) do not need to be iteratively optimised as in inference of

the inûnite mixture model, since the optimal distributions q̂(v) and q̂(Θ) are obtained in

training and stay the same in classiûcation. hus, only one iteration needs to operated in

optimising q̂(z) given q̂(v) and q̂(Θ).
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Appendix C

HierarchicalDirichlet Processes

Many applications involve groups of data, and these groups are linked to each other. For

example, documents are modelled as coming from an underlying set of topics, and these

topics are shared across documents [21];Haplotypes are shared among individuals in a pop-

ulation and across populations [53, 167] . ADirichlet process can be adopted to model each

group of the data. However, clusters cannot be shared cross groups, since the base distribu-

tionG0 is continuous. he solution is to use a common discrete base distribution. Rather

than treating the base distribution parametrically, the base distribution can be treated non-

parametrically as being sampled from a non-parametric model. In particularly, Dirichlet

processes provide distributions over discrete distributions with wide support. When the

base distribution G0 of a Dirichlet process itself is drawn from a Dirichlet process, this

yields a hierarchical model called the hierarchical Dirichlet process (HDP) [174, 175, 176].

he HDP deûnes a groups of probability measures {G1, · · · , GJ} and a global base

measure G0. he global measure G0 is given a Dirichlet process with concentration pa-

rameter β and base distributionQ:

G0 ∼ DP(β,Q) (C.1)

he group speciûc distributionsGj are independent to each other givenG0, and they are

sampled from aDirichlet processwith concentration parameterα and a common basemea-
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α

β

Q

G0

Gj

θ′jn

xjn
Nj
J

Figure C.1:he graphical model of the hierarchial Dirichlet process mixturemodel.

sureG0:

Gj ∼ DP(α,G0) (C.2)

If Gj of diòerent groups are expected to have diòerent average variability from the base

measureG0, the group speciûc concentration parameter αj can be adopted to each group

j [175]. his hierarchical model induces a sharing of atoms {θm}∞m=1 among diòerent ran-

dom measuresGj , since each inherits its set of atoms from the common basemeasureG0

[174]. he sharing of {θm}∞m=1 can be illustrated by stick-breaking and Chinese restaurant

franchise representations for theHDP, which will be discussed in the following sections.

Analogous to the inûnitemixturemodel, groups ofmixturemodels can be constructed

based on theHDP. Given the sharing of atoms {θm}∞m=1 induced by theHDP, themixture

models based on the HDP share parameters. Consider a set of data with J related groups

D = {Dj}Jj=1, where the jth group of data Dj = {xjn}Njn=1 has Nj observations. Each

group is associated with a mixture model, and diòerent groups are linked with each other

by sharing the component parameters. he HDP provides a Bayesian non-parametric ap-
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proach to model such grouped data:

G0 ∼ DP(β,Q)

Gj ∼ DP(α,G0)

θ′jn ∼ Gj

xjn ∼ p(x|θ′jn) (C.3)

his type of mixture model is called the hierarchical Dirichlet process mixture model. he

corresponding graphical model of the HDP mixture model is illustrated in Figure C.1. In

the HDP mixture model (C.3), given that Gj is discrete, samples {θ′j1, · · · ,θ′jNj} from
Gj have positive probability taking identical values. his induces the cluster property of

the mixture model for each group of data. hese mixture models are based on Dirichlet

processes with a common discrete base distribution G0. his leads to the sharing of pa-

rameters among thesemixturemodels.

C.1 Stick-breaking Construction

In this section the stick-breaking construction of ahierarchicalDirichletprocess (HDP)will

be discussed. his construction gives an explicit representation of draws from a HDP, and

provides insight into the sharing of atoms {θm}∞m=1 among diòerent Dirichlet processes.

Given that the global basemeasure isdistributed as aDirichletprocessG0 ∼ DP(β,Q),

it can be described in the form the stick-breaking representation of the Dirichlet process

described in (4.27):

c ∼ GEM(β)

θm ∼ Q

G0 =
∞∑

m=1

cmδ(θ,θm) (C.4)

where the weights c = {cm}∞m=1 are obtained from the stick-breaking process described

in (4.26). Given that each random measure Gj is also distributed as a Dirichlet process

Gj ∼ DP(α,G0), the corresponding stick-breaking construction forGj can be described
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as:

π′j ∼ GEM(α)

θ′′ji ∼ G0

Gj =

∞∑

i=1

π′jiδ(θ,θ
′′
ji) (C.5)

where theweightsπ′ = {π′i}∞i=1 are obtained from the stick-breaking process (4.26). Since

the basemeasureG0 isdiscrete, {θ′′ji}∞i=1 fromG0 havepositiveprobability taking identical

values.

Given that the randommeasureGj is distributed according to aDirichlet processGj ∼
DP(α,G0), and the global base measure G0 has support at the atoms {θm}∞m=1, Gj has

support at these atoms as well. hus the stick-breaking representation ofGj described in

(C.5) can be rewritten as [174, 175]:

Gj =
∞∑

m=1

πjmδ(θ,θm) (C.6)

Assume the weights πj = {πjm}∞m=1 and c = {cm}∞m=1 are probability measures on the

discrete set {1, · · · ,∞}. Given thatGj ∼ DP(α,G0) is distributed as a Dirichlet process

on set {θ1, · · · ,θ∞}, the deûnition of the Dirichlet process (discussed in section 4.3.1)

implies [175]:

πj ∼ DP(α, c) (C.7)

and the weights πj can be obtained according the following stick-breaking construction:

vjm ∼ Beta
(
αcm, α

(
1−

m∑

i=1

ci

))

πjm = vjm

m−1∏

i=1

(1− vji) (C.8)

where the weights c = {cm}∞m=1 are from the stick-breaking representation for the global

base measureG0 described in (C.4). Derivation of this construction (C.8) is discussed in

detail in [175].

heHDPmixturemodel (C.3)was discussed in the previous section, inwhich each θ′jn
is sampled from the random measureGj . According to the stick-breaking construction of
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α
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J
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∞

Figure C.2:he graphical model of the stick-breaking construction of the hierarchialDirichlet
process mixturemodel.

the HDP as discussed at the beginning of this section,Gj =
∑∞

m=1 πjmδ(θ,θm), θm ∼
Q, and θ′jn takes the value θm with probability πjm. By introducing the indicator variable

zjn, the parameter θm associatedwith the observationxjn can be determined: θ′jn = θzjn .

hus an equivalent representation of theHDP mixturemodel can be described as [175]:

c ∼ GEM(β)

πj ∼ DP(α, c)

zjn ∼ Categorical(πj)

θm ∼ Q

xjn ∼ p(x|θzjn) (C.9)

his is the stick-breaking construction of the HDP mixturemodel, and the corresponding

graphical model is illustrated in Figure C.2.

C.2 Chinese Restaurant Franchise

In section 4.3.3, the Chinese restaurant process (CRP) was discussed, which gives the pre-

dictive distribution of new observations bymarginalising out the base distribution. Analo-

gous to the CRP, bymarginalising out the base distributionsG0 andGj in the hierarchical

Dirichlet process (HDP), the Chinese restaurant franchise [175] can be resulted. In this in-
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x11
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x12
x14
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15
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x
22 x24 x23
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25

θ1 θ2 θ3

θ′′11=θ1 θ′′12=θ1 θ′′13=θ3

θ′′21=θ2 θ′′22=θ3 θ′′23=θ3

z′11 =1 z′12 =1 z′13 =3

z′21 =2 z′22 =3 z′23 =3

j=1

j=2

Figure C.3: he Chinese restaurant franchise. his ûgure gives the current status of the Chi-
nese restaurant franchise with two restaurants. When a new customer x16 come to the ûrst
restaurant, the probabilities of sitting at these three occupied tables are 2

5+α ,
1

5+α and
2

5+α

respectively, and the probability of choosing a new table is α
5+α . If this customer chooses a new

table, the probabilities of choosing these three served dishes are 3
6+β ,

1
6+β and

2
6+β respectively,

and the probability of choosing a dish θm from themenu is β
6+β .

terpretation, the CRP metaphor is extended to multiple restaurants which share a set of

dishes.

In the Chinese restaurant franchise metaphor, a group of restaurants are deûned, and

in each restaurant customers (observations) {xjn}Njn=1 sit at tables (components) {tjn}Njn=1.

Each table serves a single dish (parameter) θ′′jt shared by customers, and the dish is ordered

from a global menuG0 shared cross restaurants. Let z′jt denote the global parameter θz′jt is

assigned to table t in restaurant j, and z′j = {z′j1, z′j2, · · · } give the assignments of dishes

for all the tables in restaurant j. Analogous to the derivation of the Chinese restaurant pro-

cess discussed in section 4.3.3, by integrating overG0 andGj , the conditional distribution
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α

tj

β

z′j
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Q

θm

Nj
J

|z′|

Figure C.4: he graphical model of the hierarchial Dirichlet process mixture model based
on the Chinese restaurant franchise. tj = {tjn}Njn=1 are table indicators for customers in
restaurant j, and Nj is the number customers in that restaurant. z′j = {z′jt}

Tj
t=1 are dish

indicators for tables in restaurant j, and Tj is the number of occupied tables in that restaurant.
hese sets of indicators tj and z′j are generated by the Chinese restaurant franchise. |z′| is the
number of unique values in set z′ = {z′j}Jj=1.

of the indicator variables tjn and z′jt can be described as [168, 175]:

P (tjn|tj1, · · · , tjn−1, α) ∝
Tj∑

t=1

Njtδ(tjn, t) + αδ(tjn, Tj + 1) (C.10)

P (z′jt|z′1, · · · , z′j−1, z′j1, · · · z′jt−1, β) ∝
M∑

m=1

Mkδ(z
′
jt,m) + βδ(z′jt,M + 1) (C.11)

where Tj is the number of currently occupied tables in restaurant j, Njt is the number of

customers sitting at table t in restaurant j,M is the total number of unique dishes served in

all restaurants, andMk is the number of tables servedwith dishθk in all restaurants. Similar

to the CRP, when a customer come to a restaurant, the probability of sitting at an occupied

table is proportional to the number of people already sitting there, and the probability of

sitting at a new table is proportional toα as described in (C.10). When a new table is chosen,

the probability of choosing a served dish is proportional to the number of tables servedwith

that dish, and the probability of choosing a new dish is proportional to β as described in

(C.11). his Chinese restaurant franchisemetaphor is illustrated in Figure C.3.

As discussed in the previous section, a HDP mixture model can be built based on the

stick-breaking construction. Analogously, a HDP mixturemodel also can be based on the

Chinese restaurant franchise. he graphical model of thisHDPmixturemodel is illustrated

in Figure C.4. Given the groups of indicators {tjn}Njn=1 and {z′jt}
Tj
t=1 with j ∈ {1, 2, · · · }
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Figure C.5:he graphical model of the inûnite hidden Markov model.

(where Nj is the number observations in group j and Tj is the number of unique values

in set {tjn}Njn=1 ) from the Chinese restaurant franchise described in (C.10) and (C.11), the

corresponding generative process of theHDP mixturemodel can be described as follows:

θm ∼ Q

xjn ∼ p(x|θz′jtjn ) (C.12)

C.3 Relationships with InûniteHMMs

In the previous sections, the hierarchical Dirichlet process (HDP) and themixturemodels

based on this process were discussed. his section will discuss the inûnite hidden Markov

model 1 which is a speciûcation of theHDP.

In a hidden Markov model (HMM), a sequence of the state variables {s1, · · · , sN} are
linked through the state transition matrix, and the observations {x1, · · · ,xN} are drawn

independently conditional on the given states. In the HMM, the probability of generating

next observationxn+1 conditional on the current state sn is a ûnitemixturemodel, namely

p(xn+1|sn) =
∑

sn+1
P (sn+1|sn)p(xn+1|sn+1), in which the component distribution is

the distribution of the emitting state p(xn+1|sn+1). hus, theHMM is a dynamic variant of

the ûnitemixturemodel. Itwould be interesting to generalise the ûnitemixture underlying

the HMM to a Dirichlet process, and the resulting HMM with inûnite number of states is

called the inûnite HMM, or the HDP-HMM [175].

1 A hidden Markovmodel (HMM) with inûnite number of states is called the inûniteHMM in this thesis.
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In the HMM, the current state sn indexes one row of the transition matrix, and the

probability of that row is themixing proportion for choosing the next state sn+1. he obser-

vationxn is drawn from the component indexed by sn (each state of theHMM corresponds

a component). here are inûnite number of states in the non-parametric counterpart of the

HMM, and theDirichlet process is employed to give the transition probability for each state.

Moreover, these Dirichlet processes must be linked with each other, since any state needs

to be reachable from other states. hus the framework of the HDP is ideal for these linked

Dirichlet processes. his results aHMM with inûnite number of states, which is called the

inûnite HMM. he graphical model of the inûnite HMM is illustrated in Figure C.5, and

the corresponding generative process can be described as follows:

c ∼ GEM(β)

πm ∼ DP(α, c)

sn|sn−1 ∼ Categorical(πsn−1)

θm ∼ Q
xn ∼ p(x|θsn) (C.13)

where πT
m is themth row of the transition matrix for the inûniteHMM.

As discussed in this section, each state of the inûnite HMM has a single component.

More generally, the state distribution can be extended to be amixturemodel (with inûnite

number of components), by introducing a latent variable zn, that denoteswhich component

the observation is associatedwith, for each state. In practice, a special treatment of the tran-

sition probability also can be applied to avoid rapid switching among the redundant states

in the inûniteHMM. hese speciûcations of inûniteHMMs are discussed in section 4.4.
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Appendix D

Beta Processes

In the previous chapters, Dirichlet processes, hierarchicalDirichlet processes and themix-

turemodels based these processes were discussed. For thesemixturemodels, it is assumed

that the observations can be partitioned into a discrete set of clusters, and each observa-

tion is assigned to a single cluster. his is particular clear in the Chinese restaurant process

(CRP), in which each customer is associated with a single dish. It is more appropriate to

assume each observation is associated with a collection of attributes, e.g. an animal can be

both terrestrial and oviparous. his assumption makes each observation in amodel can be

assigned to a subset of clusters. he Indian buòet process [72] satisûes this assumption, in

which each customer is associatedwith a subset of inûnite dishes. Analogous to the Dirich-

let process underlying the CRP, the underlying process of the India buòet process is a Beta

process, which will be discussed in this chapter.

he beta process was ûrst introduced by Hjort [86] for survival analysis. It is a Lévy

process [12, 155]which is a right continuous stochastic processwith stationary and indepen-

dent increments. Formally, the beta process can be deûned as follows. Let Θ be a set, ΣΘ

its σ-algebra,B0 a continuous probabilitymeasure on themeasurable space (Θ,ΣΘ) and

c a positive scalar. hen for any disjoint inûnitesimal partition {A1, · · · ,AL} of Θ, the

beta process is generated as follows [135]:

B(Al) ∼ Beta
(
cB0(Al), c

(
1−B0(Al)

))
(D.1)
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with L→∞ andB0(Al)→ 0,∀l ∈ {1, · · · , L}. his is a beta process, and denoted as:

B ∼ BP(c,B0) (D.2)

In (D.1) Beta(·) is a beta distribution. Because of the aggregation property 1 of Dirichlet dis-

tributions, a Dirichlet process can be deûned in terms of ûnite-dimensional distributions

appealing to the Kolmogorov consistency theorem, which guarantees that a suitably consis-

tent collection of ûnite-dimensional distributionswill deûne a stochastic process. However,

the sum of two beta variables is not beta distributed (then the Kolmogorov consistency

theorem condition is not satisûed), hence the beta process is deûned in the inûnitesimal

limit rather than being deûned based on ûnite-dimensional probabilities. An alternative

deûnition of the beta process based on the framework of completely random measures is

discussed in [97, 178].

he randommeasureB from a beta process is a completely randommeasure2 [102], and

it can be described as:

B =
∞∑

m=1

pmδ(θ,θm) (D.3)

where δ(·) is a Dirac delta function, each weight pm satisûes 0 ≤ pm ≤ 1, and the sum of

all weights is ûnite (the consequence of Campbell’s theorem) [97] . he random measure

B from a beta process is not a probability mass function as the measure from a Dirichlet

process, but it can serve as the parameters of a Bernoulli process. he Bernoulli process

based on this random measureB can be described as follows. Let zn = {znm}∞m=1 be an

inûnite set of binary indicators (with values 0 or 1), and each znm corresponding to atom

θm be given by a bernoulli distribution:

znm ∼ Bernoulli(pm) (D.4)

where {pm}∞m=1 are weights from the random measure B described in (D.3). hen the

newly generated measure Zn =
∑∞

m=1 znmδ(θ,θm) is drawn from a Bernoulli process,

which is denoted as:

Zn ∼ BeP(B) (D.5)
1 he aggregation property of Dirichlet distributions can be described as: If (x1, · · · ,xL) ∼

Dirichlet(α1, · · · , αL), then (x1, · · · ,xi + xj , · · · ,xL) ∼ Dirichlet(α1, · · · , αi + αj , · · · , αL).
2 For a randommeasureB on themeasurable space (Θ,ΣΘ), if the random variablesB(Ai) andB(Aj)

are independent for any disjoint setsAi andAj in ΣΘ,B is a completely random measure.
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Conjugacy LetZ1, · · · ,Zn be a collection of random measures from the Bernoulli pro-

cess BeP(B). GivenB, random measures Z1, · · · ,Zn are conditional independent. he

posterior distribution ofB givenZ1, · · · ,Zn is still a beta process [174]:

B|Z1, · · · ,Zn, c,B0 ∼ BP
(
c+ n,

c

c+ n
B0 +

1

c+ n

n∑

i=1

Zi

)
(D.6)

his results from the conjugacy between the beta process and the Bernoulli process.

D.1 Indian Buòet Processes

In section 4.3.3, the Chinese restaurant process (CRP) was discussed. he CRP can be de-

rived by integrating out the Dirichlet process in the predictive distribution (4.29). Anal-

ogously, the Indian buòet process (IBP) [72] can be motivated by integrating out the beta

process (D.6) in the following predictive distribution:

P (Zn+1|Z1, · · · ,Zn, c,B0) =

∫
P (Zn+1|B)p(B|Z1, · · · ,Zn, c,B0)dB

= BeP
( c

c+ n
B0 +

∞∑

m=1

Nnm

c+ n
δ(θ,θm)

)
(D.7)

where Nnm is the number of indicators corresponding to θm equaling 1, namely Nnm =
∑n

i=1 zim (note zim is binary). Each zim is from a Bernoulli distribution described in (D.4)

which deûnes a Bernoulli process.

he IBP can be described as follows. Consider a restaurant with a buòet consisting of

inûnitelymany dishes arranged in a line. he ûrst customer starts at the le� of the buòet and

takes a serving from each dish until Poisson(γ)1 number of dishes have been taken, where

γ = B0(Θ) is the total mass ofB0 with ûnite value. he (n+ 1)th customer moves along

the buòet, for each previously sampled dish, the customer samples the dishwith probability
Nnm
c+n , whereNnm is the number of people having already token it. A�er the end of all pre-

viously sampled dishes is reached, the (n+ 1)th customer then tries Poisson( cγ
c+n) number

of new dishes [78]. A binary matrix sampled from a IBP is illustrated in Figure D.1.

To connect the IBP with (D.7), assume the total mass ofB0 is ûnite, namelyB0(Θ) =

γ. he ûrst customer corresponds to the measure Z1 which is distributed as a Bernoulli
1 Poisson(γ) is a Poisson distribution with parameter γ.
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Figure D.1: A binary matrix generated by the Indian buòet process with γ = 10. his ûgure
is taken from [78].

processZ1 ∼ BeP(B0). hen the sum of this Bernoulli process outcomes is distributed as

a Poisson process with parameter B0. hus, Z1(Θ) ∼ Poisson
(
B0(Θ)

)
= Poisson(γ).

his means the ûrst customer tries Poisson(γ) number of dishes. he (n + 1)th customer

corresponds Zn+1, and it is distributed according to the Bernoulli process described in

(D.7), which is the sum of two independent Bernoulli process. Analogous to Z1, the (n+

1)th customer takes dish θm with probability Nnmc+n , and takes Poisson( cγ
c+n) number of new

dishes [178].

D.2 Stick-breaking Constructions

In section 4.3.2, the stick-breaking construction of the Dirichlet processwas discussed. his

construction characterises the draws fromDirichlet processes as discrete randommeasures.

As described in (D.6), a draw from the beta process is discrete with probability one, since

the continue part c
c+nB0 becomes 0 when n → ∞. his makes the existence of a stick-

breaking construction for the betaprocesspossible. Asdiscussed in [178], such construction

exists and a truncated representation can be described as follows:

BN =
N∑

n=1

Mn∑

m=1

pnmδ(θ,θnm) (D.8)
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where

Mn ∼ Poisson
( c

c+ n− 1
γ
)

pnm ∼ Beta(1, c+ n− 1)

θnm ∼
1

γ
B0 (D.9)

In (D.9), γ = B0(Θ) is the total mass on Θ. Equation (D.8) gives a truncated representa-

tion of the stick-breaking construction for the beta process. WhenN →∞, this truncated

representationBN converges toB with probability one [178].

A stick-breaking construction of the beta process based on the Lévy measure is dis-

cussed in [174]. When c = 1, this stick-breaking construction can be simpliûed as:

BM =
M∑

m=1

pmδ(θ,θm) (D.10)

where

vm ∼ Beta(1, γ)

pm ∼
m∏

i=1

(1− vm)

θm ∼
1

γ
B0 (D.11)

Again, γ = B0(Θ) is the total mass on Θ. When M → ∞, this truncated representa-

tion BM converges to B. Compared with the stick-breaking construction of the Dirich-

let process described in (4.26), both constructions employ the same breaking ratio vm ∼
Beta(1, γ). For the Dirichlet process, the parts broken oò are used, whereas the remaining

parts are used for the beta process. hus, in Figure 4.2 the blue parts (remaining parts) of

the stick correspond the weights {p1, p2, . . .} from a beta process.

Analogous to themixturemodels based onDirichlet processes,mixturemodels can be

based on beta processes, e.g. the inûnite overlapping mixture model based on the Indian

buòet process [83].
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Appendix E

LargeMargin Training for the Experts

In section 5.3.3, large margin training is applied to each expert in training the inûnite log-

linear model given a sampled set of indicator variables. In this appendix, all the experts

of the inûnite log-linear model will be treated as a single set of parameters, and an overall

large margin training criterion for all experts (log-linear models) will be discussed. his

large margin training criterion is a speciûc example of the general criterion discussed in

section 5.2. his appendix also shows that large margin training for each expert can be

viewed as a special example of largemargin training for all the experts.

E.1 he Training Criterion

In the inûnite structured discriminativemodel described in (5.20), the parameters of all the

experts areH = {ηm}∞m=1. Assume there areN training instances D = {(O1,W1), . . . ,

(ON ,WN )}, theposteriordistribution ofH can be estimated according to the largemargin

training criterion described in (5.11), which is the general criterion discussed in section 5.2

with a hinge loss criterion function:

arg min
q(H)

{
KL
(
q(H)||p(H)

)
−
∫
q(H)F(H;D)dH

}
(E.1)

s.t. q(H) ∈ Pprob
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where p(H) is the prior distribution ofH , andF(H;D) is a hinge loss function described

in (5.9):

F(H;D) = −
N∑

n=1

[
max

W,ρ6=Wn,ρn

{
L(W,Wn)−M(W,Wn;H,On)

}]

+

(E.2)

In (E.2), for each training instance, themost competing hypothesis and segmentation pair

(W,ρ) is found over all possible hypotheses and segmentations except the reference with

the corresponding segmentation (Wn, ρn), and ρn is themost likely segmentation obtained

by theHMM as described in equation (5.25). L(W,Wn) is the loss between the hypothesis

W and the referenceWn, and [·]+ is the hinge-loss deûned in (5.10).M(W,Wn;H,On)

is themargin,which determines howwell the reference labelWn can be correctly separated

with the hypothesisW [165]. In this work the deûnition of themargin is:

M(Wn,W ;H,On) =

∫ ∑

z

log
P (Wn, |On,H, zn)

P (W |On,H, zn)
q(Θ, z)dΘ (E.3)

where the conditional probability P (W |O,H, z) is given by the log-linear model deûned

in (5.24). Note, the denominator terms of the log-linear model can be cancelled out in

this margin deûnition (E.3). With this margin deûnition, the resulting margin has a form

similar to themargin in the structured SVM.hus, the eõcient training approaches used in

the structured SVM can be implemented, e.g. applying theViterbi algorithm to ûnd the best

competing hypothesis. Other deûnitions of the margin will be discussed in the following

section.

E.1.1 Other MarginDeûnitions

In a large margin training criterion, the marginM(·) determines how well the reference

label Wn can be correctly separated with the hypothesis W [165]. hus, the deûnition of

themargin should be closely related to the class posterior distribution in classiûcation. One

option for the deûnition of the margin is the logarithm of the class posterior distribution

ratio:

M(Wn,W ;On) = log
P (Wn|On,D)

P (W |On,D)
(E.4)

where the distribution P (W |O,D) is the class posterior distribution used in classiûca-

tion, e.g. the class posterior distribution P (W |O,D) =
∫
P (W |O,G)p(G|D)dG in (5.26).
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his is a direct way to deûne themargin, in which the class posterior distribution gives the

probabilities of the observation having diòerent labels. his margin gives a scorewhich can

measure how well the data can be correctly separated. In terms of the margin deûned in

(E.4), the class posterior distribution P (W |O,D) is given by an inûnite mixture of log-

linear models, and the denominator term of each log-linear model is diòerent. hus, the

denominator terms cannot be cancelled out. his leads to ineõciency in training.

Alternatively, themargin can be deûned as the expectation of the log posterior ratio:

M(Wn,W ;On) =

∫ ∑

z

log
P (Wn, |On,H, zn)

P (W |On,H, zn)
q(Θ,H, z)d(Θ,H) (E.5)

where the conditional probability P (W |O,H, z) is given by a structured discriminative

model, e.g. the log-linear model deûned in (5.24). his type of margin deûnition has the

same form as the margin deûned in maximum entropy discrimination (MED) [93]. his

margin (E.5) is also related to the margin (E.3) for the general criterion (E.1), where the

integral over the parameters of the expertsH are outside the hinge loss function.

In the structured SVM,which can be interpreted as a log-linearmodelwith largemargin

training [210], the margin is deûned the logarithm of the conditional probabilities ratio.

Analogously, themargin based on a single expert zn can be deûned as:

M(Wn,W ;On,H, zn) = log
P (Wn|On,H, zn)

P (W |On,H, zn)
(E.6)

When the conditional probability P (W |O,H, z) is given by the log-linear model deûned

in (5.24), the denominator terms of the log-linearmodels can be cancelled out in thismargin

deûnition (E.6). his margin then can be described in the form a linear function of ηzn :

M(Wn,W ;On,H, zn) = ηT
zn

(
Φ(On,Wn, ρn)− Φ(On,W, ρ)

)
(E.7)

E.2 LargeMargin Training

As discussed in section 5.3, from a Bayesian perspective, themodel parameters are random

variables, which are marginalised out in classiûcation. In the inûnite log-linear model,H

is the parameter set of all the experts, and the size of the setH is inûnite. Moreover, the

maximisation is inside the integral in the largemargin training criterion (E.1). It is compu-

tationally intractable to solve this general criterion directly. In order tomake it tractable, an
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Algorithm 6:he training procedure of the inûnite log-linear model
Initialise: q̂(Θ, z) and q̂(H)

repeat
1. Given q̂(H), update the distribution q̂(Θ, z)1described in (E.10).
2. Given the distribution q̂(Θ, z), update q̂(H) byminimising the largemargin
training criterion (E.1) with the hinge loss criterion function (E.2).

until converge or maximum number of iteration is reached;

approximation ismade here. As discussed in section 5.2, the largemargin training criterion

becomes tractable when the distribution q(H) to be estimated is a Dirac delta function

with parameters Ĥ = {η̂m}∞m=1:

q(H) = δ(H, Ĥ) =
∞∏

m=1

δ(ηm, η̂m) (E.8)

he optimal distribution for the wholemodel is assumed to be:

q̂(Θ,H, z) ≈ q̂(H)q̂(Θ, z) (E.9)

where the overalldistribution isdecomposed into twodistributions. One distribution q̂(H)

is for the experts, the second q̂(Θ, z) is for the gating network. hese two distributions are

dependent on each other, and in this work the dependency is restricted to a speciûc form:

he optimal distribution q̂(H) for the expert is estimated by minimising the largemargin

training criterion (E.1) given q̂(Θ, z); And the optimal distribution for the gating network

is deûned as the following posterior distribution given q̂(H):

q̂(Θ, z) =

∫
p(Θ, z|H,D)q̂(H)dH = p(Θ, z|Ĥ,D) (E.10)

his is the posterior distribution for the gating network, and can be obtained through

Bayesian rule. Since the forms of the distributions q̂(H) and q̂(Θ, z) are dependent on

each other, the optimal distribution q̂(Θ,H, z) is obtained by alternatively optimising dis-

tributions q̂(H) and q̂(Θ, z) as described in Algorithm 6.

For the inûnite log-linear model, the posterior distribution p(Θ, z|Ĥ,D) in (E.10)

does not have a closed form, soMonte Carlo approachesmust again be applied. HereGibbs

sampling is used to iteratively draw from the conditional posterior distribution of each pa-

rameter in turn. hese conditional posterior distributions (conditional posterior distribu-

tions for each component and indicator p(θm|z(k), Ĥ,D) andP (zn|z(k)−n,Θ(k−1), Ĥ,D))
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are the same as the distributions detailed in sections 5.3.1.3 and 5.3.1.4. he optimal distri-

bution of the experts’ parameters q̂(H) is estimated according to the largemargin training

criterion (E.1) with hinge loss criterion function (E.2). hus estimation of q̂(H) depends

on q̂(Θ, z), and this dependance is shown in themargin deûnition (E.3). he distribution

q̂(Θ, z) depends on q̂(H) in turn as shown in equation (E.10), hence the training proce-

dure can be summarised as an iterative process described in Algorithm 6. heoretically,

there is no guarantee on the convergency of this iterative training. If it converges, the opti-

mal distribution is the distribution that minimises the largemargin training criterion (E.1),

and also gives the standard conditional posterior distribution (in Bayesian inference) for

the gating network as described in (E.10). In the following sections, estimation of q̂(Θ, z)

and q̂(H) will be discussed.

E.2.1 Estimation of q̂(Θ, z)

he optimal distribution q̂(Θ, z) is the posterior distribution of the parameters of the gat-

ing network p(Θ, z|Ĥ,D) as described in equation (E.10). his distribution is the same as

the conditional posterior distribution of the parameters for the gating network in Bayesian

inference of the inûnite log-linear model discussed in section 5.3.1.2. Since this posterior

distribution does not have a closed form,Gibbs sampling is applied to sample from the con-

ditional posterior distribution of each parameter, and the process of sampling from these

conditional posterior distributions is the same as that in sections 5.3.1.3 and 5.3.1.4.

E.2.2 Estimation of q̂(H)

As discussed in the previous section, the distribution q̂(Θ, z) does not have a closed form.

Here Gibbs sampling is used to sample from this distribution. hemargin (E.3) is deûned

as integrating this distribution, hence the margin can be approximated by summing over

K samples:

M2(Wn,W ;H,On) ≈ 1

K

K∑

k=1

log
P (Wn, |On,H, z

(k)
n )

P (W |On,H, z
(k)
n )

(E.11)

1 In training, the distribution q̂(Θ,z) is approximated by samples {Θ(k),z(k)}Kk=1.
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where the samples z(k) = {z(k)1 , . . . , z
(k)
N } are drawn from q̂(Θ, z), and can be obtained

from the ûrst step in Algorithm 6, which was discussed in section E.2.1. By substituting the

deûnition of the log-linear model (5.24) into the margin described in (E.11), the denomi-

nator terms of the log-linear models can be cancelled out. hen, the margin (E.11) can be

expressed as:

M2(Wn,W ;H,On) ≈ 1

K

K∑

k=1

(
ηT

z
(k)
n

Φ(On,Wn, ρn)− ηT

z
(k)
n

Φ(On,W, ρ)
)

(E.12)

where ρ is the most likely segmentation (corresponding to sentence W ) obtained by the

HMM as described in equation (5.25).

In the inûnite SVM proposed by Zhu [213], each expert is a discriminant function1,

which is deûned as a linear function of η, namely F = ηTΦ(O,W, ρ). As the margin

is deûned as the diòerence of the linear functions, the margin is also linear. In the train-

ing criterion of the inûnite SVM described in Appendix B.1, the integral (over η) is inside

the maximisation. hus the integrand is a linear function of η, and the integral over η is

tractable in the inûnite SVM.

For the inûnite structured discriminativemodel discussed in this appendix, the experts

are log-linear models, and the margin is deûned as the expectation of the log-posterior

ratio (E.3). With this margin deûnition, the denominator terms of the log-linear models

are cancelled. As discussed at the beginning of section E.2, the distribution for the experts’

parameters is assumed to be a Dirac delta function q(H) = δ(H, Ĥ) deûned in (E.8).

Substituting this delta function and themargin (E.12) in, the largemargin training criterion

(E.1) with the hinge loss criterion function (E.2) can be further written as minimising:

F(Ĥ) = KL
(
q(H)||p(H)

)
+

N∑

n=1

[
max

W,ρ6=Wn,ρn

{
L(W,Wn)−

1

K

K∑

k=1

(
η̂T

z
(k)
n

Φ(On,Wn; ρn)− η̂T

z
(k)
n

Φ(On,W ; ρ)
)}]

+

(E.13)

where, for each training instance with index n, the best competing hypothesis and seg-

mentation pair (W,ρ) is found over all possible hypotheses and segmentations2 except the

1 he discriminant functionmaps the inputO directly to a class labelW by choosing the class maximising
this function.

2 hese possible hypotheses and segmentations can be obtained from a denominator lattice [147, 209].
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reference with the corresponding segmentation (Wn, ρn), and ρn is the most likely seg-

mentation obtained by theHMM as described in equation (5.25).

In the large margin training criterion (E.13), the Kullback-Leibler (KL) divergence is

deûned as KL
(
q(H)||p(H)

)
=
∫
q(H) log q(H)dH−

∫
q(H) log p(H)dH . his crite-

rion (E.13) can be written in a similar form to the largemargin criterion described in (5.12)

in section 5.2.
∫
q(H) log q(H)dH is the negative of the Shannon entropy. Since q(H)

is a delta function, this entropy is an inûnite but constant value. In the largemargin train-

ing criterion (E.13), the best competing hypotheses are found given K parameter samples

{η̂
z
(k)
n
}Kk=1. However, this leads to ineõciency in training. Rather than optimising crite-

rion (E.13) directly, an upper bound can be used instead. By moving out the summation

over k from themaximisation, theminimisation criterion (E.13) then can be relaxed to its

upper bound. hus the aim becomes to minimise the upper bound Fup(Ĥ):

F(Ĥ) ≤ Fup(Ĥ) = − log p(Ĥ) +
1

K

K∑

k=1

N∑

n=1

[
max

W,ρ6=Wn,ρn

{
L(W,Wn)−

(
η̂T

z
(k)
n

Φ(On,Wn; ρn)− η̂T

z
(k)
n

Φ(On,W ; ρ)
)}]

+

(E.14)

Given the sampled indicators {z(k)}Kk=1, the number of represented experts (which are

the experts that have associated data) can be determined:M =
∣∣{z(k)}Kk=1

∣∣. Let the prior

distribution ofH be p(H) =
∏∞
m=1 p(ηm). For the unrepresented experts (with index

m > M ), minimising criterion (E.14) yields the mode of the prior distribution p(ηm).

For the parameters of the represented experts Ĥr = {η̂m}Mm=1, the largemargin training

criterion (E.14) can be reorganized asM minimisation criteria:

FLM(Ĥr) =

M∑

m=1

FLM(η̂m) (E.15)

where:

FLM(η̂m) = − log p(η̂m) +
1

K

K∑

k=1

∑

∀z(k)n =m,∀n

[
max

W,ρ6=Wn,ρn

{
L(W,Wn)−

(
η̂T
mΦ(On,Wn; ρn)− η̂T

mΦ(On,W ; ρ)
)}]

+

(E.16)

Assume thepriorof each expert’sparameter is aGaussiandistribution p(ηm) = N (µη, Ση)

with mean µη and a scaled identity matrix covariance Ση = CI , then the mth criterion
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can be further written as:

FLM(η̂m) ∝ 1

2
||η̂m − µη||2 +

C

K

K∑

k=1

∑

∀z(k)n =m,∀n

[
max

W,ρ6=Wn,ρn

{
η̂T
mΦ(On,W, ρ)+

L(W,Wn)
}
− η̂T

mΦ(On,Wn, ρn)

]

+

(E.17)

his criterion (E.17) is closely related to the largemargin training criterion for each expert

discussed in section 5.3.3, and this relationship will be discussed in detail in the following

section.

E.2.3 he Relationship with LargeMargin Training for Each Expert

Criterion (E.17) has the same form as the large margin training criterion for each expert

described in section 5.3.3 (this type of model is denoted as the iLLMLM∗). In the iLLMLM∗ ,

structured SVMs are trained with the data associated with each expert, and the training

criterion for themth expert in the kth iteration is described in (5.38):

FLM(ηm) =
1

2
||ηm − µη||2 + C

∑

∀z(k)n =m,∀n

[
max

W,ρ6=Wn,ρn

{
ηT
mΦ(On,W, ρ)+

L(W,Wn)
}
− ηT

mΦ(On,Wn, ρn)

]

+

(E.18)

Comparing criteria (E.17) and (E.18), the summation bounds are diòerent. he bound of

summation in (E.18) is only for the kth set of samples,whereas in criterion (E.17) the bound

of summation is for all k ∈ {1, . . . ,K}. hismeans the training data are replicatedK times

in largemargin training for all the experts (discussed in this appendix). For thenth training

instance, it might be allocated to the same expertm in diòerent iteration k. hus, themost

competing hypothesis W can be cached, and the cached hypothesis can be reused when

this training instance is associated with the same expert again.

When the margin deûned in (E.11) is approximated by one sample (namely K = 1),

the largemargin training criterion (E.17) becomes the same as criterion (E.18), which is the

large margin training criterion for each expert of the iLLMLM∗ . hen the iterative process

of optimising q̂(H) and q̂(Θ, z) described in Algorithm 6 becomes the Gibbs sampling

style training process described in section 5.3.3, which is the iterative process described in

Algorithm 1 by replacing sampling for each expert with largemargin training.
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E.3 Classiûcation

In section 5.3.1, Bayesian inference of the inûnite log-linear model was discussed, where

Gibbs sampling is used in training. For each draw, the number of represented experts (or

components) is determined, and themixture weight π(k)m corresponding to each is propor-

tional to the number of data associated with that expert. All the other model parameters

{Θ(k),H(k)} are also sampled. In classiûcation, thesemixture weights and other sampled

model parameters are summed over to approximate the integral over all themodel param-

eters, as described in (5.28). In this section, a diòerent perspective on classiûcation will

be discussed, where themixture weights π are considered as been marginalised out in the

model as that in the Chinese restaurant process (CRP).

In largemargin training of all experts for the inûnite structured discriminativemodel,

the inûnite mixture of experts framework based on the CRP (as illustrated in Figure 4.10)

is used. Indicator variables z = {z1, . . . , zN} corresponding to the training data D =

{(O1,W1), . . . , (ON ,WN)} are introduced, and the mixture weights π = {πm}∞m=1 are

marginalised out (as in the CRP discussed in section 4.3.3). As described in (E.9), the op-

timal distribution of the model parameters is decomposed q̂(Θ,H, z) ≈ q̂(H)q̂(Θ, z),

where the optimal distribution for the experts is a Dirac delta function q̂(H) = δ(H, Ĥ),

and samples {Θ(k), z(k)} are drawn from distribution q̂(Θ, z). hen, given the training

data D and a new input O, the conditional probability of the sentenceW (corresponding

toO) can be described as:

P (W |O,D) =

∫ ∑

z

P (W |O,Θ,H, z)q̂(Θ,H, z)d(Θ,H)

≈ 1

K

K∑

k=1

P (W |O,Θ(k), Ĥ, z(k))

=
1

K

K∑

k=1

∞∑

z=1

P (W |O, Ĥ, z)P (z|O,Θ(k), z(k)) (E.19)

where z is the indicator variable corresponding to the new input O, the samples {Θ(k),

z(k)} are drawn from distribution q̂(Θ, z), and Ĥ are the parameters of q̂(H) which is a

delta function deûned in (E.8). he conditional distribution P (W |O, Ĥ, z) (for experts)

is a log-linear model described in (5.24). P (z|O,Θ(k), z(k)) (for gating network) is the
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component posterior distribution of theGaussianmixturemodel similar to the component

posterior distribution (5.21):

P (z|O,Θ(k), z(k)) =
P (z|z(k))N

(
ϕ(O);θ

(k)
z

)
∑

z P (z|z(k))N
(
ϕ(O);θ

(k)
z

) , z ∈ {1, 2, . . . ,∞} (E.20)

where N
(
ϕ(O);θ

(k)
z

)
is the component likelihood given by a Gaussian distribution, and

ϕ(O) is a feature function, which maps the input O with various length to a feature with

ûxed dimension. he probability P (z|z(k)) is the mixture weights, which is given by the

CRP described in (4.28). As discussed in section 5.3.1.1, only the represented experts are

considered in classiûcation. Given the sampled indicators z(k), the number of the repre-

sented experts can be determined:Mk = |z(k)|, which is the number of the unique values

in set z(k). And each mixture weight can be described as P (z|z(k)) ≈ N
(k)
m /N , where

N
(k)
m is the number of data associated with the mth expert, and N is the total number of

training data. Let π(k)z = P (z|z(k)) andπ(k) = {π(k)1 , . . . , π
(k)
Mk
}, the component posterior

distribution in (E.20) becomes the same form as the component posterior distribution in

(5.21):

P (z|O,Θ(k), z(k)) = P (z|O,Θ(k),π(k)) ≈ π
(k)
z N

(
ϕ(O);θ

(k)
z

)
∑

z π
(k)
z N

(
ϕ(O);θ

(k)
z

) , z ∈ {1, . . . ,Mk}

(E.21)

Given the number of represented expertMk, the class posterior distribution (E.19) can

be further written as:

P (W |O,D) ≈ 1

K

K∑

k=1

Mk∑

z=1

P (W |O, Ĥ, z)P (z|O,Θ(k), z(k)) (E.22)

It is interesting to compare this class posterior distribution (E.22) with the class poste-

rior distribution for the inûnite structured discriminativemodel described in (5.28):

P (W, |O,D) ≈ 1

K

K∑

k=1

Mk∑

z=1

P (W |O,H(k), z)P (z|O,Θ(k),π(k)) (E.23)

hey have the similar form, but the parameters of the experts have diòerent meanings. In

the classposteriordistribution (E.23), theparametersof the expertsH(k) = {η(k)1 , . . . ,η
(k)
Mk
}

are sampled from the conditional posterior distribution p(ηm|z(k),D) described in (5.33),
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and H(k) all vary with k. In contrast, the parameters Ĥ in the class posterior distribu-

tion (E.22) are the parameters of q̂(H) described in (E.8). he parameters Ĥ are estimated

according to the large margin training criterion described in (E.1) with criterion function

(E.2), and Ĥ do not vary with k.
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Appendix F

Structured Inûnite DiscriminativeModels

In chapter 3.5.2, inûnite structured discriminative models were discussed. In this type of

model, the indicator variable corresponding to each utterance is a scalar,where the inputs to

gating network are utterances and all the segments in an utterance share the same indicator.

his might limit the �exibility of the gating network. In order to make better use of the

data, a more granular (vector) indicator will be introduced. By doing so, diòerent sub-

sentence units (such aswords or phones) can be associatedwith diòerent experts, andmore

precise predictions can bemade possible. his type ofmodel is called the structured inûnite

discriminativemodel, which will be brie�y discussed in this chapter.

F.1 An Equivalent Form of the Structured Discriminative
Model

As discussed in the previous chapter, in Bayesian inference of the inûnite structured dis-

criminative models, given the sampled indicators variables z(k) = {z(k)1 , . . . , z
(k)
N } corre-

sponding to the training dataD = {(O1,W1), . . . , (ON ,WN )}, the parameters of diòer-

ent experts are conditionally independent, hence the parameters ηm of each experts can

be sampled separately as described in (5.33). Equivalently, the parameters of all the experts
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also can be treated as a whole, and these parameters can be written in a stacked form1:

H =



η1
...
ηM


 (F.1)

and for each expert the log-linear model described in (5.24) can be written in the following

form:

P (W |O,H, z) ≈ 1

Z(H,O, z)
exp

(
HTΦe(O,W,ρ, z)

)
(F.2)

where Z(H,O, z) is a normalisation term, which can be obtained by marginalising over

all passible word sequenceW and segmentations ρ similar to (5.23):

Z(H,O, z) =
∑

W∈W

∑

ρ∈PW
exp

(
HTΦe(O,W,ρ, z)

)
(F.3)

In the structured discriminative model (F.2), ρ is the most likely segmentation, e.g. the

segmentation given by the HMM as described in (5.25). Φe(O,W,ρ, z) is the extended

joint feature:

Φe(O,W,ρ, z) =




δ(z, 1)Φ(O,W,ρ)
...

δ(z,M)Φ(O,W,ρ)


 (F.4)

where δ(·) is the Kronecker delta, and Φ(O,W,ρ) is the joint feature discussed in sec-

tion 3.5. Given the segmentation ρ, the utterance and corresponding label can be described

as O = {O1, . . . ,O|ρ|} andW = {w1, . . . , w|ρ|}, where |ρ| is the number of segments.

hen the joint feature can be written as [210]:

Φ(O,W,ρ) =

[
φac(O,W,ρ)
φlg(W,ρ)

]
=




∑|ρ|
i=1 δ(wi, v1)ϕ

(
O(i)

)
...∑|ρ|

i=1 δ(wi, vL)ϕ
(
O(i)

)

φlg(W,ρ)




(F.5)

where φac(·) denotes the acoustic features, and φlg(·) denotes the language features.

{v1, . . . , vL} denote all possible sub-sentence units (such as tri-phones) in the vocabu-

lary. ϕ
(
O(i)

)
are the features corresponding to the ith segment, which were discussed in

detail in section 3.5.
1 Since there are inûnite number of parameters in an inûnite model,M is inûnite here. Similarly, in the

following sections, without speciûcation,M denotes a positive inûnite integer.
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F.1 An Equivalent Form of the Structured DiscriminativeModel

It is worth noting that the structured discriminativemodel described in (F.2) is equiv-

alent to the log-linear model described in (5.24), but with a diòerent form of expression.

For example, when z = m, in the extended joint feature only the elements associated with

the mth expert (the elements with δ(z,m)) have non-zero values, all other elements are

zero. Given the deûnition (F.1) of the parametersH , thenHTΦe(O,W,ρ, z) can be writ-

ten as ηT
mΦ(O,W,ρ). herefore, the structured discriminativemodel described in (F.2) is

equivalent to the log-linear model described in (5.24).

In Bayesian inference of inûnite structured discriminativemodels (as described in sec-

tion 5.3.1), given the sampled indicators z(k) = {z(k)1 , . . . , z
(k)
N } corresponding to the train-

ing dataD = {(O1,W1), . . . , (ON ,WN )}, the number of represented expertsMk can be

determined. he parameters for the represented experts can be written in the form of (F.1)

withM = Mk, namelyHr =
[
ηT
1, . . . ,η

T
Mk

]T. hen, sampling the parameters ηm of each

represented expert described in (5.33) can be described as sampling the whole parameters

Hr of the represented experts according to:

p(Hr|z(k),D) ∝ p(Hr)
∏

n

P (Wn|On,Hr, z
(k)
n ) (F.6)

where p(Hr) is the prior distribution, and P (Wn|On,Hr, z
(k)
n ) is the structured discrim-

inativemodel for the z(k)n th expert as described in (F.2). he parametersH(k)
r can be sam-

pled from (F.6) by using theMetropolis algorithm as discussed in section 5.3.1.5.

In conclusion, by using the form of the structured discriminative model described in

(F.2) with the extended joint feature (F.4) and parameters (F.1), sampling the parameters

of each experts in a separate fashion (5.33) is equivalent to sample the whole parameters

according to (F.6).

F.1.1 Sharing of the LanguageModel

As discussed in section 3.5, in the structured discriminative model the features can be de-

scribed as the form consisting of acoustic and language features, namely Φ(O,W,ρ) =
[
φac(O,W,ρ),φlg(W,ρ)

]T as described in (F.5). hen the extended joint feature (F.4) and

211



APPENDIX F. STRUCTURED INFINITE DISCRIMINATIVEMODELS

corresponding model parameters (F.1) can be described as follows:

Φe(O,W,ρ, z) =




δ(z, 1)φac(O,W,ρ)
δ(z, 1)φlg(W,ρ)

...
δ(z,M)φac(O,W,ρ)
δ(z,M)φlg(W,ρ)



, H =




ηac1
η

lg
1
...
ηacM
η

lg
M




(F.7)

In discriminativemodels, it is important to tie themodel parameters for robust parameter

estimation. In the extended joint feature, the language model features φlg(·) shared by

diòerent experts, and it is possible to tie these parameters {ηlg
1 , . . . ,η

lg
M} corresponding

to the language model features. By using the extended joint feature Φe(·) as described in

(F.7), tieing the languagemodel parameters corresponding to diòerent experts can be easily

implemented. When the languagemodel parameters {ηlg
1 , . . . ,η

lg
M} are tied, the extended

joint feature and corresponding parameters can be described as:

Φe(O,W,ρ, z) =




δ(z, 1)φac(O,W,ρ)
...

δ(z,M)φac(O,W,ρ)
φlg(W,ρ)


 , H =




ηac1
...
ηacM
ηlg


 (F.8)

By sharing the languagemodel parameters, in Bayesian inference of the inûnite structured

discriminative model, the parameters of the represented experts still can be sampled ac-

cording to the posterior distribution described in (F.6).

F.1.2 Classiûcation

As discussed in section 5.3.1.1, only the represented experts are used in classiûcation in this

work. Given the sampled indicators z(k), the number of represented experts can be de-

termined, namelyMk = |z(k)|. hen, the parametersHr of the represented experts can

written in the form of (F.8) withM = Mk. In inference, parametersH(k)
r can be sampled

according to the conditional posterior distribution (F.6). Given these sampled parameters

H(k), the parameters of diòerent experts are known and can be written as follows:

η
(k)
1 =

[
η
ac(k)
1

ηlg(k)

]
, · · · ,η(k)M =

[
η
ac(k)
M

ηlg(k)

]
(F.9)

hen the class posterior distribution described in (5.28) can be used in classiûcation. Al-

ternatively, when using the form of the extended joint feature and corresponding model
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F.2 Structured Inûnite DiscriminativeModels

O:

Z = {z1, z2, z3, z4, z5}
z1 z2 z3 z4 z5

O(1) O(2) O(3) O(4) O(5)

Figure F.1:he vector indicator variable Z corresponding to an utterance.

parameters (as described in (F.8)) directly, given an input utterance O, the class label W

can be found by maximising the following class posterior distribution, which has a similar

form to (5.28):

P (W |O,D) ≈ 1

K

K∑

k=1

Mk∑

z=1

P (W |O,H(k)
r , z)P (z|O,π(k),Θ(k)) (F.10)

where P (W |O,H(k)
r , z) is the structured discriminative model described in (F.2), and

P (z|O,π(k),Θ(k)) is the probability given by the gating network, which is the same as

that discussed in section 5.3.

F.2 Structured Inûnite DiscriminativeModels

In the previous section, the parameters of the experts were treated as a whole and these

parameters were described in the form of the extended joint feature. Share of the language

model parameter among diòerent experts was also discussed. So far the indicator variable

z corresponding to an utterance is a scalar, whereas in this section a more general form

of the indicator (a vector) will be discussed, and this type of vector indicator also can be

incorporated into the extended joint feature described in (F.4). In order to distinguish from

the scalar indicator z, the vector indictor corresponding to an utteranceO is denoted as Z .

Consider a segmented utteranceO = {O(1), . . . ,O(|ρ|)} with labelW = {w1, . . . , w|ρ|},
the corresponding vector indicator can be described as Z = {z1, . . . , z|ρ|}, where ρ is the

most likely segmentation and |ρ| is the number of segments. An example of the vector

indicatorwith associated utterance is illustrated in Figure F.1. Given the vector indicatorZ ,

the extended joint feature and correspondingmodel parameters described in (F.8) becomes
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the form written as follows:

Φe(O,W,ρ, Z) =




∑|ρ|
i=1 δ(zi, 1)φac

(
O(i), wi, ρi

)
...∑|ρ|

i=1 δ(zi,M)φac
(
O(i), wi, ρi

)

φlg(W,ρ)



,H =




ηac1
...
ηacM
ηlg


 (F.11)

where ρ = {ρ1, . . . , ρ|ρ|}, φac
(
O(i), wi, ρi

)
is the acoustic feature vector for a segment,

and this feature vector is the utterance acoustic feature vector described in (F.5) with one

segment in an utterance:

φac
(
O(i), wi, ρi

)
=



δ(wi, v1)ϕ

(
O(i)

)
...

δ(wi, vL)ϕ
(
O(i)

)


 (F.12)

whereρi is the segmentation corresponding to the ith segment, hence |ρi| = 1. {v1, . . . , vL}
denote all possible sub-sentence units (such as tri-phones) in the vocabulary, and ϕ

(
O(i)

)

are the features corresponding to the ith segment. By using vector indicators, the structured

discriminativemodel described in (F.2) becomes:

P (W |O,H, Z) ≈ 1

Z(H,O, Z ′)
exp

(
HTΦe(O,W,ρ, Z)

)
(F.13)

where Z(H,O, Z ′) is the normalisation term:

Z(H,O, Z ′) =
∑

W∈W

∑

ρ∈PW
exp

(
HTΦe(O,W,ρ, Zρ)

)
(F.14)

In calculating the normalisation term (F.14), all passible segmentations are considered. As

an approximation, the denominator lattice can beused to provide all possible segmentations

for an utterance. Since vector indicator variables are introduced, in an utterance diòerent

segments can be associated with diòerent experts. hus, the indicator variable set Z ′ cor-

responding to all these possible segments is introduced. Z ′ indicates the assignments of all

the arcs (to diòerent experts) in the denominator lattice. he vector indicator correspond-

ing to segmentation ρ is denoted asZρ. It isworth noting thatZ ′ is treated as an additional

given indicator set, and Z is part of Z ′.

When the indicator variable is a scalar, each input to the gating network is an utterance.

When a vector indicator variable Z is introduced, each scalar indicator zi corresponds to

a segment. hen each input to the gating network is a segment, and diòerent scalar indi-

cators for an utterance can indicate to diòerent experts. Similar to the inûnite structured
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F.2 Structured Inûnite DiscriminativeModels

O:

Z = {z1, z2, z3, z4, z5}
z1 z2 z3 z4 = z1 z5

O(1): the O(2): dog O(3): chased O(4): the O(5): cat

Figure F.2:he indicators with constraints

discriminative model where each utterance corresponds to a scalar indicator, when using

a vector indicator for an utterance, the gating network can also be based on an inûnite

mixture model. In this work, the scalar indicators associated with the same utterance are

assumed to be independent to each other. hus, for an utteranceO = {O(1), . . . ,O(|ρ|)}
with vector indicator Z = {z1, . . . , z|ρ|}, the probability of the indicator Z given by the

gating network can be decomposed:

P (Z|O,π,Θ) ≈
|ρ|∏

i=1

p(zi|O(i),π,Θ) (F.15)

where p(zi|O(i),π,Θ) is the componentposteriordistribution of the inûnitemixturemodel

as described in (5.21) with a segment inputO(i). By introducing the vector indicators, the

conditional probability given by the inûnite structured discriminative model described in

(5.20) becomes:

P (W |O,G) =
∑

Z

P (W |O,H, Z)P (Z|O,π,Θ)

≈
∑

Z

P (W |O,H, Z)

|ρ|∏

i=1

P (zi|O(i),π,Θ), Z ∈ Z (F.16)

where G = {π,Θ,H} are all the parameters of the model, and Z is the set (with inûnite

size) that gives all possible values for vectorZ . P (W |O,H, Z) is the conditional probabil-

ity of the structured discriminative model deûned in (F.13). he model described in (F.16)

is called the structured inûnite discriminativemodel in this work.

F.2.1 Constraints on the Indicators

For the structured inûnite discriminative model, in an utterance the segments having the

same label can be associatedwith diòerent experts. In an utterance, the segments having the

same label have similar characteristics, it would bemore appropriate to let these segments

share the same model parameters. hen, constraints can be introduced to the indicators.
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O:

z1 = z2 = z3 = z4 = z5
z1 z2 z3 z4 z5

O(1) O(2) O(3) O(4) O(5)

Figure F.3:he segments in an utterance share the same indicator.

One possible constraint is to let the segments with the same label in an utterance be as-

sociated with the same expert. An example is illustrated in Figure F.2. In this example,

given that segmentsO(1) andO(4) have the same label, the associated indicatorswill be as-

signed the same value. By introducing constraints to the indicators, the structured inûnite

discriminativemodel then becomes the constrained structured inûnite discriminativemodel.

F.2.1.1 Another Constraints

In the inûnite structured discriminative model discussed in chapter 5, each utterance cor-

responds to a scalar utterance, namely diòerent segments are associated with the same ex-

pert. Similarly, in the structured inûnite discriminative model, the vector indicator (or all

the scalar indicators) corresponding to an utterance can be constrained to share the same

value. An example is illustrated in Figure F.3. It is worth noting that, in the structured

inûnite discriminative model, the inputs to the gating network are segments rather than

utterances (in the inûnite structured discriminativemodel).

F.3 Summary

In this appendix, the structured inûnite discriminativemodelswere brie�y introduced. his

type ofmodel is amodiûcation of the inûnite structured discriminativemodel. In the inû-

nite structured discriminativemodels scalar indicators are used for utterances,whereas the

indicator variables are vectors in the structured inûnite discriminative models. By intro-

ducing vector indicators, an inûnite model (the gating network) can be built based on the

segment inputs. his gives more �exibilities to the gating network, e.g. diòerent segments

in an utterance can be associated with diòerent experts, and constraints can be added to

diòerent segments.
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