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Summary

Model-based approaches are a powerful and flexible framework for robust speech recogni-

tion. This framework has been extensively investigated during the past decades and has been

extended in a number of ways to handle distortions caused by various acoustic factors, includ-

ing speaker differences, channel distortions and environment noise. This thesis investigated

model-based approaches to robust speech recognition in diverse conditions and proposed two

extensions to this framework.

Many speech recognition applications will benefit from distant-talking speech capture.

This avoids problems caused by using hand-held or body-worn equipment. However, due to

the large speaker-to-microphone distance, both background noise and reverberant noise will

significantly corrupt speech signals and negatively impact speech recognition accuracies. This

work will propose a new model-based scheme for those applications in which only a single

distant microphone is available. To compensate for the influence of previous speech frames

on the current speech frame in reverberant environments, extended statistics are appended

to the standard acoustic model to represent the distribution of a window of contextual clean

feature vectors at the Gaussian component level. Given these statistics and the reverberant

noise model parameters, the standard Vector Taylor series (VTS) expansion is extended to

compensate the acoustic model parameters for the effect of reverberation and background

noise. A maximum likelihood (ML) estimation algorithm is also developed to estimate the

reverberant noise model parameters. Adaptive training of acoustic model parameters on data

recorded in multiple reverberant environments is also proposed. This allows a consistent

ML framework to estimate both the reverberant noise parameters and the acoustic model

parameters. Experiments are performed on an artificially corrupted corpus and a corpus

recorded in real reverberant environments. It is observed that the proposed model-based

schemes significantly improve the model robustness to reverberation for both clean-trained

and adaptively-trained acoustic models.

As the speech signals are usually affected by multiple acoustic factors simultaneously,

another important aspect in the model-based framework is the ability to adapt canonical

models to the target acoustic condition with multiple acoustic factors in a flexible manner.

An acoustic factorisation framework has been proposed to factorise the variability caused by

different acoustic factors. This is achieved by associating each acoustic factor with a distinct

factor transform. In this way, it enables factorised adaptation, which gives extra flexibility for

model-based approaches. The second part of this thesis proposes several extensions to acoustic

factorisation. It is first established that the key to acoustic factorisation is to keep the factor

transforms independent of each other. Several approaches are discussed to construct such
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independent factor transforms. The first one is the widely used data constrained approach,

which solely relies on the adaptation data to achieve the independence attribute. The second,

transform constrained approach utilises partial knowledge of how acoustic factors affect the

speech signals and relies on different forms of transforms to achieve factorisation. Based on a

mathematical analysis of the dependence between ML estimated factor transforms, the third

approach explicitly enforces the independence constraint, thus it is not relying on balanced

data or particular forms of transforms. The transform constrained and the explicit indepen-

dence constrained factorisation approaches are applied to the speaker and noise factorisation

for speech recognition, yielding two flexible model-based schemes which can use the speaker

transforms estimated in one noise condition in other unseen noise conditions. Experimental

results on artificially corrupted corpora demonstrate the flexibility of these schemes and also

illustrate the importance of the independence attribute to factorisation.

Keywords: automatic speech recognition, hidden Markov models, model adaptation,

adaptive training, environment robustness, reverberant noise robustness, acoustic factorisa-

tion
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Notation

General Notation
≈ approximately equal to
∝ proportional to
s scalar quantity (lowercase plain letter)
v vector quantity (lowercase bold letter)
M matrix (uppercase bold letter)
MT transpose of matrix M
| · | determinant of a square matrix
(·)−1 inverse of a square matrix
diag(v) diagonal matrix with vector v as its diagonal elements
diag(M) diagonal matrix derived from a squared matrix M
tr(·) trace of a square matrix
vec(·) vectorised form of a matrix

Functions
F(·) objective function or a mapping function
Q(·; ·) auxiliary function at the current estimates of parameters
∂
∂xf(x) derivate of a function
∂2

∂x∂xf(x) Hessian of a function
f(x)

∣∣
x=x̂

value of function f(x) at x = x̂

arg max
x

f(x) value of x that maximises f(x)

arg min
x
f(x) value of x that minimises f(x)

Probability Distributions
p(·) probability density function
p(·|·) conditional probability density
P (·) probability mass distribution
P (·|·) conditional probability mass distribution
N (x;µ,Σ) Gaussian multivariate distributions of x
L(·) (log-) likelihood function
X ⊥ Y|Z X is conditionally independent of Y given Z
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HMM Parameters
M HMM parameters set
H hypothesis, or word sequence {W1, . . . ,WK}
ot observation vector at time t
D dimension of feature vector ot
O observation sequence O = {o1, . . . ,oT }
aij discrete state transition probability from state i to state j
bj(o) output probability distribution at state j
ωt state at time t
ω state sequence ω = {ω1, . . . , ωT }
θt Gaussian component at time t
θ Gaussian component sequence θ = {θ1, . . . , θT }
m Gaussian component index

µ(m) mean vector of the mth Gaussian component

Σ(m) covariance matrix of the mth Gaussian component

γ
(m)
t posterior probability of component m at time t

Adaptation and Environment Robustness
s acoustic factor s
si the i-th condition within the acoustic factor s
r utterance or homogeneous block index

O(r) observation sequence for the r-th homogeneous data block

H(r) hypothesis for the r-th homogeneous data block

W(s) transform for homogeneous data block s
xst clean speech static vector at time t
yst noise corrupted speech static vector at time t
zst reverberant noise corrupted speech static vector at time t
∆xt clean speech delta vector at time t
∆yt noise corrupted speech delta vector at time t
∆zt reverberant noise corrupted speech delta vector at time t
A linear transform matrix
b bias vector
W affine transform, W = [A b]
rm regression base class to which component m belongs
ξm extended mean vector of component m, ξm = [µT

m 1]T

ζt extended observation vector at time t, ζt = [oT
t 1]T

Φ noise model parameters
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CHAPTER 1
Introduction

Automatic speech recognition (ASR) has been extensively studied in the past several decades.

Driven by both commercial and military interests, ASR technology has been developed and

investigated on a great variety of tasks with increasing scales and difficulty. Since the middle

of the 1970s, when hidden Markov models (HMMs) were introduced for speech recognition

[14, 114], they have gradually become the dominant techniques for speech recognition and the

recognition accuracies of ASR systems has been steadily improved [15, 76, 144]. As a result,

the development of speech recognition techniques first focused on isolated speech recognition

and was shifted to continuous speech recognition around the late 1980s. Since 1988, when two

U.S. government agencies, the National Institute of Standards and Technology (NIST) and

the Defense Advanced Research Project Agency (DARPA), started to organise world-wide

evaluations on continuous speech recognition, many milestones in speech recognition have

been set [15]. For example, the size of recognition vocabulary had increased from about 900

words in the Resource Management (RM) task (1988-1992)[195] to 20,000 words in the Wall

Street Journal (WSJ) task (1993-1995) [52]. In more recent tasks, e.g., voice search [13, 247],

virtually unlimited vocabulary size is a requirement. Besides vocabulary, the difficulty of these

tasks has steadily increased: the ASR systems are required to operate in more realistic and

practical conditions. For example, evaluations were primarily focused on read speech recorded

in a clean condition before 1995 [144]. Since that time, research interests have gradually

1



CHAPTER 1. INTRODUCTION 2

switched to recognition of spontaneous and conversational speech in noisy environments.

Broadcast news transcription (BN) [33, 77] and conversational telephone speech (CTS) [88]

dictation are two examples. Driven by the commercial need, several more challenging tasks

have emerged recently. These tasks include voice search [209], short message dictation [186]

and YouTube transcription [8] and so on. Compared with previous speech recognition systems

which were usually built on well-controlled and specifically collected data, the main data

source to build these systems is found data. Found data refers to data recorded from natural

conversation without a careful control or protocol of the collection procedure. Furthermore,

as these systems are designed to be used in everyday-life scenarios, they need to operate in

diverse acoustic environments and domains, serving the needs of a large number of users.

As speech recognition technology moves out of laboratories and is widely applied in more

and more practical scenarios, many challenging technical problems emerge. One of these

challenges is the acoustic diversity of speech data. For example, providing speech services

for millions of users requires the system to have the ability to understand a broad range of

voices spoken by users coming from different backgrounds, with accents and varying styles.

Environmental noise is another major factor which contributes to the diversity of speech. As

speech services are provided on various devices, ranging from telephones, desktop computers

to tablets and game consoles, speech signals also exhibit large variations caused by channel

characteristic differences. These non-speech variabilities are not related to what the users

say, which introduces confusions to ASR systems and significantly degrades the recognition

accuracy. This phenomenon severely restricts the usability of speech technology in everyday

life. It happens when statistical models are built on training data which is largely mismatched

with actual test data. Adaptation techniques have been used to quickly adapt ASR systems

towards the test domain. This can be achieved by either normalising the feature vectors of

speech or tuning acoustic model parameters to better reflect the nature of the test acoustic

conditions. Adaptation has been intensively studied in the past decades. Schemes devel-

oped to adapt speech recognisers to specific speakers are often known as speaker adaptation,

while schemes designed to handle impacts of environment are referred to as environmental

robustness. Moreover, to build compact acoustic models which only model the generic speech

variability on found data, adaptive training techniques are widely used. The idea is to sepa-

rate the speech variability from the non-speech variabilities seen in found data, and build the

canonical models accounting only for the speech variability, while the non-speech variabilities

are “absorbed” by a set of model transforms.

This thesis will focus on the acoustic adaptation techniques for speech recognition. In

particular, attempts have been made to address the following problems:
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• Robustness to reverberation:

Speech signals captured in enclosed environments by distant microphones are usually

subject to reverberation. Compared with background noise and channel distortions, re-

verberant noise is highly dynamic and strongly correlated with the original clean speech

signals. Speech recognition in reverberant environments thus remains a challenging

problem and the recognition performance is still far from usable. As such, most of to-

day’s speech applications still require a microphone located near the speaker. This is

inconvenient and troublesome in many applications, e.g., meeting speech recognition,

lecture transcription and hands-free interfaces for consumer products. In some applica-

tion scenarios, it is possible to deploy microphone arrays to capture speech signals. In

this case, the microphone array processing techniques can be applied for speech recog-

nition in reverberant environments. In other application scenarios, only single distant

microphones are available. The first part of this thesis focuses on the second scenario, in

which new reverberant noise robustness schemes are proposed to adapt acoustic models

to the target reverberant environment.

• Factorised acoustic model adaptation:

Due to the nature of found data, there are a large number of acoustic factors that

can simultaneously affect the speech signals. These factors include speaker differences,

channel distortions, background and reverberant noise and so on. It is clearly not

possible to model the combined effect of all possible acoustic factors. Instead, the

concept of acoustic factorisation [69] has been proposed to factorise the variabilities of

acoustic factors. Factorisation offers additional flexibility to adapt acoustic models to

diverse acoustic conditions. For example, the speaker information extracted from one

environment can be efficiently used for the same speaker in another, possibly unseen,

environment. This is referred to as factorised adaptation. This factorisation attribute

relies on the independence between factor transforms. The second part of this thesis is

thus to investigate how the independence attribute can be enforced to enable factorised

adaptation.

As mentioned before, adaptation can be performed by normalising the feature vectors of

test data or modifying the acoustic model parameters to better model the test conditions.

The first is commonly referred to as the feature-based approach while the latter is usually

referred to as the model-based approach. This thesis will focus on the model-based approach

to addressing the above problems.
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1.1 Thesis Organisation

This thesis is organised as follows. Chapter 2 describes standard acoustic modelling techniques

for HMM-based ASR systems. HMM training and recognition algorithms are also discussed.

Chapter 3 reviews acoustic model adaptation and robustness techniques. Speaker adaptation

techniques, including maximum a posteriori (MAP) and linear transformed based schemes

are first discussed. This is followed by a presentation of environmental robustness techniques

in section 3.3. The impact of acoustic environments on speech recognition systems is first

analysed in section 3.3.1. Previous work on improving the ASR robustness against background

noise and channel distortion is discussed in section 3.3.2. Relevant work on robustness in

reverberant environments is presented in section 3.3.3. Adaptive training techniques are also

discussed in section 3.4.

Inspired by previous work, a new model-based approach to robust speech recognition in

reverberant environments is proposed in Chapter 4. This includes: a novel model compensa-

tion scheme; an algorithm that performs maximum likelihood estimation of reverberant noise

parameters; and an reverberant adaptive training algorithm. This forms the first contribution

of this thesis. The second contribution of this thesis is presented in Chapter 5 and Chapter

6. In Chapter 5, the general concept of acoustic factorisation is first introduced and the inde-

pendence between transforms for each factor is discussed as the key to factorisation. Two new

approaches to enforcing the independence constraint are proposed in Chapter 6. The first one

is a transform-constrained approach, which is based on the knowledge of how acoustic factors

impact the speech signals. The second approach is based on a proposed explicit independence

constraint and does not rely on prior knowledge of acoustic factors or the attributes of adap-

tation data. These two approaches are applied to speaker and noise factorisation problem in

Chapter 6. Experimental validations of proposed schemes on both reverberant environment

robustness and acoustic factorisation are presented in chapter 7 and 8. Finally, this thesis is

concluded in Chapter 9, with a summary of contributions and a discussion of future work.



CHAPTER 2
Speech Recognition

Systems

This chapter will introduce the speech recognition systems using hidden Markov models

(HMMs) as acoustic models. Various acoustic modelling techniques are discussed, including

front-end processing, choice of acoustic unit, state output distributions, and model parameter

estimation algorithms. Using the acoustic models along with language models in decoding to

find the best hypothesis is also discussed in this chapter.

2.1 Overview of ASR

The aim of an automatic speech recognition (ASR) system is to produce the most likely

word sequence given an incoming speech signal. Figure 2.1 shows the architecture of an ASR

system and its main components. In the first stage of speech recognition, input speech signals

are processed by a front-end to provide a stream of acoustic feature vectors, or observations.

These observations should be compact and carry sufficient information for recognition in the

later stage. This process is usually known as front-end processing or feature extraction. In

the second stage, the extracted observation sequence is fed into a decoder to recognise the

mostly likely word sequence. Three main knowledge sources, i.e., lexicon, language models

5
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Figure 2.1: Architecture of an ASR system.

and acoustic models, are used in this stage. The lexicon, also known as the dictionary, is

usually used in large vocabulary continuous speech recognition (LVCSR) systems to map sub-

word units to words used in the language model. The language model represents the prior

knowledge about the syntactic and semantic information of word sequences. The acoustic

model represents the acoustic knowledge of how an observation sequence can be mapped to

a sequence of sub-word units. In the mean time, additional knowledge like indications of

speaker, environment or domains, can be incorporated into an adaptation module, so that

both the acoustic and language models can better fit the current operating conditions.

Statistical approaches are widely used in modern ASR systems. In the statistical frame-

work, the Bayesian decision rule is employed to find the most probable word sequence, Ĥ,

given the observation sequence O = (o1, . . . ,oT ):

Ĥ = arg max
H

P (H|O) (2.1)

Following Bayes’ rule, the posterior probability in the above equation can be expressed as a

conditional probability of the word sequence given the acoustic observations, p(O|H), mul-

tiplied by a prior probability of the word sequence, P (H) , and normalised by the marginal

likelihood of observation sequences, p(O):

Ĥ = arg max
H

p(O|H)P (H)

p(O)

= arg max
H

p(O|H)P (H) (2.2)

Note that the marginal probability, p(O), has been discarded in the second equation since it

is constant with respect to the ranking of hypotheses, and therefore does not alter the search

for the best hypothesis. p(O|H) is calculated by the acoustic model and P (H) is modelled

by the language model.
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This thesis will focus on adaptation and adaptive training of acoustic models. The rest

of this chapter describes each module of speech recognition systems in Figure 2.1 in detail.

Adaptation and environment robustness techniques are discussed in the next chapter.

2.2 Front-end Processing

Front-end processing is the first stage in a speech recognition system. The aim of front-end

processing is to extract features that are optimal for the recognition task and (ideally) in-

variant to irrelevant factors, such as speaker differences and environment distortions. There

are two main steps in front-end processing: segmentation and feature extraction. The seg-

mentation step is used to isolate relevant speech segments from the whole audio stream. For

example, in a telephone speech recognition system, a speech detector is normally used to

detect the beginning and the end of speech events; in a broadcast news transcription system,

a segmenter is needed to remove unwanted music and commercials. The identified speech

segments are used in the second step to yield salient features for recognition.

Mel-frequency cepstral coefficients (MFCC)[39] and perceptual linear prediction (PLP)

coefficients [95] are two commonly used speech feature representations in state-of-the-art

speech recognition systems. Both forms are based on short-time spectral analysis and use a

perceptionally motivated filter bank. In both types of feature extraction, a window function

with a typical 10ms frame rate, is applied to the input audio stream and divides the audio

into a series of overlapping frames. Each frame is usually 25-30ms long, in which the shape

of vocal tract is assumed to be relatively constant. A first-order high pass filter is applied to

accentuate the high frequencies in the formant structure. The windowed signal is analysed

by a short time Fourier transform to obtain the power or magnitude spectrum. Since there

is perceptional evidence which suggests that larger intervals are judged by human listeners

to produce equal pitch increments [39] at a higher frequency, it is necessary to warp the

normal frequency to a perceptually motivated frequency scale. The Mel-frequency scale is

such a measurement which is widely used in speech recognition systems. It warps the normal

frequency scale fHz by logarithmically compressing it to a linear scale to a perceived pitch

fmel:

fmel = 1127 log

(
1 +

fHz

700

)
(2.3)

When extracting MFCC features, a series of triangular band-passed filters, linearly spaced

in the Mel scale, are convolved with the linear spectrum to produce a set of filter bank

coefficients. A logarithmic transform is used to compress the dynamic range of these linear
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Figure 2.2: The MFCC feature extraction procedure.

filter bank coefficients, and this yields the so called log Mel-spectral filterbank coefficients,

or filterbank features. It is found that the filterbank coefficients are highly correlated. This

means the filterbank coefficient is a poor representation for Gaussian mixture models (GMM)

with diagonal covariance matrices, which are widely used in the standard GMM-HMM based

speech recognition systems. To decorrelate the feature, the discrete cosine transform (DCT)

is applied to yield the cepstral coefficients, or MFCCs. Let x
(l)
f be the f -th filterbank feature,

xd be the d-th cepstral feature. The d-th cepstral feature is calculated by:

xd =

√
2

Lf

Lf−1∑
f=0

x
(l)
f cos

(
πd

Lf
(f + 0.5)

)
d = 0, · · · , Lc − 1 (2.4)

where Lf is the number of filterbank features, Lc is the number of cepstral features. Normally,

a truncated DCT transform is used, i.e., Lc(∼ 13) is smaller than Lf(∼ 24) and the high order

cepstral coefficients are discarded. The 0-th cepstral coefficient is sometimes replaced by a

normalised log energy. As a summary, Figure 2.2 illustrates the MFCC feature extraction

procedure. Further details about MFCC feature extraction can be found in Appendix A.1.
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PLP is another popular feature representation based on the short-time spectrum analysis.

In PLP, the linear frequency of the power or magnitude spectrum is wrapped into another

perceptually motivated scale, the Bark frequency scale, via:

fbark = 6 log

([
fHz

600
+ 1

]0.5

+
fHz

600

)
(2.5)

Critical band filters spaced equally in the Bark frequency scale are used to filter the power

or magnitude spectrum. The output of these filters are nonlinearly transformed, based on an

equal-loudness and intensity-loudness power law. Linear prediction (LP) analysis is applied

and the resulting LP coefficients are converted to cepstral coefficients. A modified form of

PLP features is used in [257], where the Mel filterbank outputs are scaled by an equal-loudness

curve and compressed by taking a cubic root. The resulting spectrum is used for LP analysis,

and the LP coefficients are converted to cepstral coefficients, yielding the MF-PLP feature.

It was found in [257] MF-PLP features to be more effective than the standard PLP feature.

2.2.1 Feature Post-processing

The MFCC or PLP features discussed in the previous section are often referred to as static

features. Due to the conditional independence assumption (see section 2.3.1) in HMMs, if only

static features are used, the speech dynamic information will not be incorporated into the

recognition systems. A simple way to address this limitation is to append dynamic features,

such as delta and delta-delta features, to the base, static, features[59]. Delta features ∆xt can

be computed using simple differences, e.g., ∆xt = xt − xt−1, or using a linear regression:

∆xt =

∑w
i=1 i(xt+i − xt−i)

2i2
(2.6)

where w is the window length. It is clear that this delta feature is a linear combination of

2w + 1 static features. Higher order coefficients, such as delta-delta features ∆2xt, can be

calculated using the delta features in a similar way. In many state-of-the-art ASR systems, a

13-dimensional MFCC static feature vector is augmented with the first and the second order

derivatives, forming a feature vector ot of 39 elements as follows:

ot =

 xt
∆xt
∆2xt

 (2.7)

The use of dynamic features introduces correlations between elements in the observation

vector ot. The correlations reduce the discrimination ability of features. This is especially

true when the features are modelled with GMMs using diagonal covariance matrices. Lin-

ear projection schemes are used to tackle this problem. In these schemes, feature vectors in
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the original space are projected to a subspace in which features are assumed to be uncor-

related. These schemes include discriminant analysis (LDA)[32] and Heteroscedastic linear

discriminant analysis (HLDA)[139].

Ideally, the extracted feature should be invariant to irrelevant acoustic factors, such as

speaker / transducer differences and noise distortions. However, such attributes do not hold

for widely used MFCC or PLP features. Feature normalisation techniques are commonly used

to minimise the impact caused by irrelevant factors. For example, different transducers may

have different impulse responses, which can be translated to bias vectors added on the obser-

vation vectors. Cepstral mean normalisation (CMN) [11] can be applied to remove this bias

vector. Similarly, cepstral mean variance normalisation (CVN) can be applied to normalise

the variances of input feature vectors. CMN and CVN normalise the first and the second or-

der moments of the observation vectors, while higher order moments can be also normalised

via Gaussianisation using a histogram matching[208] or a GMM-based approach[165]. Vocal

Tract Length Normalisation (VTLN) [146] can be also used to compensate for the differences

in vocal tract length and shape between speakers.

It is also possible to use a neural network as a feature extractor. For example, in the Tan-

dem approach [98], MFCCs or PLPs are fed into neural network to extract more discriminant

features, which are appended to the original MFCCs or PLPs to generate a Tandem feature.

This will be briefly discussed in Section 2.3.1.3.

2.3 Acoustic Modelling

The previous section has discussed feature representations of speech signals. This section

will discuss acoustic modelling for speech recognition, in which statistical models are used to

calculate the probability of a sequence of observed feature vectors. Hidden Markov models

(HMMs) are the most widely used statistical model in the speech processing area [196]. This

section will discuss the basic concept of HMMs and their application to speech recognition.

2.3.1 Hidden Markov Models (HMMs)

In the HMM-based speech recognition, the observation vectors of a particular acoustic unit

(e.g., a word or a phone) are assumed to be generated by a finite state machine. At each time

instance, there is a hidden state. The hidden state can jump from the current state to other

states according to certain probabilities. An observation vector is also generated at each time

instance, according to a state-dependent output distribution. There are two fundamental

assumptions when using this finite state machine to represent speech signals:
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Figure 2.3: A left-to-right HMM with 3 emitting states.

• Quasi-stationary. This assumes that observation vectors within certain acoustic units

can be segmented into several phases, in which the observation vectors are considered

to be stationary.

• Conditional independence. Given the hidden states, the feature vectors follow the state-

dependent output distributions. As a result, the feature vector at the current time

is conditionally independent of the previous and following feature vectors, given the

current hidden state.

Although neither of these two assumptions is true for real speech signals, HMM-based acoustic

models are still very successful and they have dominated the speech recognition area since

the 1980s [114].

2.3.1.1 Left-to-right HMMs

As speech signals are sequences in time, left-to-right HMMs are often used to model speech

signals. Figure 2.3 shows an example of such an HMM with 3 emitting states. Let O =

[o1, · · · ,oT ] be a sequence of observation vectors that is generated by this 3-state left-to-right

HMM, in which ot is the observation vector at time t and T is the length of the speech

sequence. The generation process starts from the first, non-emitting state, i.e., state 1. At

each time, the state can jump to the next state or stay at the current state according to

transition probabilities, aij . Here, aij denotes the probability of switching from state i to j.

Once an emitting state j ( e.g., states 2 to 4 in Figure 2.3) is reached, an observation vector

is generated at the current time instant with a probability density bj(o). Note that the entry
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and exit states in Figure 2.3 are non-emitting. The use of non-emitting states is to facilitate

the construction of composite HMMs. It is clear that for the observation vector sequence O

with the length T , there is a state sequence ω = [ω1, · · · , ωT ] with the same length, where

ωt is the state at time t. However, only O can be observed, while ω is hidden and needs to

be inferred from the observations. The sequence of observation vectors and the sequence of

hidden states can be written together as {O,ω} and will be referred to as the complete data

set. The parameters of an N -state HMM include the following parts:

• A – State transition probability matrix

The transition probability aij can be arranged into a state transition probability matrix

A, with its element at the j-th row and the i-th column defined as:

(A)ji = aij = P (ωt+1 = j|ωt = i) (2.8)

Note that aij does not dependent on the time index t. To be a valid probability distri-

bution, each column of this matrix must satisfy

N∑
j=1

P (ωt+1 = j|ωt = i) =
N∑
j=1

aij = 1; ∀i = 1, · · · , N (2.9)

Note that because of the use of the entry state, state 1, a1j specifies the initial state

distributions of emitting states j, j = 2, · · · , N − 1.

• B – State output probability distribution

At each emitting state j, a state-dependent output probability,

bj(o) = p(o|ω = j) (2.10)

is used to govern the observation generation process, in which ω is the current state.

bj(o) can be a discrete distribution, which yields the so called discrete HMM (DHMM).

Alternatively, bj(o) can a probability density function. This yields the so called contin-

uous density HMM (CDHMM).

To use HMMs as acoustic models for speech recognition, there are a few practical consid-

erations, e.g., the choice of acoustic units and state output probability distributions. These

acoustic modelling techniques are briefly reviewed in the following sections.
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(sub-word) Model a (sub-word) Model b

(word) Model ab

Figure 2.4: A composite HMM constructed from two individual HMMs.

2.3.1.2 Acoustic Units

For speech recognition tasks with a small recognition vocabulary (less than 1000 words), e.g.,

in a digit recognition task, HMMs are often used to model individual words. However, for

speech recognition tasks with a medium (1K-10K words) vocabulary to a large vocabulary (>

10K words), it is not possible to collect sufficient training data for each word in the vocabulary.

To solve this problem, HMMs are normally used to model sub-word units. Sub-word units

are then composed to form word HMMs according to rules specified by a dictionary. As an

example, the composition of two sub-word unit (a and b) HMMs to form a word (ab) HMM

is illustrated in Figure 2.4. Note that in the figure, the non-emitting exit state of model a

and the entry state of model b have been removed while the last emitting state of model a

is connected to the first emitting state of model b. The entry state of model a and the exit

state of model b become the new entry and exit state of the newly formed word model ab.

The phone, which is a small speech segment that has distinct perceptual properties, is

often chosen as the sub-word unit. The number of phones is normally significantly smaller

than the number of words in a vocabulary. For example, the number of phones in English is

around 40 to 60, while typical state-of-the-art speech recognition systems for English use a

vocabulary which ranges from 20K to 64K words. Given a phone set, it is possible to build one

HMM for each phone, regardless of its contexts. This is referred to as a monophone system.

However, the factorisation from a word HMM to context independent phone HMMs discards

the contextual information. Due to co-articulation, the pronunciation of the current phone is

influenced by the preceding and following phones and thus varies with respect to its context

[145]. To model the variations caused by context, context-dependent phone sets are normally

used in large vocabulary speech recognition systems. For instance, the triphone [145] is the
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most widely used context-dependent phone set. A triphone is a context-dependent phone

which uses the immediate left and right phone as the context for the phone in the centre

position. For example, a phone b in the context ey b l is usually denoted as a triphone

ey-b+l, where “-” denotes the left context and “+” denotes the right context. In this way,

an isolated word “able” with silence “sil” at the start and the end of the word, can be mapped

to a sequence of triphones as:

sil able sil → sil ey b l sil → sil-ey+b ey-b+l b-l+sil

The triphone set can be further classified as a word-internal triphone set and a cross-

word triphone set. In a word-internal triphone set, only the context within words is con-

sidered, while in a cross-word triphone set, the cross-word context is also considered. It

has been demonstrated that cross-word triphone systems generally perform better than the

word-internal triphone systems [256].

Using context-dependent triphone models significantly increases the number of acoustic

units and thus requires a large amount of training data. For example, for a monophone set

with 46 phones, the number possible triphones is around 100K. Moreover, some triphones may

not exist in the training set. To solve this problem, parameter tying techniques are usually

used. The most widely used parameter tying technique is state clustering [259]. The basic idea

of state clustering is to share the state output distributions between similar acoustic units.

This is illustrated in Figure 2.5 using a system with three acoustic units or HMMs. Initially,

in the un-tied system, each state of each HMM has a unique output distribution. This gives

9 output distributions to be estimated. Clustering algorithms (e.g., [112, 259]) can be used

to cluster these 9 distributions into several groups. In this example, the first and last states

of 3 HMMs are clustered into groups 1 and 2 respectively, while the second states of the first

and third HMMs fall into the third group, and the second state of the second HMM forms

the fourth group. In this way, only 4 state distributions need to be estimated. Observation

vectors belonging to the same group can be pooled together to estimate the parameters of

one distribution. This ensures there are sufficient training data for each of the clustered state

distributions.

There are generally two approaches can be used for state clustering. One is a bottom-up

approach, in which clusters are built in a bottom-up fashion, e.g., [112]. Initially, every

un-tied distribution is a class. The most similar distributions are then merged and a new

distribution is generated. This process can be repeated until a pre-defined number of classes

is reached. The main problem with this approach approach is that it can not appropriately

handle unseen contexts which do not appear in the training data. This problem can be
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sil-ey+b

sil-ey+b

ey-b+l

ey-b+l

b-l+sil

b-l+sil

un-tied
systems

state clustered
systems

Figure 2.5: Illustration of state clustering for a three-HMM system. In the un-tied system,
each state in each HMM has a unique state output distribution. After state clustering, some
of the states share the same distribution.

addressed using the second, top-down, approach, e.g., the phonetic decision tree clustering

method in [259]. Initially, all the states are grouped into a single root node. At each node, a

phonetic question about the context of states is asked to split the states within the current

node into left and right children nodes. For example, a question may ask whether the left

context of the states in the current node is a nasal, i.e., in the set {ng-*, n-*, m-*}; the

states with a positive answer will be grouped into the left child’s node while the states with

a negative answer will be grouped into the right child’s node. Many phonetic questions can

be asked at each node. The best question which maximises the likelihood after splitting

is selected. This process is repeated until the amount of training data associated with the

current node falls below a threshold. Besides efficiency in clustering acoustic units, another

advantage of using this top-down clustering is that it can easily handle unseen contexts. For

example, when a new triphone is observed in test data, a series of phonetic questions can be

asked to classify each state of this triphone into a leaf node and synthesis a new HMM for

this triphone. The phonetic decision tree clustering method has been widely adopted in the

most state-of-the-art ASR systems [109] and is also used in this thesis.

2.3.1.3 State Output Probability Distributions

A variety of probability distributions bj(o) can be used to calculated the j-th state emission

probability. As most speech recognition systems use continuous acoustic feature vectors, a

probability density function (PDF) is used to represent bj(o). The multivariate Gaussian
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distribution is one commonly used form:

bj(o) = N (o;µ(j),Σ(j))

=
1√

(2π)D|Σ(j)|
exp

{
−1

2
(o− µ(j))TΣ(j)−1(o− µ(j))

}
(2.11)

where D is the dimension of o, and (µ(j),Σ(j)) are the parameters of the j-th state output

distribution. Usually the covariance matrix Σ(j) is assumed to be diagonal. This is because

using full covariance matrices in a large system is computationally expensive. Another reason

is that a full covariance matrix hasO(D2) number of parameters, which requires a considerable

amount of training data for robust covariance matrix estimation.

Using a single Gaussian distribution as the emitting PDF assumes that the output distri-

bution only has one mode, which is a poor assumption in practice. Hence, Gaussian mixture

models (GMMs) are widely used as the state emission PDFs [163]. A GMM-based state

emission PDF can be expressed by:

bj(o) = p(o|ω = j) =

Mj∑
m=1

cjmN (o;µ(jm),Σ(jm)) (2.12)

whereMj is the number of Gaussian components in state j, and cjm is the weight of component

m in state j. To make bj(o) a valid probability distribution, the component weights must

satisfy the following constraint:

Mj∑
m=1

cjm = 1 and cjm ≥ 0 (2.13)

A HMM-based system which uses GMMs to represent the state distribution will be referred

to as a GMM-HMM system.

In parallel with the development of using GMMs as the emission PDFs, using neural

networks for density estimation became a popular alternative in the 1980s and 1990s. Different

from the generative GMMs which model the conditional probability density of observation

given the current state, p(o|j), various types of neural networks (e.g., [199, 202]) can be used

to model the posterior probability of states given the observations, p(j|o), which yields a

discriminative model [23]. This approach is normally referred to as a hybrid connectionist-

HMM, or a hybrid approach [27, 28]. Among a variety of neural networks with different

architectures, the multilayer perception (MLP) is a popular choice. Figure 2.6 illustrates a

hybrid MLP-HMM system with 3 context-dependent triphones. In this figure, a 3-layer MLP

is used to estimate the posterior probability of context-dependent states from a window of
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sil-ey+b ey-b+l b-l+sil

· · · · · ·

· · · · · ·

· · · · · ·

Input layer

1st Hidden layer

2nd Hidden layer

Output layer p(j|o)

Emission probability
p(o|j) ∼ p(j|o)/p(j)

speech feature vectors o

Figure 2.6: Illustration of a hybrid MLP/HMM system with 3 context-dependent triphones.

speech feature vectors. Once the state posterior probability is calculated, it can be converted

to the output distribution using the Bayesian rule:

p(o|j) =
P (j|o)p(o)

P (j)
∼ P (j|o)/P (j) (2.14)

where P (j) is the prior probability of the state j. Note the marginal distribution p(o) can be

ignored as it does not depend on a particular state.

The hybrid approach is a discriminative model which directly represents the posterior

probability of hidden states. This can be compared with generative models which usually

model the joint distribution of both hidden states and the observation vectors. It is argued

that the discriminative model may provide a better use of model parameters [199]. The

universal approximation attribute [36, 106] which states that a feed-forward network is able to

approximate any continuous function, is another attractive advantage of the hybrid approach.

However, there are a series of limitations which restricted the development of hybrid approach

in the 1990s. As the use of context-dependent acoustic units become widely used in large

vocabulary systems, the MLP needs to classify a large number of targets, which results

in neural networks not easy to be trained at the time in the 1990s. To solve this issue,

a context factorisation approach (e.g., [175]) was proposed, which nevertheless limits the

potential improvement by the hybrid approach. Moreover, due to the discriminative nature
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Figure 2.7: Generation of Tandem feature for GMM/HMM systems.

of neural network modelling, parameter training needs to consider not only the correct class

but also all the competing classes. This is much more expensive than the maximum likelihood

training for generative models. In addition, stochastic gradient descent methods, like back

propagation [206], are widely used to train neural networks. The stochastic gradient descent

procedure is very difficult to parallelize. Due to these reasons, early development of the hybrid

approach normally focused on a shallow neural network (i.e., less than 2 hidden layers) and

used context independent states as the output targets. The lack of effective and efficient

adaptation techniques for the hybrid approach also contributes to its decline in the middle

of the 1990s. Very recently, it has been demonstrated that the hybrid approach is able

to deliver comparable, sometimes better, recognition performance compared with the well-

developed GMM-HMM systems on a large vocabulary speech recognition task [215, 216].

Several factors, including increased computation power and a better network initialisation

scheme [100], contribute to this recent breakthrough. It is now possible to train a deep neural

network (with more than 5 hidden layers) to directly classify the (decision-tree clustered)

context-dependent states [37]. This is referred to as a deep neural network (DNN) model.

Though it has been demonstrated that systems based on DNN models can provide bet-

ter performance than the GMM-HMM systems on a number of tasks [99], it is difficult to

adapt DNN models to the target operating conditions and many of the adaptation techniques

developed for the GMM-HMM based systems can not be applied to the DNN model in a

straightforward way [2, 157, 262]. As a result, an alternative way to use neural networks

for speech recognition, the Tandem approach [98], is attractive. In this approach, neural

networks are used as feature extractors, as shown in Figure 2.7. Features extracted by the

neural network are appended to the MFCC or PLP features to form the Tandem features,
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which are subsequently modelled by a GMM-HMM system. In this way, most of the adap-

tation techniques developed for the GMM-HMM systems can be also applied to the Tandem

system as well, e.g., [245]. In the initial development of the Tandem approach, neural net-

works were used to classify monophones or monophone state targets [98] and the posteriors

obtained by neural networks are combined with the MFCC or PLP feature. An alternative

form was proposed in [58], where a bottleneck layer is introduced in which neural networks are

constrained to have a narrow hidden layer, the bottleneck layer, in the middle and the linear

output of that layer is taken as output instead of posteriors. It has been demonstrated that

using Tandem feature provides considerable performance gains over MFCC or PLP features

on a number of tasks [58, 189]. On the other hand, many of the techniques recently developed

for DNN acoustic models can be also applied for the Tandem approach. For example, [261]

used a deep neural network to classify context-dependent targets rather than the monophone

targets to improve the bottleneck feature extraction.

As the development of using neural network for speech recognition has just (re-)started,

the remaining part of this thesis will focus on the GMM-HMM systems for speech recognition.

2.3.2 Likelihood Calculation

Likelihood calculation is a basic function when using HMMs. Its aim is to calculate the

likelihood of a sequence of observation vectors O = [o1, · · · ,oT ] being generated according

to the hypothesis H, given the model parameters of HMMs M. If the state sequence ω =

[ω1, · · · , ωT ] is known, the likelihood of the complete data (O,ω) can be easily calculated.

However, as the state sequence is hidden, the required likelihood must be computed as an

expectation over all possible state sequences ω associated with the hypothesis H:

p(O|H,M) =
∑
ω∈H

p(O,ω|M)

=
∑
ω∈H

aω0ω1

∏
t

aωt−1ωtbωt(ot) (2.15)

where ω ∈ H denotes a possible hidden state sequence according to the hypothesis H, model

parameters M includes the initial state distribution, the transition probability aij and the

parameters for the state output distribution. Simply summing over all possible state sequences

is not practical, as the number of paths is an exponential function O(NT ), where N is the

number of states. The forward-backward algorithm [196] is used instead to compute the

likelihood in an efficient way.
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The forward-backward algorithm is based on a factorisation of the likelihood function in

Eq. (2.15) into the forward probability and the backward probability:

p(O|H,M) =
∑
ωT1 ∈H

p(Ot
1|OT

t+1,ω
T
1 )p(OT

t+1,ω
T
1 )

=
∑
ωT1 ∈H

p(Ot
1|ωt1)p(OT

t+1,ω
T
t+1|ωt1)p(ωt1)

=
∑
ωT1 ∈H

p(Ot
1,ω

t
1)p(OT

t+1,ω
T
t+1|ωt)

=
∑
i:ωt=i

∑
ωt−1

1

p(Ot
1,ω

t
1)


∑
ωTt+1

p(OT
t+1,ω

T
t+1|ωt)


=
∑
i:ωt=i

p(Ot
1, ωt = i)p(OT

t+1|ωt = i) (2.16)

Here Ot
1 and ωt1 denote the sequence of observation vectors and hidden states from 1 to time

t, respectively. Note the second equation uses the following conditional independence:

Ot
1 ⊥ (OT

t+1,ω
T
t+1) | ωt (2.17)

and the third equation is based on another conditional independence:

(OT
t+1,ω

T
t+1) ⊥ ωt−1

1 | ωt (2.18)

The forward probability, αt(i) = p(Ot
1, ωt = i), can be calculated recursively using

αt(i) =

N−1∑
j=2

αt−1(j)ajibi(ot) 1 < i < N and 1 ≤ t ≤ T (2.19)

and the initial and final condition:

αt(i) =


1 i = 1 and t = 0
a1ibi(ot) 1 < i < N and t = 1∑N−1

j=2 αT (j)ajN i = N and t = T

(2.20)

In a similar way, the backward probability, βt(i) = p(OT
t+1|ωt = i), can also be computed

using a recursion:

βt(i) =

N−1∑
j=2

βt+1(j)aijbj(ot) 1 < i < N and 1 < t ≤ T − 1 (2.21)

and the initial and final condition:

βt(i) =

{
aiN 1 < i < N and t = T∑N−1

j=2 a1jbj(ot)βt+1(j) i = 1 and t = 1
(2.22)
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The likelihood of the observation sequence can be obtained either from the forward or the

backward probability as:

p(O|H,M) = αT (N) = β1(1) (2.23)

The posterior probability of being at state i at time t, γt(i), can be also calculated by:

γt(i) = p(ωt = i|O,M,H) =
αt(i)βt(i)

αT (N)
(2.24)

Similarly, the transition posterior, ξt(i, j), i.e., the probability of transiting from state i to

state j at time t, χt(i, j), can be expressed as:

χt(i, j) = p(ωt−1 = i, ωt = j|O,H,M) =
αt−1(i)aijbj(ot)βt(j)

αT (N)
(2.25)

These posterior probabilities are useful when estimating the model parameters, which will be

discussed in the following section.

2.3.3 Parameter Estimation

In the previous section, likelihood calculation using a forward-backward algorithm is pre-

sented while the model parameters are assumed to be known. The model parameters need to

be estimated from a set of training data {O(1), · · · ,O(R)} with their associated hypotheses

{H(1), · · · ,H(R)}. The model parameters can be estimated by maximising the likelihood of

training data given their hypotheses. This is referred to as maximum likelihood (ML) train-

ing, which will be presented in section 2.3.3.1. A major limitation of ML training is that ML

training does not consider the competing hypothesis and is not directly related to minimising

the Bayes risk [30, 197]. A number of schemes which estimate model parameters by minimis-

ing different kinds of risk have been investigated in the literature [30, 191, 210, 236]. This is

referred to as discriminative training, which will be discussed in section 2.3.3.2.

2.3.3.1 Maximum Likelihood Training

In maximum-likelihood training, the model parameters M are estimated by maximising the

likelihood function given by

M̂ = arg max
M

∑
r

log p(O(r)|H(r),M) (2.26)

The above equation assumes that there are multiple utterances in the training data. With-

out loss of generality, in the following discussions, the summation over utterances and the

superscript (r) are dropped for the sake of notational convenience.
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Due to the existence of hidden states, directly optimising the above likelihood function

using standard optimisation schemes is difficult. The Expectation Maximisation (EM) algo-

rithm [42] is more efficient for this problem and thus widely used. An implementation of the

EM algorithm for HMM models is also called the Baum-Welch algorithm [16]. In the EM

algorithm, an auxiliary function Q(M;Mk), is defined at the current model parameters Mk

at the k-th iteration. This auxiliary function is a lower bound to the log-likelihood function.

By maximising this lower bound with respect toM, the (k+ 1)-th model parameters,Mk+1,

can be obtained. The new estimate of model parameters is guaranteed not to decrease the

log-likelihood function. The auxiliary function is usually derived by introducing a variational

distribution of the hidden variables q(ω) and using the Jensen’s inequality:

log p(O|H,M) = log

(∑
ω∈H

q(ω)
p(O,ω|H,M)

q(ω)

)
≥
∑
ω∈H

q(ω) log p(O,ω|H,M)−
∑
ω∈H

q(ω) log q(ω) (2.27)

The above inequality becomes an equality when the variational distribution q(ω) is the pos-

terior distribution of hidden variables p(ω|H,M,O). However, it is often difficult to op-

timise M when the posterior distribution p(ω|H,M,O) is directly used. Instead, in the

standard EM algorithm, an iterative procedure is used, where in the k-th iteration, the

current model parameters Mk are used to calculate the posterior of hidden variables, i.e.,

q(ω) = p(ω|H,Mk,O). This yields

log p(O|H,M) ≥
∑
ω∈H

p(ω|H,Mk,O) log p(O,ω|H,M)

−
∑
ω∈H

p(ω|H,Mk,O) log p(ω|H,Mk,O) (2.28)

and

log p(O|H,Mk) =
∑
ω∈H

p(ω|H,Mk,O) log p(O,ω|H,Mk)

−
∑
ω∈H

p(ω|H,Mk,O) log p(ω|H,Mk,O) (2.29)

Therefore, the auxiliary function is defined as the first term in the right side of Eq. (2.28):

Q(M;Mk) =
∑
ω∈H

p(ω|H,Mk,O) log p(O,ω|H,M) (2.30)

Comparing the equations (2.28-2.29), it is obvious that the auxiliary function satisfies the

following attribute:

log p(O|H,M)− log p(O|H,Mk) ≥ Q(M;Mk)−Q(Mk;Mk) (2.31)
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Algorithm 2.1: The EM algorithm.

Initialisation: M←M0 and k = 0
repeat
• k ← k + 1
• E -step:

Compute p(ω|H,Mk−1,O) and form the auxiliary function Q(M;Mk−1);
• M -step:

Update the model parameters by maximising the auxiliary function:

Mk = arg max
M
Q(M;Mk−1)

until Q(Mk;Mk−1)−Q(Mk−1;Mk−1) ≥ ε;

Therefore maximising the auxiliary function Q(M;Mk) with respect toM is guaranteed not

to decrease the log-likelihood.

In summary, the EM algorithm runs iteratively, and in each iteration two steps are per-

formed. In the E-step, the posterior distribution of hidden variables is calculated using the

current model parameters and an auxiliary function is formed in the E-step. In the M-step,

this auxiliary function is maximised and the model parameters are updated. A summary of

the general EM algorithm is illustrated in Algorithm 2.1.

The exact update formulae of model parameters using EM depend on the form of the

model used. For the HMM , the auxiliary function can be expressed as [22]:

Q(M;Mk) =
∑
i,t

γt(i) log bi(ot) +
∑
i,j,t

χt(i, j) log aij (2.32)

where γt(i) and χt(i, j) are the state occupancy posterior probability and the state pairwise

posterior occupancy defined in Eq. (2.24) and Eq. (2.25) respectively. The optimal estimate

of the state transition probability can be obtained by:

âij =

∑T
t=2 χt(i, j)∑T
t=1 γt(i)

(2.33)

and the estimate of state transition probability of non-emitting states is given by:

âij =

{
γ1(j) i = 1 1 < j < N
γT (i)∑T
t=1 γt(i)

1 < i < N j = N
(2.34)

When a GMM is used as the state output distribution, Gaussian mixture components can

be regarded as another level of hidden variables. The posterior probability that ot belongs to

the state j and component m, γt(j,m), is given by:

γt(j,m) = γt(j)
cjmN (ot;µ

(jm),Σ(jm))

bj(ot)
(2.35)
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where bj(ot) is the state output distribution defined in Eq. (2.12). The re-estimation formulae

for the parameters of the GMM at state j and component m are thus given by:

ĉjm =

∑
t γt(j,m)∑
m,t γt(j,m)

(2.36)

µ̂(jm) =

∑
t γt(j,m)ot∑
t γt(j,m)

(2.37)

Σ̂(jm) = diag

(∑
t γt(j,m)(ot − µ̂(jm))(ot − µ̂(jm))T∑

t γt(j,m)

)
(2.38)

As only the mean and the diagonal covariance matrix of each distinct Gaussian component

are of interest in this thesis, a new notation, θ = [θ1, · · · , θT ] is introduced to denote the

hidden Gaussian component sequence. Now, θt denotes the distinct Gaussian component at

time t, and m will be used to denote the index of each distinct Gaussian component. Using

this notation, the likelihood calculation can be re-expressed as:

p(O|H,M) =
∑
θ

p(O,θ|H,M)

=
∑
θ

p(θ|H,M)
∏
t

p(ot|M, θt) (2.39)

and a component level auxiliary function can be also written as:

Q(M;Mk) = −1

2

∑
t,m

γ
(m)
t

{
log |Σ(m)|+ (ot − µ(m))TΣ(m)−1(ot − µ(m))

}
(2.40)

where γ
(m)
t is the m-th component occupancy at time t, calculated using the current model

parameters Mk.

2.3.3.2 Discriminative Training

ML training of HMMs maximises the likelihood of the data for the given reference hypothesis.

However, this does not guarantee that the likelihood of data for the competing hypotheses

is also minimised. Rather than maximising the likelihood of training data for the reference

hypothesis, discriminative training will consider the posterior probability of the reference

hypothesis and explicitly consider the recognition accuracy metric. A number of discrimi-

native criteria have been proposed and investigated in the past, e.g., [170, 184, 191, 210].

It has been demonstrated that discriminative training provides consistent performance gains

over ML training and is widely used in the state-of-the-art speech recognition systems. The

following will briefly present some of the most widely used criteria.
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• Maximum Mutual Information (MMI):

In MMI training [30, 184, 236], the posterior probability of the correct hypothesis for

the given training data is maximised, i.e.,

Fmmi(M) =
∑
r

logP (H(r)|O(r),M)

≈
∑
r

log
p(O(r)|H(r),M)κp(H(r))∑
Ȟ∈H p(O

(r)|Ȟ,M)κp(Ȟ)
(2.41)

where O(r) and H(r) are the r-th observation sequence and associated hypothesis re-

spectively, and H represents all the possible hypothesis or the denominator hypothesis.

The scaling factor κ is used to smooth the posterior probability of correct hypothesis

to improve discriminative training’s generalization [255]. It is usually set as the in-

verse of the language model scaling factor normally used in decoding. The denominator

hypothesis H is usually approximated by N-Best list [211] or lattices [255]. Since a

lattice is a more compact representation of competing hypothesis, it is widely used in

discriminative training.

An interesting variant of MMI is the boosted MMI criterion proposed in [193]. Instead

of maximising the posterior probability of the correct hypothesis in MMI training, the

boosted MMI training is designed to maximise the following criterion:

Fbmmi(M) =
∑
r

log
p(O(r)|H(r),M)κp(H(r))∑

Ȟ p(O
(r)|Ȟ,M)κp(Ȟ) exp(−bR(Ȟ,H(r)))

(2.42)

where R(Ȟ,H(r)) is the risk or cost associated with assigning recognition output Ȟ
while the ground truth is H(r), b is a control parameter. exp(−bR(Ȟ,H(r))) is a boost-

ing factor which increases the likelihood of hypotheses with more errors; therefore it

improves the generalization of MMI training. The boosted MMI criterion can be also

viewed as imposing a soft margin which is proportional to the number of errors in a

hypothesis [93].

• Minimum Classification Error (MCE):

In MCE training [116], the classification error is minimised. This gives the following

criterion:

Fmce(M) =
∑
r

f

(
log

p(O(r)|H(r),M)κp(H(r))

p(O(r)|Ȟ(r),M)κp(Ȟ(r))

)
(2.43)

where f(·) is the sigmoid function:

f(z) =
1

1 + exp(−γz)
(2.44)
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with γ being a tuning parameter, and Ȟ(r) is the best competing hypothesis for the

r-th utterance. The denominator is usually approximated by a soft-max over N best

hypotheses:

p(O(r)|Ȟ(r),M)κp(Ȟ(r)) ≈ 1

η
log

 1

N

∑
H6=H(r)

(
p(O(r)|H,M)κp(H)

)η (2.45)

where the summation is over the top N best hypotheses, excluding the correct hypoth-

esis. The scaling factor η is used to consider more confusing patterns during training.

When the competing hypotheses are represented in a lattice form, it is difficult to ex-

clude the correct hypothesis from the denominator lattices. Some heuristics have been

proposed to tackle this problem, e.g., [210].

• Minimum Bayes Risk (MBR):

In MMI and MCE training, the risk related to the sentence error rate is minimised.

This can be illustrated that the same risk is associated with one incorrect hypothesis,

regardless how many errors are made in the incorrect hypothesis. However, in speech

recognition, the ultimate goal is to minimise the word error rate (WER). The MBR

criterion considers more general error metrics in the objective function. The Bayesian

risk or expected loss can be expressed by:

Lmbr(M) =
∑
r

∑
H
P (H|M,O(r))R(H,H(r)) (2.46)

where R(H,H(r)) computes the risk or cost between the hypothesis H and the reference

hypothesis H(r). When this loss function computes the WER between H and H(r), this

becomes the minimum word error (MWE) criterion [192]. When the loss function is

defined as phone error rate between two hypothesis, this becomes the popular minimum

phone error (MPE) criterion [191]. Calculation of either word or phone error rate

involves aligning the hypothesis with the reference, which is time consuming when the

alternative hypotheses are represented by lattices. A heuristic measure has been used

to approximate the loss function using a local error measure, which removes the need

for alignment [191].

Parameter estimation under these discriminative criteria have been extensively investi-

gated in the past [94, 115]. As the discriminative criteria involves the competing hypotheses,

the estimation algorithm is much more complicated that the ML training algorithm. The

extended Baum-Welch (EBW) algorithm and its extensions [85, 184] are widely used. For

complex criteria, such as MPE, the estimated model parameters are usually interpolated with
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the ML or MMI-trained models to avoid over-training. There are several overview papers

summarizing the status and progress in discriminative training, e.g., [94, 115].

2.4 Recognition of Speech Using HMMs

The above sections briefly reviewed the HMMs and the associated parameter estimation

algorithms. This section will discuss techniques used to find the most likely hypothesis using

HMMs. This is also known as the decoding problem. The aim of decoding is to find the

best hypothesis given the observed acoustic data. The search follows the Bayesian decision

rule: the recognised word sequence Ĥ is the one gives the highest posterior probability after

observing the acoustic vectors O, i.e.,

Ĥ = arg max
H

P (H|O,M) . (2.47)

Using Bayes’ rule, this is achieved by

Ĥ = arg max
H

p(O|H,M)P (H)

= arg max
H
{log p(O|H,M) + log p(H)} (2.48)

where log p(O|H,M) is the log-likelihood of the observation sequence O given the acoustic

model M and word hypothesis H, which is also referred to as the acoustic score; logP (H)

is the prior probability of the hypothesis, or the language score, calculated using a language

model. The combination of the acoustic score with the language score gives the overall score.

Recognition of speech is done by searching the best hypothesis with the maximum overall

score.

2.4.1 Language Modelling

The language model is a discrete probability model, defined on strings of all allowable symbols.

Let H = (W1, · · · ,WK). The probability of H can be factorised into a product of conditional

probabilities:

P (H) =

K∏
k=1

P (Wk|Wk−1, · · · ,W1) (2.49)

Assuming the word sequences have the n-order Markovian properties [167], the probability

of each conditional probability is approximated by

P (Wk|Wk−1, · · · ,W1) ≈ P (Wk|Wk−1, · · · ,Wk−n+1) . (2.50)
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and the probability of the given hypothesis can be expressed by

P (H) =

K∏
k=1

P (Wk|Wk−1, · · · ,Wk−n+1) (2.51)

This is referred to as the n-gram language model.

The ML estimation of probability of wordWk given its history up to n−1 previous words

is given by

P (Wk|Wk−1, · · · ,Wk−n+1) =
f(Wk,Wk−1, · · · ,Wk−n+1)∑
W f(W,Wk−1, · · · ,Wk−n+1)

, (2.52)

where f(Wk,Wk−1, · · · ,Wk−n+1) denotes the frequency count of the n-gram word sequence in

the training text data. However, to get a robust estimate of these conditional probabilities, a

good coverage of all possible n-grams is needed. For a large vocabulary system, some n-grams

are rarely seen, even for a large text corpus. As a consequence, smoothing of the conditional

probabilities is necessary. These smoothing schemes can be divided into the following three

categories:

• Discounting

When ML estimation is used, if some n-grams are unobserved in the training data, then

the conditional probabilities of those n-grams will become 0. To solve this problem, a

certain amount of overall probability mass is allocated to the unseen n-grams. The ratio

of re-allocated probabilities to the overall probabilities is controlled by a discounting

factor. Popularly used discounting approaches include Good-Turing discounting[84,

124], Kneser-Ney smoothing [131], and absolute discounting[182].

• Back-off

Back-off is to make use of shorter histories instead of assigning probabilities mass to

the unseen (thus less likely) n-grams in the above discounting approaches. The back-off

strategy can be applied recursively. For example, a 4-gram distribution can be backed-

off to tri-gram, bi-gram or uni-gram distributions.

• Interpolation

High-order n-gram language models can be interpolated with low-order n-gram language

models to construct a more reliable estimation. Similarly, several language models

estimated using different sources of text data can be interpolated. The interpolation

weights are often tuned on a separate held-out dataset.
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Though generative language models discussed above have been widely used, discriminative

language models, such as neural network language models (NNLMs) [19] and recurrent neural

network language models (RNNLMs) [171] have recently gained more and more attention. In

the neural network language model (NNLM), each word {Wk−i : i = 1, · · · , n− 1} is mapped

to a vector wi in a continuous space. Give these word embedding vectors [w1, · · · ,wn−1]

, a feed-forward neural network is used to predicate the posterior probability of Wk. In

the recurrent neural network language model, a recurrent connection is added between the

input layer and the hidden layers [171]. Due to this recurrent connection, RNNLMs are

able to model long-term dependency. Since neural network based language models are still

being developed, this thesis will use the well-developed n-gram language models in all the

experiments.

2.4.2 Decoding

Decoding is to search for the best path that gives the highest likelihood. This is achieved by

the decoding algorithm [240]. As demonstrated in Figure 2.1, there are three main components

used in the decoding algorithm: the acoustic model based on HMMs which gives the acoustic

score of the observation sequence given a phone sequence, the lexicon which specifies how

a word sequence is composed by individual phones and the language model which gives

the probability of a word sequence. Moreover, a word Wk may have more than one phone

representation because of the multiple pronunciation variants; meanwhile, a sequence of HMM

phone models may have more than one possible state sequences. Hence, the Eq. (2.48) can

be expanded as a multiple level marginalisation expressed in the following equation:

Ĥ = arg max
H

P (H)
∑
φ∈H

P (φ|H)
∑
ω∈φ

p(O,ω|φ)

 (2.53)

where φ is a possible phone sequence of the hypothesis H and ω is an allowable state sequence

of the phone sequence φ; P (φ|H) is a pronunciation model [88]; P (H) and p(O,ω|φ) are the

language and the acoustic scores respectively. To avoid an infeasible computational cost

for direct evaluation of all possible phone and state sequences in Eq. (2.53), the Viterbi

approximation [240] is used, in which the summation over possible paths is approximated by

a maximum:

Ĥ ≈ arg max
H

{
P (H) max

φ∈H
P (φ|H) max

ω∈φ
p(O,ω|φ)

}
(2.54)

The Viterbi algorithm [240] can be used to calculate the likelihood of the best state

sequence within an HMM or a given HMMs sequence. For example, to find the best state
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sequence ω̂ for an observation sequence O = [o1, · · · ,oT ], a partial best-path score φj(t) is

defined as:

φj(t) = max
ω1,··· ,ωt−1

p(o1, · · · ,ot, ω1, · · · , ωt = j) (2.55)

This partial best-path score can be recursively calculated by

φj(t) = max
i
{φi(t− 1)aij} bj(ot) 1 < j < N, 1 ≤ t < T (2.56)

ϕj(t) = arg max
i
{φi(t− 1)aij} (2.57)

with an initialisation

φ1(0) = 1 (2.58)

φj(1) = a1jbj(ot) (2.59)

where N is the number of states in the given HMM sequence; ϕj(t) stores the best previous

state for a partial path ending at state j at time t. The likelihood of the best path is given by

φN (T ), while the best state sequence (s1, · · · , sT ) can be retrieved by the following recursion:

sT = N (2.60)

st = ϕst+1(t+ 1), t = T − 1, · · · , 1 (2.61)

The Viterbi algorithm can be also extended to continuous speech recognition. An im-

plementation of this algorithm is known as the token passing algorithm [181, 260]. In this

algorithm, each state has one or more tokens at each time instance. Each token carries a word-

end link and the value of the partial path it represents. When multiple tokens are merged at

the same node, only the most likely token is propagated. When a token is propagated through

an arc linking two words, the word-end link is updated to record the last word. At the end

of an utterance, the most likely sequence of words can be traced back using the word-end

link of the token with the highest score. By propagating not only the best token but also a

few tokens with top scores at every node, it is also possible to generate N -best hypotheses

or word lattices [185]. The multiple hypotheses can be recovered by retrieving the history of

tokens which arrive at the end of an utterance. Though it will not generate the exact n-best

search paths, as it implicitly assumes the start time of each word is independent of all words

before [228], it is a reasonable approximation and can be implemented very efficiently.

The complexity of the decoding network can be considerably increased when a high order

n-gram language model is used. This is because tokens can only be merged when its n-1

previous words are identical as the word probability depends on the word history in the
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language model. To reduce the decoding complexity, unpromising tokens, whose scores are

below a certain threshold or beam-width below the current best score, can be removed. This is

referred to as pruning [181]. However, if the beam-width is too tight, the most likely path may

be pruned at an early stage, resulting in search errors. Therefore, the beam-width is often

set to balance the computational cost and the search errors. A review of decoding algorithms

can be found in [181].

There are also a number of practical issues in decoding. For instance, the acoustic score

and the language score have different dynamic ranges: the language score is often much

smaller than the acoustic score. To handle this problem, the language scores are often scaled

up. The scaling factor is often empirically set for a particular task. Similarly the pronunciation

probability can be also scaled using a separate scaling factor. Another issue is the use of a

word insertion penalty to avoid recognition errors from a number of short words. With these

techniques, the most probable hypothesis is searched by

Ĥ = arg max
H

{
α logP (H) + β log max

φ∈H
P (φ|H) + log max

ω∈φ
p(O,ω|φ) + γLH

}
(2.62)

where α is the language scaling factor, β is the pronunciation probability scaling factor, γ is

the insertion penalty, and LH is the length of the word sequence H.

2.4.3 Evaluation

The quality of an ASR system on a particular task is often measured by comparing the hy-

pothesised transcriptions and reference transcriptions. Word error rate (WER) is the most

widely used metric. The two word sequences (hypothesis and reference) are aligned using a

dynamic programming-based string alignment algorithm [168]. After the alignment, the num-

ber of deletions (D), substitutions (S), and insertions (I) can be determined. The deletions,

substitutions and insertions are all considered as errors, and the WER is calculated by the

rate of the number of errors to the number of words (N) in the reference, i.e.,

WER =
S + I + D

N
× 100% (2.63)

WERs are used to measure the quality of ASR systems throughout this thesis.

In some scenarios, it is interesting to compare the quality of two ASR systems. Apart from

comparing the WERs of each ASR system, it is also possible to perform a significance test to

determine whether the system with a lower WER is statistically better than the other system.

The matched-pairs significant test [82] is widely used in the speech processing community. It

will be also used in this thesis.
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2.5 Summary

This chapter has reviewed the basic concepts and fundamental of speech recognition using

hidden Markov models (HMMs). An overview of speech recognition systems is first presented.

Front-end processing of speech signals are discussed. This is followed by an introduction of

HMM for acoustic modelling, including the basic concept of HMMs, the choice of acoustic

units and the state output distributions, and the likelihood calculation. Maximum likelihood

(ML) estimation of model parameters using the EM algorithm is presented. To overcome the

limitations of the ML criterion, discriminative training has been discussed. A review of using

HMMs in recognition is also given. The concept of n-gram language models is presented.

With the acoustic model and the language models, the Viterbi algorithm is used to search for

the best hypothesis. Some practical issues in decoding are also discussed.



CHAPTER 3
Acoustic Model
Adaptation and

Robustness

Statistical algorithms which are used to model speech variability for speech recognition have

been discussed in Chapter 2. Speech variability will be referred to as intrinsic or desired

variability in this thesis. A fundamental assumption underlying the statistical approaches

discussed in the previous chapter is that the training and testing data are sampled from the

same distribution. However, this assumption is poor in real-life scenarios where speech signals

can exhibit not only intrinsic variability but also extrinsic variabilities. Here the extrinsic

variabilities stand for the variabilities caused by various acoustic factors, for example, speaker

differences, transmission channels and background noise. These acoustic factors may change

during test, which results in mismatches between training and testing conditions. To combat

this problem, there has been a great amount of research aiming to improve model robustness

against distortions caused by various acoustic factors, e.g., [71, 83, 143, 254]. In particular,

approaches developed to adapt speech recognition systems to specific speakers are often known

as speaker adaptation [254], while approaches designed to compensate for environmental effects

33
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are referred to as environmental robustness [4]. These approaches seek to either normalise

features (referred to as feature-based approaches) or transform acoustic models (referred to as

model-based approaches) towards target acoustic conditions. This chapter will review both

speaker adaptation (in section 3.2) and environmental robustness (in section 3.3) techniques

with a focus on model-based approaches. Note that speaker adaptation techniques are usually

referred to as adaptation schemes while environment robustness techniques are commonly

called as compensation schemes in the literature. However these approaches have become

similar in recent years and share many of the same attributes. Therefore, they will be used in

this thesis interchangeably. Besides adaptation schemes which are designed to adapt acoustic

models to the target conditions, an adaptive training framework [9] can be also used to build

acoustic models on found data. The challenge of building acoustic models on found data is

that these data exhibit a broad range of variabilities. With this adaptive training framework,

generic acoustic models can be effectively built to accommodate the wide range of variabilities

in found data. This framework will be presented and discussed in section 3.4.

3.1 Adaptation in Speech Recognition

As discussed at the beginning of this chapter, speech signals can be distorted by a variety

of acoustic factors. As a result, it is possible to associate a set of acoustic factors, such as

speaker or environment tags 1 with a spoken utterance. Utterances with the same acoustic

factors can then be grouped together as they are in the same acoustic condition. An important

assumption in adaptation is that the extrinsic variabilities for a particular acoustic condition

have the same statistical properties, and adaptation must be performed for each homogeneous

data block separately. In practice, incoming test data are often non-homogeneous and it is

necessary to first cluster the test data into homogeneous blocks. For some applications, such

as broadcast news transcription, there is no information that can be directly used to partition

the input data. For these applications, automatic segmentation and clustering methods have

been developed to partition test data into homogeneous block [226, 234, 235]. For some other

applications, there is partial information associated with the input data which can be used

for segmentation and clustering. For instance, in voice search applications, it is feasible to

identify which user makes the query; in conversational telephone speech (CTS) tasks, the

speech signals are often split into speaker sides. Automatic clustering methods, e.g.[219], are

still needed in these applications to determine the partition according to additional acoustic

factors, such as the environment. In this thesis, as the focus is on adaptation schemes, it

1In this thesis, it is assumed that acoustic factors are stationary within the same utterance.
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Step 1: Adaptation

Step 2: Recognition

The n-th homogeneous data block The (n+ 1)-th homogeneous data block

Estimate
Transform

Estimate
Transform

Apply
Transform

Apply
Transform

Decoding Decoding

Hypothesis for block n Hypothesis for block n+ 1

Transform for block n Transform for block n+ 1

Figure 3.1: A two-step adaptation and recognition process applied on two homogeneous data
blocks within the adaptation framework.

is assumed that input data have already been segmented into homogeneous blocks and the

underlying acoustic factors associated with these blocks have already been labelled.

Once the test data are split into homogeneous blocks, a two-step procedure, illustrated in

Figure 3.1, is used in recognition within the adaptation framework. In the first step, features

or acoustic models are transformed for each block. In most adaptation schemes, the transform

parameters need to be estimated during the test stage. These parameters are often estimated

on the adaptation data sampled from the same test acoustic condition. The transformed

features or acoustic models are subsequently used in the second step to recognise the data

from the same acoustic condition.

Depending on how the transform is estimated and applied, there are several adaptation

modes:

• Off-line and online adaptation: in off-line adaptation, all the adaptation data is assumed

to be available at once. Transforms are estimated and applied before recognition on test

data start coming in. As adaptation data comes in bulk, this is also referred to as static

or batch adaptation. In online adaptation mode, recognition systems must start to

produce transcription before all the adaptation data is available and adaptation data

comes in stages. In this scenario, adaptation is often performed in an incremental

fashion, in which information about acoustic factors are estimated in one stage and
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propagated into the next stage [264]. Compared with batch-mode adaptation, this

incremental adaptation is able to track slowly changing acoustic conditions.

• supervised and unsupervised adaptation: depending on whether the the correct transcrip-

tion corresponding to the adaptation data is available, adaptation can be performed in

a supervised or unsupervised mode. In supervised adaptation, the correct transcription

is available, and the quality of adaptation depends on the amount of supervision data.

A typical scenario where supervised adaptation can be performed is when a user enrolls

himself or herself (e.g., read some sentences according to the prompts given by the sys-

tem) before using speech recognition systems. As supervised adaptation often requires

this additional step, unsupervised adaptation is more widely used in practice. In this

scenario, the supervision transcription must be derived from the recogniser output. In

this case, the quality of adaptation depends not only on the amount of adaptation data,

but also the quality of recognised hypothesis. When the recognised hypothesis contains

errors, the adapted systems will be biased towards the erroneous hypothesis, which de-

grades recognition performance. A comparison between supervised and unsupervised

adaptation is illustrated in Figure 3.2.

Supervision
Transcription

Estimate Transform

Apply Transform

Decoding

test
data

adaptation
data

(a) Supervised adaptation

Decoding

Estimate Transform

Apply Transform

Decoding

supervision
hypothesis

test
data

adaptation
data

(b) Unsupervised adaptation

Figure 3.2: Supervised and unsupervised adaptation

Adaption can be performed by model-based approaches or feature-based approaches or a

combination of both [207]. Model-based approaches modify the parameters of acoustic models

so that the adapted models better reflect the target, test, condition. Feature-based approaches

are used to normalise acoustic features such that the mismatch between training and the target

testing conditions can be reduced. Model-based approaches are generally more powerful than
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feature-based approaches as they have more modelling power to represent acoustic variations

and can take uncertainty caused by those variations into account [71]. On the other hand,

feature-based approaches are usually computationally cheap and require few changes to the

decoder. This thesis will focus on the model-based adaptation approaches.

3.2 Speaker Adaptation

The difference in speaker characteristics is one of the major factors which contributes to the

variabilities of speech signals. Even for the same word uttered by different speakers, significant

variations can be perceived. These variations are often related to the speakers’ voice, age,

gender, dialect, emotion speaking rate and style [109].

It is observed that there are large variations in recognition performance among different

speakers. For instance, recognition on speech uttered by non-native speakers[109] often yields

a high error rate, due to the mismatch between training and test conditions. Recognition

accuracies can be improved using various schemes. For example, it is possible to train a

gender dependent (GD) system [256], where male and female speakers are recognised by the

acoustic models according to their gender; it is also found that a speaker dependent (SD)

system in which each speaker has his or her own acoustic model performs better than a

speaker-independent (SI) system, provided that there is enough data to train the acoustic

models for each speaker [254]. However, in practice, it is not feasible to collect enough data

for every speaker to train such a SD system. Instead, a speaker adapted (SA) system is

usually used [110], where a well-trained acoustic model is adapted to each speaker using a

small amount of speaker specific data. This will be referred to as speaker adaptation.

A number of speaker adaptation techniques have been developed, e.g., [67, 70, 74, 79, 148].

These techniques can be grouped into three families: maximum a posterior (MAP) adaptation

[79], linear transform-based adaptation [67, 74, 148] and speaker cluster-based adaptation [70]

or eigenvoices [183]. They will be briefly reviewed in the following.

3.2.1 Maximum a Posterior Adaptation

As adaptation data can be also viewed as additional training data, the simplest adaptation

method is to perform additional ML re-estimation iterations. However, this is problematic

as the amount of adaptation data is often small, compared with the number of re-estimated

parameters. Bayesian methods [21] can be used to tackle the data sparsity problem. In

the Bayesian schemes such as [111, 248], the model parameters M are treated as random

parameters with a prior probability p(M|Θ), where Θ is a set of hyper-parameters. Upon
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the observation of adaptation data O and the associated supervision transcription H, the

prior probability p(M|Θ) is updated to a posterior probability p(M|O,H). The likelihood

of test data O′ for a hypothesis H′ is given by marginalising over M, i.e.,

p(O′|O,H′) =

∫
p(M|O,H)p(O′|M,H′) dM (3.1)

A limitation of these Bayesian methods is that the marginalisation in Eq. (3.1) is normally

computationally expensive. Instead of considering all possible model parameters, maximum

a posterior (MAP) estimation has been proposed in [79], in which a point estimate of model

parameters, the MAP estimator, is used. The MAP estimation of model parameters is given

by:

Mmap = arg max
M
{p(M|O,H} = arg max

M
{p(O|M,H)p(M|Θ)} (3.2)

It is important to choose an appropriate prior distribution in MAP. For mathematical

convenience, a conjugate prior is often selected as the posterior probability is in the same

form as the prior probability. Due to the hidden variables in HMMs, a finite dimensional

conjugate prior to the likelihood of observations does not exist [132]. Instead, independence

between the Gaussian components’ parameters is assumed. In this case, conjugate priors

to the likelihood function of the complete dataset can be obtained. In continuous density

GMM-HMMs, the conjugate prior for each individual Gaussian component N (µ(m),Σ(m)), is

given by the Normal-Wishart distribution [251]:

p(µ(m),Σ(m)|Θ) ∝ |Σ(m)|−0.5(α(m)−D) exp

(
−1

2
tr(R(m)Σ(m)−1)

)
× exp

(
−τ

(m)

2
(µ(m) −m(m))TΣ(m)−1(µ(m) −m(m))

)
(3.3)

where D is the dimensional of observation vector, Θ = {α(m), τ (m),R(m),m(m)} is the set of

hyper-parameters and α(m) > D − 1, τ (e > 0. The hyper-parameters can be obtained from

subjective knowledge of the underlying stochastic process, following the subjective Bayesian

principle [194]. However in many cases this knowledge is not available. The empirical Bayesian

approach [200, 201] can be used to estimate the hyper-parameters by maximising the marginal

likelihood of training data, i.e.

Θ∗ = arg max
Θ

p(O|H) = arg max
Θ

∫
p(O|H,M)p(M|Θ) dM (3.4)

As the maximising the marginal likelihood of observations is hard due to hidden variables in

HMMs, various approximation methods (e.g., variational Bayes [17, 179, 248]) can be used.
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After the prior probability is fully specified, MAP estimation can be obtained in a similar

way as the ML estimation, using the EM algorithm. The auxiliary function of MAP estimation

is obtained by adding the prior term to the auxiliary function of ML estimation, i.e.:

Q(M;M̂) = log p(M|Θ)− 1

2

∑
t,m

γ
(m)
t

{
log |Σ(m)|+ (ot − µ(m))TΣ(m)−1(ot − µ(m))

}
(3.5)

where M̂ are the current model parameters, M are the new estimate of model parameters;

γ
(m)
t is the ML posterior occupancy of t-th observation vector, ot, in component m, which is

obtained using M̂. The MAP estimation of a mean vector is thus given by:

µ(m) =

∑
t γ

(m)
t ot∑

t γ
(m)
t + τ (m)

+
τ (m)m(m)∑
t γ

(m)
t + τ (m)

(3.6)

where τ (m) and m(m) are the hyper-parameters. It can be observed from Eq. (3.6) that the

adapted model parameters are obtained by interpolating the mean of the prior probability

and the sufficient statistics of observed adaptation data. When there is only a small amount

of adaptation data available for component m, the adapted mean vector is close to the mean

of the prior distribution. As more data becomes available, the MAP estimation of a mean

vector tends towards its ML estimator. The MAP estimator will asymptotically converge to

the ML estimator when the quantity of data approaches infinity.

One limitation of MAP adaptation can also be seen from Eq. (3.6). MAP adaptation

only updates the Gaussian components which are observed in the adaptation data. As many

Gaussian components are used in a typical large vocabulary speech recognition, most of the

Gaussian components will be unobserved when only a small amount of adaptation data is

used. Standard MAP adaptation requires a considerable amount of adaptation data to up-

date all the parameters; therefore the adaptation is usually slow and not suitable for rapid

adaptation. Extensions of MAP have been proposed to tackle this issue using different meth-

ods. For example, regression based model prediction (RMP)[7] first finds the linear regression

relationship between HMM parameters and then uses this relationship to update rarely ob-

served, or unobserved, Gaussian components. Alternatively, structured MAP (SMAP) [223]

arranges all the Gaussian components in a tree structure. A mean offset and a diagonal co-

variance scaling vector are recursively computed for each layer of the tree, starting from the

root node down to a leaf node. At each node, the distribution from its parent node is used

as a prior. It is shown that in practice SMAP converges to the standard MAP performance

when a sufficient amount of adaptation data is available and it gives better performance than

MAP when only a limited amount of data is used [223].
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3.2.2 Linear Transform-based Speaker Adaptation

The standard MAP scheme may be viewed as a “local” approach to adaptation, where model

parameters are usually separately adapted. This approach may give good recognition perfor-

mance when there is a sufficient amount of data, but it leads to slow adaptation speed. In con-

trast to this local approach, linear transform-based adaptation schemes use linear transforms

to adapt a large amount, sometimes all the, Gaussian components. By sharing linear trans-

forms between many Gaussian components, these schemes are able to adapt both observed

and unobserved Gaussian components, which improves adaptation speed. Additionally, using

the same linear transforms for a large number of Gaussian components is relatively robust to

the errors in supervision hypothesis. This is suitable for unsupervised adaptation.

There is some flexibility in the form of linear transforms. When adaptation data is limited,

linear transform can be performed in a translation form (or scaling for variances) using bias

vectors (or scaling vectors), e.g., [207]. When a small amount of adaptation data is available,

a diagonal transform with a bias term(e.g., [49, 125]) can be used. When there is a sufficient

amount of data, a more powerful transform with a full matrix can be used. The linear trans-

form with a full matrix can model the change of correlations. A block diagonal transform is a

trade-off between modelling power and data requirement, in which the correlations between

certain parts of a vector is assumed to be unchanged. For example, in a system that uses

static, delta and delta-delta cesptral coefficients, separate linear transforms can be performed

for these three parts of features. This is expressed in the following form of a block diagonal

matrix:

A =

 As 0 0
0 A∆ 0
0 0 A∆2

 (3.7)

where As, A∆ and A∆2 are the matrices for static, delta and delta-delta coefficients respec-

tively. It is also possible to control the complexity of linear transforms by sharing the linear

transforms among different Gaussian components. This is usually done by using a regression

tree, which will be presented in section 3.2.4.

Depending on how the linear transforms modify the model parameters (mean and/or

variance) or the observation vectors, various schemes have been developed. Some of the most

popular forms are described in the following. For convenience, it is assumed that a full matrix

transform is used and all the Gaussian components share the same linear transform.

3.2.2.1 Maximum Likelihood Linear Regression (MLLR)

MLLR was originally designed to adapt the mean vectors [148] and was extended to variance

adaptation [67, 74] later. In this thesis, the term “MLLR” is used to refer to only mean
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MLLR. In MLLR, the mean vector of m-th Gaussian component, µ(m), is adapted in the

following form:

µ̂(m) = Aµ(m) + b(m) = Wξ(m) (3.8)

where µ̂(m) is adapted mean vector, W = [A, b] is the linear transform, and ξ(m) = [µ(m)T, 1]T

is the extended mean vector.

MLLR transforms are estimated by maximising the likelihood of adaptation data as

Ŵ = arg max
W
{log p(O|H;M,W} (3.9)

In EM, this optimisation is achieved by maximising the following auxiliary function [148]:

Q(Ŵ; W,M) = K +
∑
m,t

γ
(m)
t logN (ot; Ŵξ(m),Σ(m)) (3.10)

where W and Ŵ are the current and new estimate of the linear transform respectively; γ
(m)
t

is the occupancy probability of component m at time t, calculated using the acoustic model

M and W; K is a constant term independent of Ŵ. By rearranging terms relevant with Ŵ,

Eq. (3.10) can be written in the following form:

Q(Ŵ; W,M) = −1

2
tr

(∑
t,m

γ
(m)
t ŴTΣ(m)−1Ŵξ(m)ξ(m)T

)
+ tr

(
Ŵ
∑
t,m

ξ(m)oTt Σ(m)−1

)
(3.11)

Differentiating the above auxiliary function with respect to Ŵ and equating to zero yields:∑
t,m

γ
(m)
t Σ(m)−1Ŵξ(m)ξ(m)T =

∑
t,m

γ
(m)
t Σ(m)−1otξ

(m)T (3.12)

For a non-diagonal covariance matrix, the linear transform which maximises the above aux-

iliary function is given by [67]:

vec(Ŵ) = G−1 · vec(K) (3.13)

where vec(W) denotes the vectorisation of the matrix W formed by stacking the columns

vector into a single column vector, and

G =
∑
t,m

γ
(m)
t

(
(ξ(m)ξ(m)T)⊗Σ(m)−1

)
(3.14)

K =
∑
t,m

γ
(m)
t Σ(m)−1ot ξ

(m)T (3.15)
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⊗ is the Kronecker product. Solving this linear equation requires inverting a D(D + 1)-

by-D(D + 1) matrix where D is the dimension of feature vectors. This is computationally

expensive. Instead, a row-by-row method can be used to iteratively optimise each row vector

of Ŵ in an iterative manner [225].

In standard GMM-HMM models, the Gaussian covariance matrices Σ(m) are usually as-

sumed to be diagonal, i.e., Σ(m) = diag(· · · , σ(m)2
d , · · · ). This diagonal covariance matrix

structure will largely simplify the estimation. Let ŵT
d be the d-th row vector of Ŵ. The ML

estimate of ŵT
d is given by:

ŵT
d = kT

dG−1
d (3.16)

where

Gd =
∑
t,m

γ
(m)
t

σ
(m)2
d

ξ(m)ξ(m)T (3.17)

kd =
∑
t,m

γ
(m)
t ot,d

σ
(m)2
d

ξ(m)T (3.18)

σ
(m)2
d is the d-th diagonal element of Σ(m) and ot,d is the d-th element of ot.

3.2.2.2 Variance MLLR

To further improve performance, the covariance matrices of Gaussian components can be also

adapted using linear transforms. This will be referred to as variance MLLR. One form of

variance MLLR is given in [74], where the covariance matrix Σ(m) is adapted by:

Σ̂(m) = L(m)THL(m) (3.19)

Here, L(m) is obtained by Cholesky factorisation of Σ(m), i.e.,

L(m)L(m)T = Σ(m) (3.20)

and H is the linear transform used to adapt the covariance matrices. An EM algorithm is

developed to estimate this linear transform [74]. One limitation of this adaptation form is that

the adapted covariance matrix is a full matrix, which increases the computational complexity

of likelihood calculation after adaptation. An alternative form is proposed in [67] to solve

this problem. The covariance matrix is adapted using the following form in [67]:

Σ̂(m) = HΣ(m)HT (3.21)
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where H is the linear transform. The advantage of this form is that the Gaussian component

likelihood can be calculated in a very efficient way as

log p(ot|m) = logN (ot;µ
(m), Σ̂(m)) = logN (H−1ot; H

−1µ(m),Σ(m))− 1

2
log(|H|2) (3.22)

where |H| denotes the absolute value of determinant of H. This adaptation form only involves

transforming the mean and observation vector and the likelihood calculation can de performed

using the original diagonal covariance matrix. An EM algorithm is also developed in [67] to

ML estimate H.

3.2.2.3 Constrained MLLR (CMLLR)

The above mean and covariance adaptation can be combined, yielding the following form for

likelihood calculation for the m-th Gaussian component:

log p(ot|m) = logN (ot; Ãµ
(m) + b̃,HΣ(m)HT)

= logN (H−1ot −H−1b̃; H−1Ãµ(m),Σ(m))− 1

2
log(|H|2) (3.23)

where [Ã, b̃] is the mean MLLR transform, and H is the variance MLLR transform. Con-

strained MLLR (CMLLR)[50, 67] is a special form of the above mean and variance MLLR

adaptation, where the same linear transform is used for mean and variance transform, i.e.,

Ã = H. This results in a computationally more efficient form of likelihood calculation:

log p(ot|m) = logN (ôt;µ
(m),Σ(m)) +

1

2
log(|A|2) (3.24)

ôt = Aot + b = Wζt (3.25)

where A = Ã−1 and b = −H−1b̃, ζt = [oTt , 1]T and W = [A, b] is a linear transform of

the feature vectors. It is interesting to note that this constrained MLLR adaptation of mean

and covariance can be implemented as a transformation acting on the feature space while

the model parameters are not altered. This saves the computation to modify the model

parameters during runtime. It is worth pointing out that when multiple base classes are used,

CMLLR is still a model-based approach, as features are separately transformed for Gaussian

components in different base classes.

The EM algorithm can be also used to estimate the CMLLR transform. The estimation

algorithm, presented in [67], is briefly described. In the EM algorithm, an auxiliary function

for CMLLR transform is defined as:

Q(Ŵ; W,M) = −1

2

∑
t,m

γ
(m)
t

{
(Wζt − µ(m))TΣ(m)−1(Wζt − µ(m)) + log |W|

}
(3.26)
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Given the sufficient statistics

Gd =
∑
m

1

σ
(m)2
d

∑
t

γ
(m)
t ζtζ

T
t (3.27)

kd =
∑
m

µ
(m)
d

σ
(m)2
d

∑
t

γ
(m)
t ζt (3.28)

where σ
(m)2
d and µ

(m)
d are the d-th element of Σ(m) and µ(m) respectively, the d-th row vector

of Ŵ, ŵT
d , can be solved by

ŵT
d = (αpd + kd)

TG−1
d (3.29)

where pd = [cd,1, . . . , cd,D, 0] is extended cofactor vector with ci,j being the (i, j)-th cofactor

of A; the coefficient α is given in a quadratic equation:

α2pT
dG−1pd + αpT

dG−1kd − β = 0 (3.30)

and β =
∑

t,m γ
(m)
t . Apparently, the estimated d-th row vector depends on all the other

row vectors through the extended cofactor vector. Therefore, the estimate is an iterative

procedure where Ŵ is updated in a row-by-row manner.

3.2.3 Cluster-based Speaker Adaptation

The adaptation schemes discussed so far are based on a single set of acoustic models. An

alternative approach to adaptation is to use a number of HMM sets, each representing different

acoustic conditions. A simple example is gender dependent acoustic models (GD). Traditional

cluster-based approaches [60, 133] have been developed along this line, where a set of acoustic

models, usually referred to as reference models, are built. Adaptation is performed by choosing

the most representative cluster. The limitation of this approach is that the cluster selection is

a “hard” choice, and only a finite number of acoustic models can be derived after adaptation.

As an extension to this approach, schemes that use linear combination of a set of cluster-

dependent models have been developed, e.g., [91, 92]. In these schemes, a “soft” choice is

made where the adapted acoustic models are not necessarily one set of the reference models

but a new, interpolated, set of acoustic models. By interpolating the reference models, it

is possible to generate an infinite number of acoustic models. Transform smoothing [64],

cluster adaptation[70] and eigenvoices [136] are all developed based on this idea. The cluster-

dependent model parameters are normally adaptively trained, thus it is related to the adaptive

training framework. This will be described in detail in section 3.4.1.2.
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Figure 3.3: Illustration of regression tree and transform parameter tying.

3.2.4 Regression Classes and Transform Parameter Tying

When discussing the linear transform-based and the cluster based adaptation schemes in

the previous sections, it was assumed that all Gaussian components are tied to a global

transform. This may be necessary for robust estimation of transform parameters when only a

small amount of adaptation data is available. As more adaptation data becomes available, it is

possible to untie the global transform to further improve the adaptation performance. Usually,

Gaussian components can be clustered into several groups and each group is associated with

a separate transform. These groups are referred to as base classes.

One approach to group the Gaussian components into base classes is based on phonetic

knowledge [147]. Based on their associated states, Gaussian components can be grouped

into the broad phone classes, such as silence, vowels, stops, glides, nasals, fricatives, etc.

Alternatively, Gaussian components can be automatically clustered [63] This can be done via

k-means clustering[162, 222] using the Kullback-Leibler divergence [222, 249] or a centroid-

splitting algorithm with the Euclidean distance measure [63, 260].

Base classes of Gaussian components are usually organised in a regression tree [63, 148]

structure, which is used to dynamically assign estimated transforms to base classes, based

on the amount of available data. This is illustrated in Figure 3.3. The dark node denotes

the base classes in the regression tree. When there is sufficient data for a base class node, a

transform will be generated for that node. This is determined by comparing the occupancy

counts in the node with a pre-defined threshold. In case there is insufficient data associated

with a base class node, such as the “stops” node in Figure 3.3, a back-off scheme is used:
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all the data associated with its parent node, “consonant”, are pooled together to estimate a

“consonant” transform, and this transform will be used for the “stops” node. This back-off

scheme can be done in a recursive manner, i.e., when the occupancy count of the parent node

is also less than the threshold, the transform estimation is further backed off to the upper

level until either the root node or a node with sufficient occupancy count is reached.

When a regression class tree is used, the transform estimation procedure in section 3.2.2

needs to be slightly modified. As each base class of Gaussian components is transformed

separately, the sufficient statistics are collected at the base class level. Given the sufficient

statistics, one transform is estimated for each base class, provided that there is a sufficient

occupancy count associated with that base class. The transform re-estimation formula are

unchanged given that the appropriate sufficient statistics are available.

3.3 Environmental Robustness

In addition to speaker differences, the impact of acoustic environments, also known as the

environment noise, is another major factor which makes modelling speech signals challenging:

environments can impact the speech signals in many different ways and the noises from

environments are largely unpredictable. When there is is a large mismatch between the

training and testing conditions due to environmental differences, recognition performance

will be substantially impacted. This is one of the major obstacles to speech recognition

technology being used in realistic scenarios. Over the past decades, many research efforts

have been made to improve the environmental robustness of speech recognition systems, and

performance of state-of-the-art ASR systems in adverse environments have steadily improved.

In this section, some of the most widely used techniques are briefly reviewed.

3.3.1 Impact of the Environment

The first step in most environmental robustness techniques is to specify how speech signals

are altered by the acoustic environment. Though the relationship between the environment

corrupted signals and the original, noise free, signals is often complicated, it is possible to

relate them approximately using a model of the acoustic environment [4, 89]. Figure 3.4

demonstrates one such model, in which several major types of environment noise are depicted.

First, the production of speech can be influenced by the ambient background noise. This

is the Lombard effect [119]: as the level of ambient noise increases, speakers tend to hyper-

articulate: vowels are emphasised while consonants become distorted. It is reported that
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Figure 3.4: Types of environmental noise which can affect speech signals.

recognition performance with such stressed speech can degrade substantially [26, 118]. There

have been a few attempts to tackle the Lombard effect as well as stressed, emotional speech,

e.g., [25, 227]. However, in this thesis, these effects are not addressed.

Second, as shown in Figure 3.4, a major source of environmental distortions is the ambient

noise presented in the background. The background noise can be emitted near the speaker or

the microphone. It is considered as additive to the original speech signals in the time domain

and can be viewed as statistically independent of the original speech. Additive background

noise can be stationary (e.g., noise generated by a ventilation fan), semi-stationary (e.g., noise

caused by interfering speakers or music), or abrupt (e.g., noise caused by incoming vehicles).

Additive background noise occurs in all speech recognition applications. Therefore, it has

been intensively studied in the past several decades [4, 62, 71, 83].

If the speaker uses a distant microphone in an enclosed space, the speech signals are

subject to another type of environment distortion – reverberation. As shown in Figure 3.4,

reverberation is usually caused by the reflection of speech wavefronts on flat surfaces, e.g., a

wall or other objects in a room. These reflections result in several delayed and attenuated

copies of the original signals, and these copies are also captured by the recording microphone.

In theory, the reverberant speech signals can be described as convolving the speech signals

with the room impulse response (RIR), resulting in a multiplicative distortion in the spectral

domain. However, as the RIR in a reverberant environment is usually much longer (≥ 200ms)

than the length of analysis window (typically 25-30ms) used in the front-end processing, the

feature vector extracted from reverberant speech signals are influenced by several previous

frames. As a result, reverberant speech signals are highly dynamic. Compared with the

additive background noises, which are usually statistically independent of the original clean

signals, the reverberant noises are correlated with the original signals and the reverberant

distortions are different from the distortions caused by additive background noise. Reverber-

ation has a strong detrimental effect on the recognition performance of an ASR systems: for
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instance, without any reverberant robustness technique, the recognition accuracy of a ASR

system can easily drop to 60% or even more in a moderate reverberant environment (length of

RIR ∼ 200ms)[258]. Therefore, reverberant robustness techniques are an essential component

in many applications which use distant talking microphones as the receiver. These applica-

tions include meeting transcription, hands-free interfaces for controlling consumer-products.

In some of these applications, it is possible to use a microphone array to record the speech sig-

nals, while in other applications, only a single distant microphone is allowed. Partly driven by

commercial interest in deploying speech recognition systems for these applications, research

on both microphone array signal processing and reverberant speech processing has achieved

significant progress in recent years [18, 252, 258]. Some of these techniques will be reviewed

in section 3.3.3, and a new model-based approach to reverberant speech recognition will be

proposed and discussed in Chapter 4.

Figure 3.4 also shows that speech signals can be transmitted by a series of transducers,

including microphones, and some communication channels. Differences in characteristics of

these transducers add another level of distortions, i.e., the channel distortion. Compared

with reverberant distortions, the channel distortions are usually caused by linearly filtering

the incoming signals with the microphone impulse response, which is shorter than the length of

analysis window. As a result, the channel distortions mainly result in spectral tilt. Therefore,

the channel distortion is often called short-term convolutional distortion, or convolutional

distortion1 .

3.3.1.1 Mismatch Functions

Given the environment model described in the previous sections, it is possible to relate the

corrupted speech signals with the original speech signals in a functional form. This is normally

referred to as the mismatch function [4, 62]. Depending on the application scenario, there

are usually one or two main environment distortions, while other types of distortions can be

neglected. Two typical scenarios are considered in the following:

• Background noise and channel distortion dominate :

If the Lombard effect and the additive transmission noise in the environment model depicted

in Figure 3.4 are ignored, and the speaker does not talk in an enclosed acoustic space,

the background noise and the channel (both the microphone and transmission channel)

distortion become the main distortions. Figure 3.5 depicts this simplified environment

1Although the nature of reverberation is also convolutional, to keep it consistent with the terminology
widely used in the literature, “convolutional distortion” is used in this thesis to stand for the short-term
convolutional distortion only.
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Figure 3.5: A simplified environment model where background noise and channel distortion
dominate.

model, where x(τ) and y(τ) are the time-domain clean speech signal and noisy speech signal

respectively; h(τ) is the impulse response of the microphone and transmission network, and

n(τ) is the channel filtered version of the ambient background noise. Using this simplified

environment model, the noisy speech signal is related to the original clean signal by the

following mismatch function in the time domain:

y(τ) = x(τ) ∗ h(τ) + n(τ) (3.31)

where ∗ denotes convolution in the time domain. The time-domain mismatch function can

be approximated by a mismatch function in the MFCC domain [72, 155]:

yst = C log
(

exp(C−1(xst + µh)) + exp(C−1ns
t ) + 2α exp

(
C−1(xst+µh+ns

t)
2

))
(3.32)

where xst , y
s
t and ns

t are the t-th static MFCC feature vector derived from signals x(τ), y(τ)

and n(τ) respectively, and µh is an unknown constant derived from the channel impulse

response h(τ); α is a phase factor; C is the DCT matrix and C−1 is its inverse matrix. Note

that most implementations of MFCC feature extraction only use the first several cepstral

coefficients. In this case, the C is the truncated DCT matrix, and C−1 becomes the Moore-

Penrose pseudo-inverse matrix of C [105]. Appendix A.2 gives a detailed derivation of this

mismatch function.

The phase factor α is related to the phase differences between the speech and noise signal at

each frequency bin. In theory, it is a random variable with all its elements are constrained

in the range [−1, 1] [47]. Further approximations are often made to ignore the phase

differences, resulting an phase-insensitive mismatch function:

yst = C log
(
exp(C−1(xst + µh)) + exp(C−1ns

t )
)

(3.33)

Alternatively, in [155] the phase factor is treated as a fixed variable and it is optimised for

specific tasks. The use of a phase-sensitive mismatch function in Eq. (3.32) has also been



CHAPTER 3. ACOUSTIC MODEL ADAPTATION AND ROBUSTNESS 50

explored in [149, 237]. This thesis will focus on the standard, phase-insensitive, mismatch

function specified in Eq. (3.33).

The above mismatch function can be used for static parameters. As discussed in Section 2.2,

dynamic parameters are also used in speech recognition systems. The dynamic parameters

are linear transforms of several neighbouring static parameters. For example, the delta

parameters are calculated by a linear regression of a few static parameters shown in the

following equation:

∆yt =

∑w
τ=1 τ(yst+τ − yst−τ )

2
∑

τ τ
2

(3.34)

= D

 yst+w
...

yst−w

 (3.35)

where D is the projection matrix derived from Eq. (3.34). Along with the static mismatch

function in Eq. (3.33), Eq. (3.35) yields an accurate form of the mismatch function for delta

parameters. This method has been explored in [38, 233]. The limitation of this form of

mismatch function is that it requires extended model statistics to represent the distribution

of clean speech vectors within a context window xt = [xt+w, · · · ,xt−w]T. Using this form

of mismatch functions is also computationally expensive. Though this form of dynamic

mismatch function is not used in this thesis, the method to use extended model statistics

to represent feature vectors within a context window is useful and it inspires a new model

based approach to robust speech recognition in reverberant environments, which will be

discussed in Chapter 4.

The most common form of dynamic parameter mismatch function is the continuous time

approximation [86]:

∆yt ≈
∂yst
∂t

=
∂yst
∂xst

∂xst
∂t
≈ ∂yst
∂xst

∆xt (3.36)

A similar mismatch function can be derived for the delta-delta coefficients. This form has

been widely used in the literature and will be also used in this thesis.

• Reverberant and background noise dominate:

When a distant microphone is used in an enclosed acoustic environment, reverberation and

background noise will become the main distortions in speech signals. Depending on the

attributes of the source of background noises, they can interact with reverberation in a

few ways, thus creating different distortions of the speech signal. The background noises

can be emitted from just one source, which will be referred to as a point source. On the
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Figure 3.6: Point background noise source in a reverberant environment. The dashed line
shows the scenario where the point noise source is sufficiently close to the microphone.

other hand, the sources of background noise could be dispersed over the room space (e.g.,

restaurant noise). This noise source will be referred to as a diffuse source.

For the background point noise source located near the speaker, the noise signals will

be convolved with approximately the same RIR as the one which is convolved with the

speaker’s voice. Let x(τ), n(τ) and hr(τ) be the clean speech signal, the background

noise signal and the RIR measured at the speaker’s position. The signal received by the

microphone, z(τ), can be expressed as:

z(τ) = hr(τ) ∗ (x(τ) + n(τ)) (3.37)

Note that because of the hr(τ), the effect of noise n(τ) will spread over several previous

frames. This will be referred to as frame correlated background noise. On the other hand, if

the point noise source is near the microphone, this time-domain mismatch function becomes

z(τ) = hr(τ) ∗ x(τ) + n(τ) (3.38)

In this case, the background noise n(τ) will only have an impact on the current frame.

Therefore, it will be referred to as frame un-correlated background noise. For the point noise

source positioned somewhere in the middle, n(τ) will be filtered by another RIR h̃r(τ), and

eventually picked up by the receiver. This yields another time domain mismatch function:

z(τ) = hr(τ) ∗ x(τ) + h̃r(τ) ∗ n(τ)

≈ h̃r(τ) ∗ (h(τ) ∗ x(τ) + n(τ)) (3.39)

Here, it is assumed that a RIR hr(τ) can be approximated by filtering another RIR h̃r(τ)

with a short-term impulse response h(τ), i.e., hr(τ) ≈ h̃r(τ)∗h(τ). Note that the mismatch

function in Eq. (3.37) is a special case of Eq. (3.39) with h(τ) = δ(τ); therefore only the

mismatch function in Eq. (3.39) will be considered in this thesis. A point background noise

source in a reverberant environment is illustrated in Figure 3.6.
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Figure 3.7: Diffuse background noise in a reverberant environment.

The diffuse background noise source can be viewed as a collection of many point background

noise sources dispersed over the room space. The time domain mismatch function can be

expressed as

z(τ) = hr(τ) ∗ x(τ) +
∑
i

n(i)(τ) ∗ h(i)
r (τ) (3.40)

where n(i)(τ) is the signal emitted by the i-th source and h
(i)
r (τ) is the RIR measured at the

position of i-th noise source. This is illustrated in Figure 3.7. Although there may be some

correlation between current and previous frames in each individual RIR filtered noise signal

n(i)(τ)∗h(i)
r (τ) due to the room reverberation, the overall noise signal

∑
i n

(i)(τ)∗h(i)
r (τ) is

approximately frame un-correlated. This is based on the assumption that the RIR h
(i)
r (τ)

is statistically independent of each other. Hence the signal
∑

i n
(i)(τ) ∗ h(i)

r (τ) can be

approximated by a single point source n(τ) which is directly received by the microphone.

This yields the same time domain mismatch function as in Eq. (3.38).

Given the time domain mismatch functions in Eqs. (3.38 - 3.39), it is also possible to derive

the corresponding mismatch functions in the log-spectral or the MFCC domain. Assume

the RIR spreads over n + 1 frames, from the current t-th frame to t − n frame. For the

frame-correlated background noise, the corrupted speech static MFCCs zst is related to the

clean speech static MFCC xst by:

zst = C log

(
n∑
δ=0

exp(C−1(yst−δ + µ̃lδ))

)
= g̃

(
yst , . . . ,y

s
t−n, µ̃l

)
(3.41)

where µ̃l = [µ̃T
l0, · · · , µ̃T

ln] are the MFCC coefficients of RIR and yst is given in Eq. (3.33).

For the frame-uncorrelated background noise case, the following mismatch function can be
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Figure 3.8: Strategies to reduce mismatch between test and training conditions: robust front-
end and signal processing, feature-based approach and model-based approach.

derived (detailed in Appendix A.3) :

zst = C log

(
n∑
δ=0

exp
(
C−1(xst−δ + µlδ)

)
+ exp

(
C−1ns

t

))
= g(xst , · · · ,xst−n,µl,n

s
t ) (3.42)

Similarly, mismatch functions for the dynamic parameters can be derived using the contin-

uous time approximation, i.e.,

∆zt ≈
n∑
δ=0

∂zst
∂xst−δ

∂xst−δ
∂t

=
n∑
δ=0

∂zst
∂xst−δ

∆xt−δ (3.43)

3.3.1.2 Strategies to Handle Environment Distortions

The impact of environment distortions on clean speech signals have been described in the pre-

vious section. The following sections will review some of the most-widely used environmental

robustness techniques. These techniques can be grouped into three broad categories:

• Inherently robust front-end or robust signal processing: in which the front-end is designed

to extract feature vectors xt which are insensitive to the differences between clean speech

signals x(τ) and noise corrupted signals y(τ), or the clean speech signals x(τ) can be

re-constructed given corrupted signals y(τ) ;

• Feature compensation, in which the corrupted feature vector yt is compensated such

that it closely resembles the clean speech vector xt. This will be referred to as the

feature-based approach;
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• Model compensation, in which the clean-trained acoustic model Mx is adapted to My

such that it better matches the environment corrupted feature vectors in the target

condition. This will be referred to as the model-based approach.

Figure 3.8 illustrates the relationship between these approaches: they can be viewed

as operating in different spaces[207]. The inherently robust font-end can be viewed as an

approach to reducing the mismatch in the signal or feature space, as it is used to produce

signals or feature vectors that are immune to environment distortions; the feature-based

approach operates in the feature space, in which the corrupted feature vectors are mapped to

the most likely clean feature vectors; the model-based approach adapts the (possibly clean-

trained) acoustic model to the target condition, and works in the model space.

3.3.2 Handling Additive Noise and Convolutional Distortions

This section discusses some widely used techniques to combat distortions caused by the ad-

ditive background noise and the convolutional noise.

3.3.2.1 Inherently Robust Front-end and Robust Signal Processing

A straightforward approach to combat the environment noise is to extract feature vectors

which are robust to noises or distortions. This can be achieved by robust signal processing

such that the clean speech signals can be reconstructed, or by designing an inherently robust

front-end such that a clean speech vector can be directly extracted from the noise corrupted

signals.

Spectral subtraction (SS) [24] is a robust signal processing scheme. In this scheme, an

estimate of the noise power spectrum n̂(t, b) is first obtained using frames that are classified as

non-speech frames, e.g., using voice activity detection (VAD) [101]. Here n̂(t, b) is an estimate

of the energy in the b-th frequency bin of the noise signal at time t. It is assumed that the

noise power spectrum n(t, b) and the clean speech power spectrum x(t, b) are statistically

independent, so the power spectrum of noisy speech y(t, b) can be approximated by

y(t, b) ≈ x(t, b) + n(t, b) (3.44)

Further assuming that the noise power spectrum changes slowly, an estimate of clean speech

spectrum, x̂(t, b), can be obtained by:

x̂(t, b) = y(t, b)− n̂(t, b) (3.45)

This removes the noise energy from the power spectrum domain. In practice, the noise

spectrum estimate n̂(t, b) is not accurate, which may result in a negative power spectrum
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when n̂(t, b) > y(t, b). To address this issue, the clean speech spectrum estimate x̂(t, b) is

normally floored to a small value ε, i.e.,

x̂(t, b) = max{y(t, b)− n̂(t, b), ε} (3.46)

Another method to combat additive noise distortion is based on a classical noise reduction

algorithm, the Wiener filter. Assuming both the clean speech signal x(t) and the noise signal

n(t) are stationary stochastic processes, an estimate of x(t), x̂(t), which minimises the squared

error can be obtained by passing the signal y(t) through the Wiener filter whose frequency

response H(f) is determined by

H(f) =
x(f)

x(f) + n(f)
(3.47)

where x(f), n(f) and y(f) is the power spectrum of x(t), n(t) and y(t) respectively. The

difficulty in using the Wiener filter is that it requires that the noise and speech spectrum are

known, and both the noise and clean speech signals are stationary. It is well know that speech

signals are quasi-stationary. As a consequence, it is necessary to segment the speech signals

into several stationary states to apply the Wiener filter. This is explored in [56, 239], where

a front-end HMM is used to align the corrupted speech into quasi-stationary states and the

state statistics in the front-end HMM are used to construct the clean speech and the noise

spectrum.

Wiener filtering is also used in European Telecommunications Standards Institute (ETSI)

advanced front-end (AFE) standard [230]. In AFE, a two stage Wiener filter (e.g., [6]) is

applied to the speech signals as a pre-processing step to reduce background noise. The filter

estimation is individually done for short segments of signal – the neighbouring two frames,

rather than using front-end HMMs to segment signals into qusi-stationary segments as in

[56]. After noise reduction using the two stage Wiener filtering, the cepstral coefficients are

extracted. These cepstral coefficients are processed by blind equalization to compensate for

possible convolutional distortions. The AFE has been shown to be effective for additive noise

and convolutional distortions and is regarded as one of the state-of-the-art front-end based

robustness techniques.

Besides robust signal processing, attempts have been made to design inherently robust

front-ends. For example, RASTA-PLP [96, 97] is a popularly cited robustness technique in

this category. Relative spectral (RASTA) processing is applied to PLP coefficients to give

RASTA-PLP coefficients. Inspired by the auditory evidence that modulations in the spectrum

below 1 Hz and above 12 Hz are usually noise, a band pass filtering is applied in RASTA.

The smoothing over speech segments whose length is about 150ms simulates the human ears’
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ability to incorporate information over time. This also overcomes the limitation of widely

used short-time spectrum analysis-based front-end, such as MFCC and PLP. RASTA-PLP

achieves only moderate success against additive noise and convolutional distortions [98].

3.3.2.2 Feature-based Approaches

Feature-based approaches aim to produce an estimate of a clean speech vector xt given the

observed speech vectors 1. This is usually achieved by using minimum mean squared error

estimation (MMSE), i.e., (e.g., [45, 55, 180]):,

x̂t = arg min
x̂
E{|xt − x̂|2|O}

= E{xt|O} (3.48)

where x̂t is the estimate of clean speech x at time t, and O is the sequence of observed

feature vectors. This requires calculating the posterior probability of xt given O, which

is often computationally expensive, though it is still feasible (e.g., [113]). It is therefore

commonly assumed that additive noise corrupts speech independently for each frame. In this

case, the MMSE becomes

x̂t = E{xt|yt} (3.49)

The estimated clean speech vector, x̂t, is then passed to a back-end acoustic model for

likelihood calculation. For the m-th Gaussian component, the likelihood calculation is ap-

proximated by

p(yt|m) ≈ N (x̂t;µ
(m)
x ,Σ(m)

x ) (3.50)

where µ
(m)
x ,Σ

(m)
x are the mean vector and covariance matrix in the clean-trained acoustic

model for the component m. This process is demonstrated by the solid lines in Figure 3.9.

Using the MMSE estimate as the clean speech directly in the likelihood calculation assumes

that the feature compensation is done perfectly. However, for low-SNR conditions, where xt

is almost masked by nt, it is hard to accurately estimate the clean speech vector. Instead,

the uncertainty in feature enhancement can be propagated to the back-end acoustic model.

This approach has been explored in many works in the literature, e.g., [10, 48, 53, 71]. The

idea of using uncertainty in decoding is illustrated by the dashed line in Figure 3.9.

An intuitive approach to use uncertainty in decoding is to add the variance of the clean

speech estimate, Σx̂t = var(xt|yt), to the back-end model variance Σ
(m)
x . In [48], it is shown

1For convenience, only static parameter compensation is discussed, and the symbol s in subscripts or
superscripts is omitted in this section (section 3.3.2.2). It is possible to compensate dynamic parameters as
well, but this is not discussed in this section.
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Figure 3.9: Feature compensation with uncertainty decoding for robust speech recognition.

that this amounts to propagating the conditional probability p(xt|yt) to the back-end, where

the likelihood is calculated by:

p(yt|m) ≈
∫
p(xt|yt)p(xt|m) dxt

≈
∫
N (x; x̂t,Σx̂t)N (x;µ(m)

x ,Σ(m)
x ) dx

= N (x̂t;µ
(m)
x ,Σ(m)

x + Σx̂t) (3.51)

and p(xt|yt) is approximated by a Gaussian with x̂t as the mean vector and Σx̂t as the

covariance matrix. This approach is usually referred to as observation uncertainty.

Although the observation uncertainty approach is intuitive and has been widely used in

the literature (e.g. [10, 20, 46, 48, 80, 253]), it is not mathematically well defined. This

can be shown in Eq. (3.51) that the first approximation does not corresponding to a valid

probability rule. Another approach to uncertainty decoding is to propagate the conditional

distribution p(yt|xt) to the back-end acoustic models [53, 158, 159]. This yields a mathemat-

ically consistent formulation to compute the likelihood function:

p(yt|m) =

∫
p(yt|xt)p(xt|m) dxt (3.52)

This is usually referred to as uncertainty decoding.

A number of feature compensation schemes can be derived based on the relationship

between clean speech x and the corrupted speech y. Due to its mathematical convenience,

the Gaussian mixture model (GMM) is widely used to model the joint distribution of x and

y: [
yt
xt

] ∣∣∣n = N

([
µ

(n)
y

µ
(n)
x

]
,

[
Σ

(n)
y Σ

(n)
yx

Σ
(n)
xy Σ

(n)
x

])
(3.53)

where n is the front-end component, µ
(n)
y and µ

(n)
x are the mean vectors of yt and xt given

the front-end component n, respectively; Σ
(n)
y and Σ

(n)
y are the corresponding covariance
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matrices; Σ
(n)
yx = Σ

(n)T
xy is the correlation matrix. Under this joint distribution, it is easy to

show that the conditional distribution of xt given yt and n is again Gaussian [23] and

p(xt|yt, n) = N (µ
(n)
x|y ; Σ

(n)
x|y ) (3.54)

with

µ
(n)
x|y = µ(n)

x + Σ(n)
xy Σ(n)−1

y (yt − µ(n)
y ) (3.55)

Σ
(n)
x|y = Σ(n)

x −Σ(n)
xy Σ(n)−1

y Σ(n)
yx (3.56)

Similar formulae can be derived for the conditional distribution p(yt|xt, n). It is then possible

to calculate the MMSE estimtor of clean speech by

E{xt|yt} =
∑
n

p(n|yt)E{xt|yt, n}

=
∑
n

p(n|yt)
(
µ(n)
x + Σ(n)

xy Σ(n)−1
y (y − µ(n)

y )
)

(3.57)

The conditional distribution p(yt|xt, n) or p(xt|yt, n) can be also used within the framework

of uncertainty decoding or observation uncertainty.

Depending on how the joint distribution is modelled, many feature-based schemes have

been developed [45, 71, 173, 231] . Stereo-based piecewise linear compensation for environ-

ments (SPLICE) [45] and feature space vector Taylor series (VTS)[173, 174] are two examples.

• SPLICE

SPLICE was first proposed in [45]. SPLICE is based on stereo data, where it is assumed

that corrupted speech y can be piecewise linearly transformed to clean speech x using a

simple bias, though it is possible to use an affine transform as suggested in [45]. In SPLICE,

the conditional distribution p(x|y, n) is directly modelled, again as a Gaussian distribution:

p(x|y, n) = N (x;y + b(n),Γ(n)) (3.58)

The parameter b(n) and Γ(n) can be estimated from stereo data. Given a corrupted obser-

vation yt in testing, its MMSE estimate is thus given by

x̂t =
∑
n

p(n|yt)(yt + b(n)) (3.59)

Alternatively, the front-end component n∗ = arg maxn p(n|yt) with the highest posterior

can be selected and a hard decision is made to yield an efficient implementation of SPLICE:

x̂t = yt + b(n∗) (3.60)
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• Feature-space VTS

In SPLICE, the relationship between clean speech and corrupted speech is learned from

stereo data. As a consequence, in the unseen noise condition, the performance gains ob-

tained by SPLICE are often limited. Instead of learning the relationship between clean and

corrupted data from the stereo data, the mismatch function in Eq. (3.33) can be used. Be-

cause of the nonlinearity of the mismatch function, it is not possible to derive the posterior

probability p(x|y) analytically. The vector Taylor series (VTS) technique, first proposed

in [174], approximates the mismatch function using a vector Taylor series expansion.

In feature space VTS, it is assumed that clean speech xt can be modelled by a GMM, and

the noise vector follows a Gaussian distribution and µh is an unknown constant:

xt ∼
∑
n

p(n)N (x;µ(n)
x ,Σ(n)

x ) (3.61)

nt ∼ N (n;µn,Σn) (3.62)

where n can be viewed as the front-end component in Eq. (3.53) 1 . VTS uses vector Taylor

series to approximate the mismatch function in Eq. (3.33). 2 The expansion is performed

around the point (µ
(n)
x ,µh,µn), which yields

yt|xt, n = C log
(
exp(C−1(xt + µh)) + exp(C−1nt)

)
= f(xt,µh,nt)

≈ f(µ(n)
x ,µh,µn) + J(n)

x (xt − µ(n)
x ) + J(n)

n (nt − µn) (3.63)

where

J(n)
x =

∂f

∂xt

∣∣∣
(µ

(n)
x ,µh,µn)

, J(n)
n = I− J(n)

x (3.64)

Due to the VTS approximation, yt is now a linear function of xt. It is easy to derive the

corresponding parameters:

µ(n)
y = E{yt|n} = f(xt,µh,nt) (3.65)

and

Σ(n)
y = E{ytyTt } − µ(n)

y µ(n)T
y

= J(n)
x Σ(n)

x J(n)T
x + J(n)

n ΣnJ
(n)T
n (3.66)

Σ(n)
xy = E{xtyTt |n} − µ(n)

x µ(n)T
y

= Σ(n)
x J(n)T

x (3.67)

1Note that n in teletype font denotes “noise” and it is distinguished from the front-end component n using
different font families.

2In the initial VTS paper [174], a mismatch function in the log-spectral domain was used. This is extended
to the mismatch function in the cepstral coefficient domain in [129].
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Correspondingly the conditional distributions p(xt|yt, n) = N (xt;µ
(n)
x|y ,Σ

(n)
x|y ) with :

µ
(n)
x|y = µx + Σ(n)

x J(n)T
x Σ(n)−1

y (yt − µ(n)
y ) (3.68)

Σ
(n)
x|y = Σ(n)

x −Σ(n)
x J(n)T

x Σ(n)−1
y J(n)

x Σ(n)
x (3.69)

The MMSE estimation of clean speech xt is thus given by:

x̂t =
∑
n

p(n|yt)µ(n)
x|y (3.70)

The above formula assumes that the noise model parameters (µn,Σn) are known. They

can be estimated using the first and last few (usually 20) speech frames of each utterance

which are assumed to contain only noise. A better way is to employ a EM algorithm to ML

estimate the noise parameters as suggested in [5, 174], which is first explored in [129]. As

the noise estimation algorithm for feature space VTS is very similar to the one for model

space VTS, this algorithm will be discussed in detail in section 3.3.2.3.

A fundamental issue in the feature based approach to handle uncertainty is pointed out

in [160]. At very low SNR, the uncertainty associated with the enhanced feature vectors

p(yt|x) is very large, which effectively assumes that p(yt|x) ≈ p(nt). This means that ev-

ery back-end recognition component m will give the same likelihood score, as p(yt|m) =∫
p(yt|x)p(x|m) dx ≈ p(nt). Therefore, the frame yt is effectively ignored in terms of acous-

tic discrimination. This issue is raised due to that feature enhancement is decoupled from the

backend acoustic models. As long as the feature enhancement is coupled with the backend

acoustic models, e.g., acoustic features can be compensated (or enhanced) differently for Gaus-

sian components in different sets, the scheme can be viewed as an instance of model-based

approach, which will be presented in the next section.

3.3.2.3 Model-based Approaches

Rather than compensating feature vectors for the environmental distortions as in the feature-

based approaches, model-based approaches adapt the back-end acoustic model to the target

condition. The simplest method within model-based approaches is to re-train the acoustic

model using data from the same test environment. This is normally referred to as matched

training. Single-pass re-training [62] can be used to speed up the training process. However,

large vocabulary ASR systems are usually trained on hundreds or thousands of hours of data.

It is not practical to collect a large amount of noisy data for a particular environment. Instead,

multi-style training or multi-condition training [45, 164] has been proposed, in which a variety

of noise samples are used to corrupt the clean data, or data from a number of environment
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conditions are pooled together in training. Acoustic models trained in this way are expected

to model not only the intrinsic variabilities but also the environment variabilities. This has

been shown to improve the noise robustness, e.g.,[190]. Note that the concept of multi-style

training is not limited to the environment acoustic factors; it can be applied to various acoustic

factors. It is a simple and widely used technique to improve the model robustness.

As the environment usually varies from utterance to utterance, transforming the acoustic

models to the target condition, rather than re-training the whole model is attractive. Here, a

model transform Tn for a particular noise condition is used to adapt the clean-trained acoustic

M to M̂ to better reflect the target condition:

M̂ = F(M, Tn) (3.71)

where F is a mapping function which transforms the clean acoustic model to the adapted

model.

It has been demonstrated in [62] that even if the clean speech xt and the noise nt is

jointly Gaussian distributed, the resultant corrupted speech yt, generated according to the

mismatch function in Eq. (3.33), is non-Gaussian. When the clean speech xt is considered to

be emitted from a state, which is usually modelled by a GMM, the distribution of resultant

yt is complicated with multiple modes. It is possible to model this distribution by GMMs

(e.g., [62]) or using non-parametric schemes (e.g., [237]). However, these methods are compu-

tationally expensive. Approximation is needed to reduce the computational cost. The most

widely used approximation is to assume the resultant corrupted speech yt is Gaussian nev-

ertheless, provided the clean speech and the noise is joint Gaussian. It is also assumed that

the noise does not alter the hidden states and Gaussian components’ alignment. Therefore,

for a particular Gaussian component m in M, p(xt|m), it is adapted to another Gaussian

distribution, p(yt|m), where

p(xt|m) = N (xt;µ
(m)
x ,Σ(m)

x ) ,

p(yt|m) ≈ N (yt;µ
(m)
y ,Σ(m)

y ) ,

and (µ
(m)
x ,Σ

(m)
x ) are the parameters of the clean acoustic modelM, (µ

(m)
x ,Σ

(m)
x ) the param-

eters of the compensated acoustic model M̂. The parameters of the compensated acoustic

model can be obtained by ML-estimation:

µ(m)
y = E{yt|m} , Σ(m)

y = E{ytyTt |m} − µ(m)
y µ(m)T

y (3.72)

This is the Parallel Model Combination(PMC) framework [62]. There are a number of approx-

imation schemes that can be used to derive the compensated parameters. Some approximation
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schemes are discussed in the following. Note for all the schemes discussed in the following,

the noise model is assumed to be a single Gaussian distribution, i.e.,

nt ∼ N (µn,Σn) (3.73)

It is also assumed that the background noise is a stationary process, therefore the mean

vectors of dynamic noise parameters are zeros, i.e., µ∆n = 0 and µ∆2n = 0. Further, the

convolutional noise µh is assumed to be constant but unknown.

• Log-normal Approximation

The log-normal approximation assumes that the sum of log-normal distributions are also

log-normal. This allows the clean speech distribution and the noise speech distribution to

be combined in the linear power spectrum domain. Assuming that a static noise MFCC

vector ns
t follows a Gaussian distribution N (ns

t ;µsn,Σsn) in the cepstral domain, the cor-

responding power spectrum domain feature vector N = exp
(
C−1ns

)
follows a log-normal

distribution with the mean µN and covariance matrix ΣN given by [75]:

µN ,i = exp(µlsn,i + σlsn,ii/2) (3.74)

σN ,ij = µlsn,iµ
l
sn,j

(
exp(σlsn,ij)− 1

)
(3.75)

Here µN ,i and σN ,ij are the i-th and (i, j)-th element of µN and ΣN , respectively; µlsn,i and

σlsn,ij are the i-th and (i, j)-th element of the log spectral domain mean µl
sn and covariance

matrix Σl
sn, respectively, and

µl
sn = C−1µsn (3.76)

Σl
sn = C−1ΣsnC

−T (3.77)

Similar formulae are used to derive the mean µ
(m)
X and covariance matrix Σ

(m)
X of the

log-normal distribution of X = exp(C−1xst ) for a Gaussian component m. As Y =

exp(C−1ys) = X +N is assumed to be log-normal distributed, its mean and covariance

matrix can be obtained by:

µ
(m)
Y = µ

(m)
X + µN (3.78)

Σ
(m)
Y = Σ

(m)
X + ΣN (3.79)
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This combined log-normal distribution can be then converted back to the log-spectral do-

main by

µ
l,(m)
y,i = logµ

(m)
Y ,i −

1

2
log

1 +
σ

(m)
Y ,ij

µ
(m)
Y ,iµ

(m)
Y ,j

 (3.80)

σ
l,(m)
y,ij = log

1 +
σ

(m)
Y ,ij

µ
(m)
Y ,iµ

(m)
Y ,j

 (3.81)

where µ
l,(m)
y,i and σ

l,(m)
y,ij are the i-th and (i, j)-th element of the log-spectral domain pa-

rameters µ
l,(m)
y and Σ

l,(m)
y respectively. These parameters can be also converted back to

the cepstral domain, yielding (µ
(m)
sy ,Σ

(m)
sy ). The general procedure of using the log-normal

approximation in the PMC framework is illustrated in Figure 3.10.

sx1 sx2 sx3 n
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log(·)

C

Log-spectral domain
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y
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Cepstral domain

Log-spectral domain

Power spectrum domain

Figure 3.10: Parallel model combination of a three-state clean speech HMM and with a
Gaussian noise model using the log-normal approximation.

The Log-normal approximation cannot be used for delta and delta-delta parameters unless

the dynamic parameters are computed using simple differences. Data-driven parallel model

combination (DPMC)[62] can be used for both static and dynamic parameter compensation.

In DPMC Monte Carlo simulation is used to draw random cepstrum vectors from both the

clean-speech HMM and noise distribution to create the cepstrum of the noisy speech by
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applying the mismatch function. DPMC gave similar results as matched training systems,

but it is computational expensive. PMC is also extended in [61] to compensate the effect

of convolutional distortion.

• Model-space VTS

The original VTS technique was proposed in [174], where vector Taylor series expansion

was applied to compensating the corrupted features, though it was also suggested in [174]

that this technique can be used for model compensation. This is first explored in [5, 129].

For a clean speech vector xt generated from the component m, a first-order Taylor series

expansion is used to approximate the mismatch function of the static parameters by

yst |m = f(xst ,µh,n
s
t )

≈ f(µ(m)
sx ,µh,µsn) + J(m)

x (xst − µ(m)
sx ) + J(m)

n (ns
t − µsn) (3.82)

Here s denotes the static parameter; f is the mismatch function specified in Eq. (3.33);

J
(m)
x and J

(m)
n are the Jacobian matrices evaluated at (µ

(m)
sx ,µh,µsn). Based on this ap-

proximation, the static parameter is compensated by:

µ(m)
sy = f(µ(m)

sx ,µsn,µh) (3.83)

Σ(m)
sy = diag

(
J(m)
x Σ(m)

sx J(m)T
x + J(m)

n ΣsnJ
(m)T
n

)
(3.84)

Note that the diagonalisation operation is used to maintain an efficient likelihood calcu-

lation. The consequence is that the change of feature correlation due to the noise is not

modelled in this compensation scheme. The impact of diagonalisation has been discussed

in detail in [38]. For the dynamic parameters, the continuous time approximation [86] in

Eq. (3.36) is widely used. For example, the delta model parameter is compensated by

µ
(m)
∆y = J(m)

x µ
(m)
∆x (3.85)

Σ
(m)
∆y = diag

(
J(m)
x Σ

(m)
∆x J(m)T

x + J(m)
n Σ∆nJ

(m)T
n

)
(3.86)

Note that the diagonalisation is used again to keep a low computation cost. The similar

form can be used for delta-delta parameter compensation as well.

Because of the linearisation used in VTS, it is possible to devise simple methods for the

ML estimation of noise model parameters and clean speech model parameters as well. The

ML noise model parameters estimation for the model space VTS is briefly discussed in the

following, while the estimation of clean speech model parameters is discussed in section

3.4.2.
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As discussed in section 3.3.1.1, the additive noise nt is commonly assumed to be stationary;

therefore the noise model parameters Φ can be denoted as Φ = (µsn,µh,Σn). In the early

development (e.g., [5]), the additive noise parameters (µsn,Σn) were estimated from the

“silence” portion in each noise homogeneous block. This requires the use of a voice activity

detection (VAD) scheme. Furthermore, the convolutional noise µh cannot be estimated. An

alternative way is to to optimise Φ such that the likelihood of test data is maximised. This

is discussed in [5] and fully explored in [153, 158]. An EM algorithm is used to maximise

the log-likelihood of test data, and the following auxiliary function is used:

Q(Φ̂; Φ) =
∑
m,t

γ
(m)
t log p(yt; µ̂

(m)
y , Σ̂(m)

y ) (3.87)

where Φ̂ is the new set of noise model parameters, µ̂
(m)
y , Σ̂

(m)
y are the compensated model

parameters; γ
(m)
t is the posterior probability of the observation in component m at time t.

This posterior probability is determined by the current noise model parameters Φ and a

supervision hypothesis.

There are two main approaches used in the literature for this estimation problem. The

first one is to introduce a second level of EM, where the noise vector nt is treated as a

continuous latent variable (e.g., [108, 129]). This approach will be referred to as the EM-

based approach. The advantage of this approach is that it results in mathematically elegant

and less complex estimation formula but the limitation is that the Jacobian matrices and

the bias term are assumed to be irrelevant of Φ. The second approach is to optimise the

auxiliary function in Eq. (3.87) directly using standard gradient descent or second-order

schemes (e.g., [122, 155, 158, 266]). This approach is adopted in this thesis and will be

presented in the following. To estimate noise mean µsn and convolutional noise µh, VTS

is used again to approximate the compensated static mean, i.e.,

µ̂(m)
sy ≈ µ(m)

sy + J(m)
n (µ̂sn − µsn) + J

(m)
h (µ̂h − µh) (3.88)

Here J
(m)
h is the Jacobian matrix of yst with respect to µh. Both the Jacobian matrices are

evaluated using the current noise model parameter. Using this approximation, it can be

shown that the auxiliary is now a quadratic function of [µ̂T
sn, µ̂

T
h ]T, therefore yielding the

following update formulation:[
µ̂sn

µ̂h

]
=

[
µsn

µh

]
+

(∑
t,m

γ
(m)
t

[
J

(m)T
n

J
(m)T
x

]
Σ(m)−1

sx [J(m)
n ,J(m)

x ]

)−1

·

(∑
t,m

γ
(m)
t

[
J

(m)T
n

J
(m)T
x

]
(yst − µ(m)

sy )

)
(3.89)
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This has also been explained as a variant of the Gaussian-Newton method in [266]. The

noise variance estimation is usually done via an iterative second-order method, e.g., in [155]:

Σ̂n = Σn − ζ
(
∂2Q
∂2Σn

)−1
∂Q
∂Σn

(3.90)

where ζ, usually initialised as 1, is the line search step size. Note that the Hessian matrix

is not guaranteed to be positive definite. If it is not positive definite, the Hessian matrix

must be regularised. To make sure variances are positive after update, a change of variable

scheme is usually used, i.e., Σn is transformed to the log-domain Σ̃n = log Σn and the

Hessian and gradient is evaluated with respect to Σ̃n. After update, it is converted back

via Σn = exp(Σ̃n). It is noted that due to the linear approximation in Eq. (3.88), the

mean update equation no logner guarantees the auxiliary function does not decrease. It is

important to explicitly evaluate the auxiliary function after every update to make sure the

auxiliary function does not decrease. If it is not the case, a back-off scheme must be used

to reduce the step size until the auxiliary function stops decreasing. After a new estimate

of noise model parameters is obtained, it is also possible to update the expansion point and

re-estimate the noise model parameters. This process can be done for multiple iterations

until the auxiliary function stops increasing.

• Other approximation-based schemes

Besides using the log-normal assumption and VTS to approximate the mismatch function,

there are a number of works attempting to approximate the mismatch function using various

other schemes. These schemes can be categorised into two broad approaches: a sampling-

based approach, and a more accurate functional approximation approach.

In the sampling-based approaches, speech and noise samples are drawn from the known

clean speech and noise models and then used to generate the corrupted speech according

to the mismatch function. For example, for the static mean compensation,

µ(m)
sy = E{yt|m}

=

∫ ∫
f(xs,ns,µh)N (xs;µ(m)

sx ,Σ(m)
sx )N (ns;µsn) dx

s dns

≈
K∑
k=1

f(xsk,n
s
k,µh) (3.91)

where (xsk,n
s
k) are the k-th sample draw from the joint distribution of clean speech and

noise. Note that here it is assumed that the speech and noise distributions are independent

of each other. In Data driven PMC (DPMC) [62], Monte-Carlo sampling is used. The

advantage of DPMC is that when the number of samples, K, approaches to infinity, the
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compensation will be exact. However, DPMC usually requires a large number of samples

for each Gaussian component for a robust estimation, which is computationally expensive.

Another sampling approach is to use the unscented transform [117], in which samples are

drawn from the joint distribution in a deterministic way, given the means and variances of

the joint distributions. Let u = [xs,ns]. If the feature vector is a D-dimensional vector, u

is a 2D dimensional vector, and 4D + 1 samples are drawn based on:

uk =


µ

(m)
u if k = 0

µ
(m)
u +

(√
(2D + κ)Σ

(m)
u )

)
k

if k = 1, · · · , 2D

µ
(m)
u −

(√
(2D + κ)Σ

(m)
u )

)
k

if k = 2D, · · · , 4D + 1

(3.92)

where µ
(m)
u and Σ

(m)
u are the mean and covariance of joint distribution p(u|m); uk is the k-

th sample of u; (Σ)k denotes the k-th column of the transposed Cholesky factorisation of Σ;

κ is a tunable parameter. There are also different weights associated with different samples:

for k = 1, the weight is κ
2D+κ and 1

2(2D+κ) for the other samples. The advantage of using

the unscented transform is that the number of samples growths linearly as the dimension

increases. The unscented transform was first explored in [107] for HMM compensation and

further explored in [156, 166, 224, 266].

Besides the sampling-based approaches, it is also possible to use the functional approxima-

tion methods to approximate the mismatch function. VTS itself is a linear approximation

of the non-linear mismatch function. A piecewise linear approximation is proposed in [54];

this is extended in [121, 221] where a linear spline interpolation is used to approximate the

mismatch function. It is expected that by using piecewise linear approximation, a better

modelling accuracy can be obtained. However, for efficiency reasons, these methods usually

operate in the log-spectral domain and the model parameters are converted to the cepstral

domain after compensation.

The Model-based schemes discussed in this section are based on some mismatch function

(e.g., Eq. (3.33)) to derive the model transform. Model transformation is performed by

combining the clean-speech models with noise models using the mismatch function. As a

result, they make strong assumptions about how the environment influences the speech vectors

and only a small number of noise model parameters need to be estimated. Model transforms

constructed in this way are normally referred to as predictive transforms. The predictive

transforms can be constrasted with the adaptive transforms discussed in Section 3.2, e.g., the

MLLR and CMLLR transforms. The adaptive transforms modify the acoustic model such

that speech data observed in the new acoustic condition can be better represented. They
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generally make few assumptions on how the acoustic conditions affect the speech data. As a

consequence, the adaptive transforms can be extended to environment adaptation as well. On

the other hand, as adaptive transforms do not rely on the prior knowledge of the environment

model, they usually require thousands of frames of adaptation data for a robust transform

estimation. It is possible to combine the predictive techniques and the adaptive technqiues

to adapt the acoustic model to the target environment and speaker. This is discussed in [66].

Moreover, as the predictive transforms are complementary to the adaptive transforms, these

two types of transforms can be combined in a way that there is an “orthogonality” between

them. This attribute will be discussed in Section 5.2.2.

3.3.3 Handling Reverberant Environments

In this section, schemes that are designed to improve the robustness of ASR systems in

reverberant environments will be discussed. These schemes can be roughly categorised into

three groups: the linear filtering approach, the feature enhancement approach and the model

compensation approach.

3.3.3.1 Linear Filtering

As reverberation can be described as an convolution of the clean speech signal x(τ) with a

RIR hr(τ), de-reverberation can be achieved by linearly filtering the observed signal z(τ). In

a single-channel setup, this can be expressed as

x̂(τ) =

T∑
δ=0

g(δ)z(τ − δ) (3.93)

where G = {g(δ)} is the set of coefficients of the linear filter, and x̂(τ) is the de-reverberated

signal. In a multi-channel setup (for example, when signals are recorded by a microphone

array), this can be expressed as

x̂(τ) =
L∑
l=1

T∑
δ=0

g(l)(δ)z(l)(τ − δ) (3.94)

where z(l)(τ) is the signal recorded by the l-th microphone, and g(l)(δ)’s are its associated

linear filter coefficients. In this setup, G = {g(l)(δ)|l = 1, · · · , L} is the set of linear filter

coefficients to be estimated. This is usually referred to as the blind deconvolution problem,

which has been extensively studied for the digital communication signal processing (e.g., [3])

and has also been applied to de-reverberation in speech recognition (e.g., [12, 81, 104, 130]).

For convenience of presentation, the above equations assume the filtering is done in the time
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domain. It is also possible to perform the filtering in the short time Fourier transform (STFT)

domain.

When a microphone array is used to record signals, inverse filtering methods can be used

to linearly filter the received signals. The multiple input/output inverse theorem presented

in [172] guarantees that when the RIRs of different channels are known and do not share

common zeros, an exact realization of an inverse filter exists. The subspace methods (e.g.,

[78, 87]) are developed based on this theorem. These methods estimate the inverse filter

independent of the source (i.e., speech signals) characteristics. The smallest eigenvector of

the covariance matrix of the signals recorded by the microphone array is calculated as the RIR

estimate. Regularisation is needed to make the inverse filter robust against the background

noise and the fluctuation of the RIR. The limitations of subspace methods are obvious: due to

the nature of smallest eigenvector, subspace methods are numerically unstable and sensitive

to the background noise.

Beamforming [90] is also a candidate solution for signal de-reverberation when a micro-

phone array is used. In beamforming, signals coming from the selected direction are main-

tained while signals from all the other directions are attenuated. This spatial selectivity is

useful to depress the reverberation and background noise as well. The simplest method is

the delay-and-sum beamforming [90, 187, 252], in which the signals received by the micro-

phone array are time-aligned. The time-aligned signals are then weighted and added together.

Interfering signals, including background noise and reflected signals that are not coincident

with the speech are thus attenuated. The delay-and-sum beamforming can be extended to

filter-and-sum beamforming [35, 252], in which each microphone signal is separately filtered

before combination. The filter coefficients can also made to be adaptive and are updated on

a sample-by-sample basis. This yields adaptive beamforming [152]. However, the adaptive

filtering methods generally assume that the target and observed signals are uncorrelated.

As the clean signal is highly correlated with its reverberation, the methods suffer from the

“signal cancellation” effect [250] because of the reflected copies of the target signal. Conven-

tional beamforming focuses on improving the SNR of the filtered signal, which is not directly

related to the performance of speech recognition. In [220], an integrated beamforming and

speech recognition method is proposed. The linear filter coefficients in the filter-and-sum

beamformer, G, are optimised to maximise the likelihood of the feature vector sequence ,

{zt}, extracted from the filtered signals, given the correct transcription H. This is expressed

as:

Ĝ = arg max
G

∑
t,m

γ
(m)
t log p(zt(G)|m) (3.95)
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where γ
(m)
t is the posterior probability of component m at time t, aligned against transcription

H, and zt is the extracted feature vector which dependents on beamforming coefficients G.

A gradient descent method is used to optimise G.

Though multi-channel data is helpful to combat reverberation, it is not practical to record

signals using multiple microphones in many applications. Therefore, the single distant micro-

phone scenario will be the focus in this thesis.

3.3.3.2 Feature Enhancement-based Schemes

The previous linear filtering approaches aim to restore the clean speech signals in the time

domain. Most of the linear filtering schemes are designed to minimise the squared differences

between enhanced signals and the original clean signals. However, this objective function

is not consistent with the feature vectors used in speech recognition systems. ASR systems

usually use short-time spectrum derived features, which discard lots of information in the

waveform. Instead, feature enhancement-based schemes aim to restore the clean features

rather than the clean signals.

Feature enhancement can be carried out in various stages in feature extraction. For exam-

ple, in the Mel-spectrum power domain, the relationship between corrupted speech features

and the clean speech features can be approximated as:

|z(t, k)|2 ≈
n∑
δ=0

|h(δ, k)|2|x(t− δ, k)|2 (3.96)

where |z(t, k)|2 and |x(t, k)|2 are the power of the k-th Mel filter at the t-th frame, calcu-

lated for the signals z(τ) and x(τ) respectively, and |h(δ, k)|2 is the power spectrum-domain

representation of the RIR. Note that it is assumed that the background noise can be ignored

and the cross-term difference between frames can be discarded. Given the power spectrum

representation of corrupted signals, techniques such as correlation analysis [57], iterative least

square methods [138] and non-negative matrix factorisation [123] can be used to estimate

the underlying clean speech power spectrum. Alternatively, if the reverberation time T60 is

known in advance, a very simple model of the power spectrum representation of RIR can be

utilised [142]. This model assumes that h(δ, k) exponentially decays with respect to δ and

the decay rate can be determined by T60.

Feature enhancement can be also carried out in the log Mel-spectrum domain or the

cepstral coefficient domain. In this case, the objective of feature enhancement is to infer the

most likely clean feature vectors {x̂t|t = 1, · · · , T}, given a sequence of reverberant feature

vectors {zt|t = 1, · · · , T}, where zt and x̂t are the features in either the log Mel-spectrum

domain or the cepstral coefficient domain. In [134], the underlying speech xt is modelled by
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a switching linear dynamic system [176], and the observation feature vector zt is generated

according to a mismatch function (e.g., if enhancement is performed in the cepstral coefficient

domain, Eq. (3.42) will be the mismatch function). An extended Kalman filter algorithm

[229] is used to recursively calculate a posterior distribution of xt, p(xt|zt, · · · , z1). To make

the inference tractable, linearisation similar as the vector Taylor series (VTS) expansion is

used to approximate the mismatch function. Given the posterior distribution, the enhanced

feature vector is given by

x̂t = E{x|zt, · · · , z1}

=

∫
xp(x|zt, · · · , z1)dx (3.97)

Note that since the posterior probability p(xt|zt, · · · , z1) is available as a by-product of feature

enhancement, the posterior probability can be also propagated to the back-end acoustic model

in the uncertainty decoding framework. This model-based feature enhancement scheme was

originally presented in [138], which only handles the background noise free scenario, but is

extended in [151] to handle the background noise as well.

3.3.3.3 Reverberant Model Adaptation

The third approach to handling the effects of reverberation is to modify the model parameters

such that the compensated model better reflects the nature of reverberant speech. This will

be referred to as reverberant model adaptation or model-based approaches to reverberant

noise robustness.

General adaptation methods, such as MAP adaptation and linear transform-based adap-

tation, which were discussed in section 3.2, can be used to reduce the mismatch between a

clean acoustic model and the reverberant data. However, these techniques are not designed

to handle the effect of long reverberation. For example, the standard CMLLR adaptation

only transforms the current frame for a group of components, which is clearly a limitation

when the reverberant speech frame is usually affected by a few preceding frames. In [71], the

standard CMLLR transform is extended to transform a set of neighbouring frames in a way

that the reverberant feature vector can be normalised. In this scheme, the likelihood of the

t-th reverberant feature vector zt in the m-th component is evaluated as

p

 zst
∆zt
∆2zt

 ∣∣∣∣∣ m
 = N

A

 zst+w
...

zst−w

+ b;

[
µ

(m)
x

µx

]
,

[
Σ

(m)
x 0

0 Σx

] (3.98)

where zst , ∆zt and ∆2zt are the reverberant static, delta and delta-delta feature at time

t, w is the window size of neighbouring frames, A is a transformation matrix with a size
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(2w+1)D×(2w+1)D; D is the dimension of static features, and (µx,Σx) are the parameters

of the nuisance space, which are shared by all the components. As the nuisance space is

shared by all the components, it can be ignored during decoding. Thus only the first 3D rows

of the matrix A need to be estimated. This is referred to as the direct CMLLR transform.

A number of structures, reflecting the reverberation nature, were also imposed on the matrix

A in [71], which yields a number of linear transform schemes tailored to reverberation.

One limitation of the linear transform based schemes for reverberation model compen-

sation is that these schemes often have a large number of parameters to be estimated. For

example, the above direct CMLLR transform includes 3D×(2w+1)D parameters. This num-

ber is significantly larger than the number of parameters in the standard CMLLR (3D× 3D)

when a large window size w is used. By using the reverberation model, e.g., a reverberant

mismatch function, it is possible to reduce the number of transform parameters. One ap-

proach to do this is to compensate the model parameters according to the mismatch function

prior to decoding. For instance, in [198] where a single Gaussian per state HMM system was

used and the effect of background noise is ignored, it is proposed that the clean static mean

of state j, µ
(j)
sx , can be adapted to µ

(j)
sz by

µ(j)
sz = C log

(
n∑
δ=0

exp(C−1µ(j−δ)
sx + µ

(l)
δ )

)
(3.99)

where j − δ denotes the δ-th state before the current state j, µ
(j−δ)
sx is the clean static mean

vector of that preceding state, µ
(l)
δ is the state-level filter coefficient, describing the energy

dispersion of state j − δ to state j in the log Mel-spectrum domain. This compensation can

be extended to the GMM-HMM system as suggested in [103, 198]: for the m-th Gaussian

component in j-th state, the compensation formula is expressed as:

µ(j,m)
sz = C log

(
exp(C−1µ(j,m)

sx + µ
(l)
0 ) +

n∑
δ=1

exp(C−1µ(j−δ)
sx + µ

(l)
δ )

)
(3.100)

where µ
(j)
sx is the composite mean of state j:

µ(j)
sx =

∑
m∈j

wmµ
(j,m)
sx (3.101)

Based on the compensation form in Eq. (3.99 ) (or Eq. (3.100) for GMM-HMM sys-

tems), parameters can be compensated using the log-normal approximation [198]. Dynamic

parameters and variances were not compensated in [198]. The state-level filter coefficient

{µ(l)
δ |δ = 0, · · · , n} is optimised to maximise the likelihood of reverberant speech. Compared

with the mismatch function in Eq. (3.42) (ignoring the background noise), the key idea in
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[198] is to use the mean vectors of preceding states to approximate the preceding frames.

However, there are several issues with this approach. Due to the use of mean vectors instead

of the actual preceding frames, it introduces unwanted smoothness over the speech trajec-

tories, which reduces the discrimination of compensated models. The use of the composite

mean in Eq. (3.101) also introduces another level of smoothness. Another issue is that it is

difficult to determine the identities of the previous n states prior to decoding. In [198], to

determine the previous n states, it is assumed that each state is usually occupied only once.

However, it is still difficult to determine the previous states for the start state of each HMM.

In practice, a rather small n (=4) was used in [198], which limits its advantage by taking the

previous states into account. Due to this limitation, only a connected digit recognition task,

which uses 16-state whole word HMM models, was performed in [198].

The second issue is partially addressed in [103], where a duration model of each state is

used. Spline interpolation is applied to the contour of energy of each Mel filter bank for each

HMM, therefore the spectrogram of each HMM model can be recreated, and the previous

δ-th clean speech can be approximated by the interpolated spectrogram. This removes the

assumption that each state is only occupied once. Further, [103] argues that when the acoustic

unit is context dependent, e.g., a tri-phone HMM, its left context is often restricted, which

can be used to determine the previous states. This is illustrated in Figure 3.11. In the figure,

state j is considered as the last state of the u− v + w model. Its immediate left two states are

already known, while further left states must be in the HMMs with the centre phone u and

right context v. This information can be used to infer the identifies of n preceding states. For

example, in [103], a left HMM model with the smallest dissimilarity between its exit state and

the entry state of the current HMM model is selected. This left HMM is joined to the current

HMM and the spectrogram of the composed HMM is interpolated, which can provide a longer

context. The spline interpolation is also used in [103] for dynamic parameter compensation.

The noise model parameter estimation is done by a simple model which assumes that µ
(l)
δ

exponentially decays and the decay rate is determined by T60. Therefore T60 is the only

noise parameter to be estimated, which can be done via a grid search. This scheme was

applied to both a connected digit recognition task and a medium vocabulary continuous

speech recognition task (the reverberant WSJ0 task). Large performance improvements are

observed on both tasks.

As argued in [258], the above model adaptation schemes may not be optimal for rever-

berant speech recognition, as the acoustic model is adapted prior to decoding. The adapted

acoustic model is still a standard HMM, which uses the conditional independence assumption
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j − 2 j − 1 j

...

a− u + v

z− u + v

u− v + w

Figure 3.11: Illustration of restricted left contexts when a triphone HMM is used. State j is
the last state in the HMM representing the context u − v + w. Its immediate left two states
are known: the state j − 1 and the state j − 2, while further left states are restricted in the
HMMs with the “−u + v” context.

between the neighbouring frames given the hidden state. To model the long term reverber-

ation effect more accurately, dynamic model adaptation is needed. For example, in [232] a

first-order linear prediction is used where the adapted static mean of component m at time t

is expressed as:

µ(m,t)
sz = C log

(
exp(C−1(µ(m)

sx + µl0)) + α exp(C−1zst−1)
)

(3.102)

where µl0 is the spectral distortion term in the cesptral coefficient domain. Note that due

to the dependency on the previous observation vector zst−1, the adapted mean vector varies

with respect to time t. The µl0 and the linear prediction coefficient α can be estimated from

adaptation data using an EM algorithm. During decoding, the acoustic model is adapted at

every frame.

Dynamic model adaptation is also explored in [41], where a de-reverberation module

is used to produce a sequence of clean speech estimates (x̂t)
T
t=1. To compensate for the

dynamic uncertainty caused by the de-reverberation module, a combination of static and

dynamic model adaptation was used. For the m-th Gaussian component, the likelihood of zt

is evaluated by:

p(zt|m, t) = N (x̂t;µ
(m)
x ,LΣ(m)

x LT + AΣtA
T) (3.103)

where L is used for static variance compensation, while A is the matrix for dynamic variance

compensation with the time varying uncertainty Σt. In [41], a simple form is used for the
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Algorithm 3.1: Recursion in the Modified Viterbi decoding algorithm presented in
[212].

for t=1, . . . , T do
for each state j do

• γ
(j)
t = maxi{γ(i)

t−1 · aij · p(zst |qt = j, qt−1 = i)}
where

p(zst |qt = j, qt−1 = i) ≈
∫
p(zst |xst , (x̂st−τ |i)nτ=1,ht)p(ht|η)p(xst |qt = j) dxst dht

(3.106)

• Update state dependent enhanced feature (x̂st−τ |j)nτ=0

end

end

uncertainty term: Σt is assumed to be diagonal and is calculated as the differences between

observed and de-reverberated speech vectors.

Dynamic model compensation is further extended in [212], in which conventional Viterbi

decoding is modified to perform a frame-by-frame model compensation. In contrast to most

reverberant robustness work, a time varying reverberant observation model is assumed in

[212], i.e., the observation vector zst is generated according to the following mismatch function

1 :

zst = C log

(
n∑
δ=0

exp(C−1(xst−δ + ht−δ))

)
(3.104)

where ht = [hT
t , · · · ,hT

t−n]T follows a reverberant observation model,

ht ∼ N (µh,Σh) (3.105)

The parameter of the reverberant observation model, η = (µh,Σh), is independent of time t.

Given this reverberant observation model η, the core recursion part in the Viterbi decoding

algorithm is modified as shown in Algorithm 3.1 2, in which, γ
(j)
t is the Viterbi score of the

partial path ending at state j at time t, aij is the transition probability from state i to state

j, qt is the state at time t. The integral in Eq. (3.106) is approximated by its maximal value

1The cepstral coefficient domain mismatch function is used for the illustration purpose while work in [212]
used a log Mel-spectrum domain mismatch function.

2Note that only static parameters are used, as the algorithm in [212] only handles static parameter com-
pensation.
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of the integrand, therefore it becomes the following constrained optimisation:

(x̂st , ĥt) = max
xst ,ht

p(ht|η)p(xst |j)

subject to zst = C log

(
n∑
δ=0

exp(C−1(xst−δ + ht−δ))

)
(3.107)

To solve this constrained optimisation problem, the clean speech vector, (xst−τ )nτ=1, needs to

be known in advance. This is replaced by (x̂st−τ |i)nτ=1, which is recursively computed and

updated as the by-product of the previous optimisation for state i at time t − 1. This is

referred to as the REMOS model. Compared with the conventional Viterbi algorithm, the

state emitting distribution p(zst |qt, qt−1) not only depends on the current state qt = j, but also

the previous state qt−1 = i. Furthermore, a clean speech estimate (x̂st |j) is computed for every

state and is cached to compute enhanced features for the future frames. It is demonstrated

that REMOS maintains high word accuracies even in severely reverberant environments and

it exhibits a high flexibility to the changes of speaker positions and even changes of the room

due to its time varying reverberation model assumption. However, this accuracy comes at a

high cost. It is clear from Algorithm 3.1 that the optimisation problem needs to be solved for

every frame and every pair of current state and preceding state. The computational cost is

prohibitive even for small vocabulary tasks. Moreover, REMOS only compensates the static

parameters and uses single Gaussian HMM models.

This section has discussed two main approach to reverberant model adaptation: the static

and dynamic reverberant model adaptation approaches. It is also interesting to compare these

two approaches. The static model adaptation nevertheless introduces smoothness over speech

trajectories and thus sacrifices modelling accuracy. However, the dynamic model adaptation

approach, although it models the reverberation more accurately, is computationally expensive,

as a large number of Gaussian components need to be adapted for every frame. This is not

practical for medium to large vocabulary speech recognition. Inspired by the static model

adaptation approach, Chapter 4 will present a new model-based approach to robust speech

recognition in reverberant environments. In contrast to existing static model adaptation

schemes such as [103] and [198], the preceding clean speech frames are not inferred from

the preceding states. Instead, extended statistics are explicitly extracted at the Gaussian

component level. These statistics are then used to represent the preceding clean speech frames.

This gives two advantages over the existing schemes. One is that there is no need to determine

the preceding states. The other advantage is that the distribution of preceding frames is

now conditioned on Gaussian components, which gives a more detailed representation of
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preceding frames than the distribution conditioned on the state. This also enables an efficient

reverberant noise model estimation procedure using the ML criterion.

3.4 Adaptive Training

In the previous sections, a number of adaptation schemes were discussed. These schemes are

designed to adapt well-trained acoustic models. Specially collected and well controlled data

are used to build the acoustic models, which often exhibit minimal unwanted variations. In

this way, it is expected that the statistical algorithms presented in Chapter 2 can build acoustic

models that reflect only the desired, phone, variability. However, it is often impractical to

collect a large amount of well-controlled data from the same source. This has led to a growing

trend towards building speech recognition systems on found data. For example, when building

speech recognition systems for a broadcast news transcription task, it is possible to also include

data collected for other tasks, e.g., conversational telephone speech data. As found data are

collected from various acoustic conditions and exhibit a broad range of variability, they are

non-homogeneous in nature.

The simplest approach to build acoustic models on found data is to treat them as a single

homogeneous block regardless of the differences in acoustic conditions. This is normally

referred to as multi-style or multi-condition training. The problem with this approach is that

acoustic models trained in this way represent not only the desired variability but also many

other unwanted, non-speech, variabilities as well. All the variabilities are represented using a

single acoustic model, which sacrifices the ability to discriminate desired variabilities.

The concept of adaptive training, first proposed in [9], is an alternative approach to train

acoustic models on non-homogeneous data. The basic idea of adaptive training is to separate

the desired or intrinsic variabilities from the unwanted or extrinsic variabilities: a canonical

model is built to represent the intrinsic variability while the extrinsic variabilities are modelled

by a set of transforms. This is a natural concept for speech recognition. Many related schemes

can be viewed as instances of adaptive training. For example, a number of schemes, like

CMN/CVN [11] and Gaussianisation [208], are designed to normalise feature vectors such that

extrinsic variabilities can be reduced in the feature space. This was then extended to model-

dependent feature normalisation, for instance, vocal tract length normalisation (VTLN) [146],

where feature normalisation is done via maximising the log-likelihood of normalised data with

respect to the back-end acoustic model. Model-based adaptive training was first proposed in

[9] under the name of speaker adaptive training, where a set of model transforms (e.g., MLLR

in [9]) are used to represent the speaker variability, and the canonical model is estimated given
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all the speaker transforms. This was subsequently extended to adaptively training of multi-

cluster HMMs [70] and also noise adaptive training [45, 108, 122, 159]. Since the focus of this

thesis is model-based approaches to robust speech recognition, the notion of adaptive training

will be used to stand for the model-based adaptive training schemes in the rest of this thesis.

In adaptive training, rather than using all the multi-condition data as a single block, the

training data O is split into a set of homogeneous blocks, {O(1), · · · ,O(R)}, each of which has

the same acoustic condition. Two sets of parameters are then used to separately model the

intrinsic and extrinsic variabilities:

• A set of model transforms {T (1), · · · , T (R)}.
A set of R model transforms are used to represent the extrinsic variabilities in each of

the R homogeneous data blocks. The transforms are used to adapt the acoustic model

Mc to each acoustic condition:

M(r) = F(Mc; T (r)) ∀r (3.108)

where F is the mapping function; Ô(r) is the normalised features for the r-th block, and

M(r) is the r-th adapted model.

• A canonical model Mc.

Given the model transforms for each homogeneous block, an acoustic model Mc can

be built on all the training data. As the extrinsic variabilities are represented by the

transforms, the acoustic model Mc represents the intrinsic variabilities and will be

referred to as the canonical model. The canonical model is estimated by maximising the

following objective function:

Mc = arg max
M

R∑
r=1

L(O(r);M(r))

= arg max
M

R∑
r=1

L(O(r);F(Mc; T (r))) (3.109)

where L(O;M) is the criterion function to be maximised. The ML objective function is

normally used. Since the extrinsic variabilities are “absorbed” by the model transforms,

the canonical model represents the intrinsic attributes of speech. Hence, it is expected

to be more amenable to adaptation than a multi-condition trained acoustic model.

It is worthwhile emphasising that the canonical model is estimated given the model transform.

Therefore, the canonical model cannot be used directly; it must be adapted by an appropriate

transform. This often requires multi-pass decoding where the first past can be performed using

multi-condition trained acoustic models.
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Algorithm 3.2: The ML-SAT algorithm.

Given: The observation sequences {O(r)} for R homogeneous blocks and their
associated transcription {H(r)} ;
Output: A canonical model Mc which maximises the likelihood function in Eq.
(3.110) ;
1. Initialisation:

Initialise the canonical model Mc as Mc,0 using the SI model ;

Initialise the transform T (r) as T (r)
0 using the identity transform ;

2. Iterating:
for k=1, . . . , K do
• update speaker transforms by:
for r=1, . . . , R do

T (r)
k =

arg maxT
∑
θ p(θ|H(r),Mc,k−1, T

(r)
k−1,O

(r))
∑

t log p(o
(r)
t |θt,Mc,k−1, T )

end
• update the canonical model by:

Mc,k = arg maxM
∑

r

∑
θ p(θ|H(r),Mc,k−1, T

(r)
k ,O(r))

∑
t log p(o

(r)
t |θt,M, T (r)

k )

end
3. Finish:

The optimal canonical model Mc is given by Mc,k

3.4.1 Speaker Adaptive Training

In speaker adaptive training, a set of speaker transforms {T (r)} are estimated for each speaker

in the training data. The canonical model Mc is built on all the data given the speaker

transforms. Assuming that there are R speakers in the training data, the ML speaker adaptive

training (ML-SAT) is to maximise the log-likelihood function of two sets of parameters on R

speakers’ data:

L(Mc, {T (r)}) =
R∑
r=1

log p(O(r);H(r),Mc, T (r)) (3.110)

where {H(r)} is the transcription of the r-th speaker’s data.

Due to the hidden states and Gaussian components in GMM-HMM models, the above

log-likelihood function is normally maximised using EM with an auxiliary function defined

by

Q(M̂c, {T̂ (r)}) =
∑
r

∑
θ

p(θ|H(r),Mc, T (r),O(r))
∑
t

log p(o
(r)
t |θt,M̂c, T̂ (r)) (3.111)

where θ is the hidden component sequence 1, p(θ|H(r),Mc, T (r),O(r)) is the posterior prob-

1As in the standard HMMs case, the symbol θ is used to indicate a sequence of both hidden state and
hidden Gaussian component. This allows a convenient notation to derive formula for updating the Gaussian
component parameters.
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ability of a particular hidden component sequence for the r-th speaker’s data; θt is the t-th

hidden component in θ, and o
(r)
t is the t-th observation in the r-th block; M̂c, {T̂ (r)} are the

parameters to be updated in M-step. Jointly maximising the likelihood function with respect

to the canonical model and the speaker transforms is difficult, and an iterative procedure

illustrated in Algorithm 3.2, is used.

Depending on the form of speaker model adaptation, a number of speaker adaptive training

schemes can be derived. Among them, linear transform-based speaker adaptive training, e.g.,

[9, 67] and cluster-based adaptive training [68] are two widely used schemes.

3.4.1.1 Linear Transform-based Speaker Adaptive Training

Linear transform-based adaptation schemes are widely used for speaker adaptation. Hence, it

is natural to extend linear transform-based adaptation schemes to speaker adaptive training

(SAT). The concept of SAT was first proposed in [9], in which the MLLR transform was used

for speaker adaptation. This is normally referred to as MLLR-based SAT. The m-th mean

vector µ(m) is adapted to µ(mr) for the r-th speaker:

µ(mr) = A(r)µ(m) + b(r) = W(r)ξ(m) (3.112)

where W(r) = [A(r), b(r)] is the r-th speaker transform and ξ(m) = [µ(m)T, 1]T. Note that Eq.

(3.112) is similar to the Eq. (3.8), except the index of an homogeneous block (in this case, the

speaker index) is used to emphasise that the canonical model estimation depends on all the

speaker transforms 1. With this adaptation form, the general auxiliary function for adaptive

training in Eq. (3.111) can be written more explicitly as follows:

Q(M̂c;Mc) = −1

2

∑
r,m,t

γ
(mr)
t

{
log |Σ̂(m)|+ (o

(r)
t −W(r)ξ̂(m))TΣ̂(m)−1(o

(r)
t −W(r)ξ̂(m))

}
(3.113)

where the canonical model Mc = {(µ(m),Σ(m))} and γ
(mr)
t is the posterior probability of

o
(r)
t in component m at time t. It is shown in [9] that the ML update of the canonical mean

vectors can be performed by

µ̂(m) = G(m)−1k(m) (3.114)

where G(m) and k(m) are the statistics collected at the component level:

1It is also possible to use regression trees instead of a global transform. However, for the sake of notation
convenience, only the global transform is used. Extending to the use of a regression tree in adaptive training
is straightforward.
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G(m) =
∑
r,t

γ
(mr)
t A(r)TΣ(m)−1A(r)

k(m) =
∑
r,t

A(r)TΣ(m)−1
(
o

(r)
t − b(r)

) (3.115)

It is difficult to update the mean and variance simultaneously in the MLLR-based SAT.

Variance update is normally performed after mean update, and is very similar to the standard

variance update formulation:

Σ̂(m) = diag

(∑
r,t γ

(mr)
t (o

(r)
t −W(r)ξ̂(m))(o

(r)
t −W(r)ξ̂(m))T∑

r,t γ
(mr)
t

.

)
(3.116)

A practical limitation of the MLLR-based SAT scheme can be seen from the required

statistics in Eqs. (3.115): it needs to store a full matrix, G(m), for every Gaussian component.

For a large vocabulary ASR system which often has over 10,000 components, this requires a

considerable amount of memory and computational load. Furthermore, the variance update

needs to be performed in a separate iteration. Due to this limitation, MLLR-based SAT is

less frequently used in large vocabulary ASR systems than the following CMLLR-based SAT

scheme [67].

In CMLLR-based SAT, the speaker adaptation on training data is performed using the

CMLLR scheme. As the CMLLR transform can be performed to transform the features

rather than the model parameters, the adaptive training of the canonical model parameters

can be more easily implemented after a feature transform. To illustrate this, the formulation

of feature transform on the observation vector in Eq. (3.25) is rewritten in the following with

the explicit notations of the speaker index r and the regression base class pm:

ô
(mr)
t = A(r,pm)o

(r)
t + b(r,pm) = W(r,pm)ζ(r,pm) (3.117)

where pm is the regression base class for component m, ô
(mr)
t is the transformed observa-

tion vector for component m, W(r,pm) is the linear transform for the base class pm and r-th

homogeneous block. Note that due to the use of regression tree here, different linear trans-

forms are applied according to the back-end components, and the CMLLR transform here is

a model-based transform. The auxiliary function for canonical model ML update is expressed

as:

Q(M̂c,Mc) = −1

2

∑
r,m,t

γ
(mr)
t

{
log |Σ̂(m)−1|+ (o

(mr)
t − µ̂(m))TΣ̂(m)−1(o

(mr)
t − µ̂(m))

}
(3.118)
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Figure 3.12: Illustration of cluster based adaptive training.

Comparing this with the standard auxiliary function, the main difference is that the trans-

formed observation o
(mr)
t is used instead of the original observation o

(r)
t . The update formulae

are given by:

µ̂(m) =

∑
r,t γ

(mr)
t o

(mr)
t∑

r,t γ
(mr)
t

(3.119)

Σ̂(m) =

∑
r,t γ

(mr)
t (o

(mr)
t − µ(m))(o

(mr)
t − µ(m))T∑

r,t γ
(mr)
t

(3.120)

As these update formula are very similar to those in the standard Baum-Welsh algorithm,

the adaptive training can be performed with the similar computational cost and memory

load. As a result, this CMLLR-based SAT scheme is widely used in the state-of-the-art large

vocabulary ASR systems.

3.4.1.2 Cluster-based Adaptive Training

Cluster-based adaptive training (CAT)[68] is an alternative approach to adaptive training. In

CAT, rather than transforming a single acoustic model as in the linear transform-based adap-

tive training, multiple clusters are interpolated where the interpolation weights are speaker

dependent. This is illustrated in Figure 3.12. When the weights are binary vectors or hard

weights, this scheme reduces to the traditional cluster dependent modelling, where a particular

homogeneous block is associated with a specific acoustic model. The CAT or eigenvoices [137]

schemes generalise the cluster dependent modelling where speaker-dependent soft weights are

used.

In a standard CAT model, different clusters share the same covariance matrices, transition

matrices and mixture weights. Only the mean vectors differ between clusters. In this way,
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the model adaptation using a C-cluster CAT model can be expressed as:

µ̂(mr) =

C∑
c=1

λ(r,pm)
c µ(m)

c = M(m)λ(r,pm) (3.121)

where pm is the regression base class of the component m, µ̂(mr) is the adapted mean for the

r-th speaker, λ(r,pm) = [λ
(r,pm)
1 , · · · , λ(r,pm)

C ]T is the weight vector for the base class pm and

the r-th speaker, and

M(m) = [µ
(m)
1 , · · · ,µ(m)

C ] (3.122)

µ
(m)
c is the c-th cluster mean for the component m. A bias cluster is often used, whose weight

is fixed as 1. In this case, the adapted mean is also expressed as:

µ̂(mr) = µ(m) +

C∑
c=1

λ(r,pm)
c µ(m)

c = µ(m) + M(m)λ(r,pm) (3.123)

where µ(m) is the bias, and M(m) is the non-bias cluster parameters.

The ML-CAT training algorithm is used to estimate two sets of parameters: the canonical

model parameters Mc = {(M(m),Σ(m))} and the speaker transforms {T (r)|r = 1, · · · , R} in

which T (r) = {λ(r,p)|p = 1, · · · , P}. Again, interleaved updates of two sets of parameters are

used. The auxiliary function of the canonical model parameters for CAT can be expressed as:

Q(M̂c;Mc) = −1

2

∑
r,m,t

γ
(mr)
t

{
log |Σ̂(m)|+ (o

(r)
t − M̂(m)λ(r,pm))TΣ̂(m)−1(o

(r)
t − M̂(m)λ(r,pm))

}
(3.124)

By differentiating the above auxiliary function with respect to the canonical model parameters

and equating it to zero, the ML update of canonical model parameters can be obtained by:

M̂(m) = G(m)K(m)−1 (3.125)

Σ̂(m) = diag

{
L(m) − M̂(m)K(m)∑

r,m,t γ
(mr)
t

}
(3.126)

where

G(m) =
∑
r

(
∑
t

γ
(mr)
t )λ(r,pm)λ(r,pm)T (3.127)

K(m) =
∑
r,t

γ
(mr)
t λ(r,pm)o

(r,pm)T
t (3.128)

L(m) =
∑
r,m,t

γ
(mr)
t o

(r)
t o

(r)T
t (3.129)



CHAPTER 3. ACOUSTIC MODEL ADAPTATION AND ROBUSTNESS 84

The auxiliary function for the r-th weight vector update is:

Q(T̂ (r); T (r)) = −1

2

∑
t,m

(o
(r)
t −M(m)λ̂(r,pm))TΣ(m)−1(o

(r)
t −M(m)λ̂(r,pm)) (3.130)

Therefore, the ML update of the r-th transform can be performed by:

λ̂(r,p) = G
(r,p)−1
w k

(r,p)
w (3.131)

where

G
(r,p)
w =

∑
m∈p

∑
t

γ
(mr)
t M(m)TΣ(m)−1M(m) (3.132)

k
(r,p)
w =

∑
m∈p

∑
t

γ
(mr)
t M(m)TΣ(m)−1o

(r)
t (3.133)

and m ∈ p means the summation is over the components which belongs to the base class p.

Compared with linear transform-based adaptive training, only a small number of parameters,

C parameters for each base class and each speaker, need to be estimated in CAT. As a

consequence, the CAT scheme is suitable for very rapid speaker adaptation.

3.4.2 Noise Adaptive Training

The concept of adaptive training has also been extended to noise adaptive training. Most

of the environmental robustness techniques described in section 3.3 assume the back-end

acoustic model is built on the clean data. There are two major limitations to use the clean-

trained acoustic models. The first one is that this requires training on carefully controlled

clean data and the amount of clean data is often limited in practice. The second limitation is

that most model compensation schemes are based on some mismatch function, which makes

many approximations about how clean speech is distorted by the environment. Adaptive

trained canonical acoustic models will take the approximations into account. This is helpful

to address the approximation errors in deriving the mismatch functions.

Compared with feature-based noise adaptive training schemes, e.g., [45], model-based

noise adaptive training schemes can propagate the uncertainty caused by environment noise

to the back-end acoustic models [160]. This approach has been extensively studied in recent

years. Two notable pieces of work in this category are VTS-based adaptive training (VAT)

in [122] and Joint adaptive training (JAT) [159]. In the following, the VAT algorithm will be

presented to illustrate noise adaptive training.

In line with the adaptive training framework, there are two sets of parameters to be

estimated on R homogeneous data blocks {Y(r)} in a noise adaptive training scheme 1: the

1In order to distinguish different domains, rather than using O or ot to denote the observation vector as
in the previous section, y is used to denote the observed the noisy speech, while x is used to denote the clean
speech.
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canonical model Mc = {(µ(m)
x ,Σ

(m)
x )} and a set of noise transform parameters Φ = {Φ(r)}.

Note a homogeneous data block is now a block of data which shares the same noise condition.

In the case of VTS-based model compensation Φ(r) = (µ
(r)
sn ,µ

(r)
h ,Σ

(r)
n ). The canonical model

and the noise transform parameters are estimated to maximise the likelihood of training data.

This is done by optimising the following auxiliary function in the EM framework:

Q(M̂c, {Φ̂(r)}) =
∑
t,m,r

γ
(mr)
t log p(y

(r)
t ; µ̂(mr)

y , Σ̂(mr)
y ) (3.134)

where y
(r)
t is the t-th observation vector in the r-th block; γ

(mr)
t is the posterior probability

of y
(r)
t in component m at time t, which is calculated using the current canonical model Mc

and current noise transform parameters Φ(r); µ̂
(mr)
y and Σ̂

(mr)
y are the compensated model

parameters, expressed by the following equations:

µ̂(mr)
sy = f(µ̂(m)

sx , µ̂
(r)
h , µ̂(r)

sn ) (3.135)

Σ̂(mr)
sy = diag

(
J(mr)
x Σ̂(m)

sx J(mr)T
x + J(mr)

n Σ̂(r)
sn J(mr)T

n

)
(3.136)

for the static parameter part and

µ̂
(mr)
∆y = J(m)

x µ̂
(m)
∆x (3.137)

Σ̂
(mr)
∆y = diag

(
J(mr)
x Σ̂

(m)
∆x J(mr)T

x + J(mr)
n Σ̂

(r)
∆n J(mr)T

n

)
(3.138)

for the delta parameter part. Delta-delta parameters are compensated in a similar way to

the delta parameters. Note f is the mismatch function defined in Eq. (3.33), and J
(mr)
x and

J
(mr)
n are the Jacobian matrices of the mismatch function with respect to the clean speech

and noise respectively, defined for the m-th component and the r-th data block. These

Jacobian matrices are evaluated using the current model parameters Mc and the current

noise transform Φ(r).

The two sets of parameters are optimised in an interleaved fashion. Given the canonical

model parameters, estimation of noise model parameters was described in Section 3.3.2.3.

In parallel with the noise model parameter estimation, there are two main approaches to

estimating the canonical model parameters. One is the EM-based approach, e.g., [108], where

the clean speech at time t is treated as another latent variable and another level of EM is

introduced. The auxiliary function becomes

Q(M̂c;Mc) =
∑
r,t,m

γ
(mr)
t

∫
p(xt|y(r)

t ,m,Mc,Φ
(r)) logN (xt; µ̂

(m)
x , Σ̂(m)

x ) dxt (3.139)
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With this auxiliary function, the canonical model update formula are thus

µ̂(m)
x =

∑
r,m,t γ

(mr)
t E{xt|y(r)

t ,m,Mc,Φ
(r)}∑

r,m,t γ
(mr)
t

(3.140)

Σ̂(m)
x =

∑
r,m,t γ

(mr)
t E{xtxT

t |y
(r)
t ,m,Mc,Φ

(r)}∑
r,m,t γ

(mr)
t

− µ̂(m)
x µ̂(m)T

x (3.141)

An approximation is needed to calculate the posterior probability p(xt|y(r)
t ,m,Mc,Φ

(r)),

e.g., using VTS to approximate the static mismatch function for each Gaussian component

m:

yst |m ≈ f(µ(m)
sx ,µ

(r)
h ,µ(r)

sn ) + J(mr)
x (xst − µ(m)

sx ) + J(mr)
n (ns

t − µ(m)
sn ) (3.142)

Note that the expansion point is determined by the current canonical model parameters and

the current noise model parameters. It does not depend on the parameters to be estimated

during the M-step. This is similar to the factor analysis model [205] and the posterior prob-

ability p(xst |yst ,m,Mc,Φ
(r)) is again Gaussian. However, due to the VTS approximation of

the mismatch function, the Jacobian matrices are fixed while they should change with re-

spect to the model parameters. Therefore the resultant algorithm cannot guarantee that the

likelihood increases in every step.

The other approach to canonical model parameter estimation is to use standard gradient

descent schemes to directly optimise the canonical model. This approach is explored in

[122, 158], where slightly different optimisation schemes are used. As algorithms developed

in [122] are used in this thesis, the adaptive training scheme presented therein will be briefly

reviewed. In the scheme presented in [122], a second-order method is used to directly optimise

the auxiliary function in Eq. (3.134) with respect to the canonical model parameters. For

example, the static mean update has the form:

µ̂(m)
sx = µ(m)

sx − ηµ

(
∂2Q

∂µ
(m)
sx ∂µ

(m)
sx

)−1
∂Q
∂µ

(m)
sx

(3.143)

where ηµ is a step size; the gradient and the Hessian matrix are evaluated at the current

model parameters given by:

∂Q
∂µ

(m)
sx

≈ 1

2

∑
t,r

γ
(mr)
t J(mr)T

x Σ(mr)−1
sy (y

s(r)
t − µ(mr)

sy ) (3.144)

∂2Q
∂µ

(m)
sx ∂µ

(m)
sx

≈ −1

2

∑
t,r

γ
(mr)
t J(mr)T

x Σ(mr)−1
sy J(mr)

x (3.145)
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Note the approximation sign is used because the Jacobian matrix J
(mr)
x is assumed to be

independent of the model parameters which are to be estimated. Similarly, the static variance

is updated by:

Σ̂(m)
sx = Σ(m)

sx − ησ

(
∂2Q

∂Σ
(m)
sx ∂Σ

(m)
sx

)−1
∂Q

∂Σ
(m)
sx

(3.146)

where ησ is another step size, and

∂Q
∂σ

(m)2
sx,i

=
1

2

∑
t,r

γ
(mr)
t

D∑
d=1

(J
(mr)
x )2

diσ
(m)2
sx,i

σ
(mr)2
sy,d

1−
(y

s(r)
t,d − µ

(mr)
y,d )2

σ
(mr)2
sy,d

 (3.147)

∂2Q
∂σ

(m)2
sx,i ∂σ

(m)2
sx,j

≈ −1

2

∑
t,r

γ
(mr)
t


D∑
d=1

(J
(mr)
x )2

diσ
(m)2
sx,i (J

(mr)
x )2

djσ
(m)2
sx,j

σ
(mr)4
sy,d

·

1− 2
(y

s(r)
t,d − µ

(mr)
y,d )2

σ
(mr)2
sy,d


−1[i = j]

D∑
d=1

(J
(mr)
x )2

diσ
(m)2
sx,i

σ
(mr)2
sy,d

1−
(y

s(r)
t,d − µ

(mr)
y,d )2

σ
(mr)2
sy,d

 (3.148)

(J)ij is the (i, j)-th element of matrix J; y
s(r)
t,d the i-th static parameter of y

(r)
t , σ

(m)2
sx,i and

σ
(mr)2
sy,i are the i-th variance of Σ

(m)
sx and Σ

(mr)
sy respectively. Again, when calculating the

Hessian matrix, the Jacobian matrix is assumed to be fixed. Similar equations can be derived

to update canonical model parameters for the dynamic features. Since the Hessian matrix is

not guaranteed to be negative definite and is sometimes near to singular, extra care must be

taken to make sure the update direction is correct. This is usually done by regularising the

Hessian matrix such that it is sufficiently negative definite, i.e.,

Σ̂(m)
sx = Σ(m)

sx − ησ

(
∂2Q

∂Σ
(m)
sx ∂Σ

(m)
sx

− αI

)−1
∂Q

∂Σ
(m)
sx

(3.149)

To avoid negative variance, a change of variable, σ̃
(m)2
x,i = log σ

(m)2
x,i , can be used. A heuristic,

e.g., limiting the step size of variance update at each iteration in [159], can be helpful to

stabilise the estimation process.

3.5 Summary

This chapter has reviewed adaptation schemes to improve the robustness of speech recognition

systems. These schemes are designed to compensate the mismatch between training and test

data caused by various acoustic factors, including speaker and environment. This is usually

done by either normalising the feature vectors (feature-based approach) or compensating

acoustic models (model-based approach). Adaptation schemes developed to compensate the
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speaker factor are often known as speaker adaptation, while schemes designed to compensate

the environment effects are commonly known as environmental robustness. Widely used

speaker adaptation schemes, such as MAP, MLLR and CMLLR, were first reviewed in section

3.2. The first step in designing an environment robustness scheme is often to specify how the

concerned speech signals are altered by the acoustic environments. Therefore, the impact of

acoustic environments were reviewed in section 3.3.1, where a number of mismatch functions

were derived to describe how the speech signals are corrupted by additive noise, channel

distortion and reverberation in different scenarios. Based on these mismatch functions, a

wide range of robustness schemes have been proposed in the literature. Some of them were

reviewed in Section 3.3.2 for additive noise and channel distortions, and Section 3.3.3 for

reverberant distortions. Adaptation schemes can also be used to “absorb” the non-speech

variabilities on inhomogeneous training data. In this way, a canonical model can be trained

to model only the speech variability. This is the adaptive training framework discussed in

Section 3.4. Speaker adaptive training and noise adaptive training schemes were reviewed in

section 3.4.1 and 3.4.2 respectively. Maximum likelihood estimation of the model/transform

parameters was also presented in these sections.



CHAPTER 4
Reverberant

Environmental
Robustness

In section 3.3, the impact of reverberation on ASR systems was briefly discussed. To combat

reverberation distortion, three approaches have been developed in the literature: robust signal

processing techniques such as linear filtering; feature enhancement schemes and model com-

pensation schemes. These approaches were briefly reviewed in section 3.3.3. In this chapter,

a model-based approach to reverberant environmental robustness is proposed and discussed

in detail. Section 4.1 will compare the additive, convolutional and reverberant noises and the

corresponding mismatch functions. Based on these mismatch functions, a reverberant model

compensation scheme will be developed in section 4.2. ML estimation of noise model param-

eters will be also presented. To enable acoustic model training on found data, an approach

to training acoustic models adaptively on multi-condition reverberant data will be explored

in section 4.3.

89
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4.1 Reverberant Environment

When speech signals are recorded using a close-talking microphone, they are relatively clean:

the background noises can be suppressed to a great extent and there is only one direct acous-

tic path from the speaker’s mouth to the microphone. However, when the speech signals are

produced in an enclosed room (e.g., office, living room or lecture hall) and captured by a

distant microphone, there are multiple acoustic paths since the wavefront of the speech is

reflected at the walls and other objects in the room. These reflections, which are delayed and

attenuated copies of the original clean signals, are also captured by the distant microphone,

resulting in reverberation distortion. In contrast to the short-term convolutional distortion

(a.k.a. convolutional noise), such as microphone channel characteristic differences, the length

of reverberation (ranging from 200ms to 1s, or even longer) is much longer than the length of

analysis window (typically 25ms) commonly used in automatic speech recognition systems.

Therefore the reverberation has a dispersive effective on the extracted feature vectors: the

features are smeared along the time axis so that the current feature vector depends on the

previous several feature vectors. Clearly, this invalidates the conditional independent assump-

tion and significantly degrades the performance of HMM-based speech recognition systems.

The recognition performance can be made even worse, when additive noise, such as back-

ground noise and interfering speakers’ talking,is also picked up by the microphone, resulting

in additive noise or background noise distortion. In this section, the effects of reverberant,

convolutional and additive noise on ASR systems are discussed in detail.

4.1.1 Additive, Convolutional and Reverberant noise

Among the three main noise types, additive noise is the most common source of distortions. It

can occur in almost any environment. Additive noise is the sound from the background, cap-

tured by the microphone, and linearly mixed with the target speech signals. It is statistically

independent and additive to the original speech signals. Additive noise can be stationary (e.g.,

aircraft/train noise and noise caused by ventilation fan), slowly changing (e.g., noise caused

by background music), or transient (e.g., in car noise caused by traffic or door slamming).

Convolutional noise is another major source of distortion that can adversely impact the

ASR performance. This kind of distortion is mainly due to the transmission channel, such as

microphones and telecommunication lines. A convolutional distortion is usually characterised

by the impulse response of the corresponding transmission system. If the length of the impulse

response is short compared to the analysis window, the distortion mainly causes spectral tilt
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Figure 4.1: Waveforms and spectrograms of clean and reverberation noise corrupted utterance
saying “he declined”. Top: waveforms; Bottom: spectrograms ; Left: clean signals; right:
reverberation noise corrupted signals.

[4]. This is because the convolution in the time domain is transfered to multiplication in the

frequency domain and addition in the cepstral domain.

When the length of impulse response is significantly longer, the nature of its impact on

the speech recognition systems is very different. In line with the conventional terminology

usage in the literature, distortion caused by the short-time impulse response (less than 30ms)

is referred to as “convolutional distortion” while the distortion caused by convolution with a

system which has a longer impulse response is referred to as “reverberation” in this thesis.

Reverberation is usually caused by multiple acoustic paths in an enclosed environment, such

as a room environment. The length of a room impulse response (RIR) is usually measured by

the so called reverberation time, T60, which is the time needed for the power of reflections of

a direct sound to decay by 60dB. The T60 value is usually significant longer than the analysis

window. For example, T60 normally ranges from 200ms to 600ms in a small office room,

400ms to 800ms in a living room, while in a lecture room or concert hall environment, it

can range from 1s to 2s or even longer. Figure 4.1 shows the impact of a reverberation noise

(T60=400ms) on both waveform and spectrogram. The detrimental effect of reverberation

noise is clearly displayed. On the waveform, the reverberant voice is stretching out between

syllables to fill in the gaps. This results in that segments with relatively weak energy are

substantially masked by the previous segments with strong energy[177]. On the spectrogram,

reverberation also causes a temporal smearing. The clear frequency structure in the clean

signal’s spectrogram is partially destroyed.

As the reverberation time is significantly longer than the analysis window, the effect of

reverberation on the short time Fourier transform (STFT) based feature vector (e.g., MFCC

and PLP) cannot be described as a function of the current clean feature vector only. Instead,

the reverberant noise corrupted feature vector depends on a few previous clean feature vectors.
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In the next section, the functional relationship between clean and corrupted feature vectors is

described by the so called mismatch functions. To model the joint effect of reverberation and

additive noise, the interaction between reverberation and additive noise is also considered.

4.1.2 Mismatch Functions

As discussed in section 3.3, the standard form used to describe the additive noise n(τ) and

short-term convolutional noise h(τ) corrupting the clean speech x(τ) is expressed as:

y(τ) = h(τ) ∗ x(τ) + n(τ) , (4.1)

where the length of h(τ) is less than the length of analysis window used for feature extraction.

Based on this time-domain mismatch function, the mismatch function in the cepstral domain,

relating the corrupted speech static MFCCs yst to the clean speech vector, xst , is written as:

yst =C log
(
exp(C−1(xst + µh)) + exp(C−1ns

t )
)

= f(xst ,µh,n
s
t ) , (4.2)

where s denotes the static parameters, nt is the noise MFCCs, µh the MFCC representation

of the convolutional noise, and C the DCT matrix. Normally, the convolutional noise µh is

assumed to be an unknown constant, while the additive noise nt is Gaussian distributed, i.e.,

nt ∼ N (µn,Σn). It is further assumed that additive noise is stationary, and thus the expected

values of noise dynamics, such as E(∆nt), E(∆2nt), are zero. The noise parameters Φn for Eq.

(4.2) are µh, µn
1 and Σn . Here, the subscript or superscript s and ∆ indicate the static and

delta parameters respectively. The continuous time approximation [86] can be used to derive

a mismatch function for the corresponding dynamic parameter mismatch function, e.g.,

∆yt ≈
∂yst
∂t

=
∂yst
∂xst

∂xst
∂t
≈ ∂yst
∂xst

∆xt (4.3)

As discussed in section 3.3.1.1, a few time domain mismatch functions can be derived to

describe the effect of additive noise in a reverberant environment. Since there are usually

many background noise sources in a typical reverberant environment, the mismatch function

in Eq. (3.38) for the diffuse noise source is widely used in the literature (e.g., [135, 150, 241]).

This time domain mismatch function is also investigated in this chapter. For convenience, it

is duplicated in the following equation:

z(τ) = hr(τ) ∗ x(τ) + n(τ) (4.4)

1Since µ∆n and µ∆2n are zero, µn is used to refer the static noise mean µsn for convenience.
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where n(τ) and hr(τ) are the additive and reverberant noise terms, z(τ), x(τ) and n(τ) are

the corrupted, clean and additive noise signals respectively.

Following [134], it is assumed that the cross-term and cross-band correlation can be ig-

nored. The effect of reverberant distortion in the cepstral domain can be approximated as a

combination of n + 1 frame-level distortion terms, µl = [µT
l0, · · · ,µT

ln]T, acting on a set of

preceding clean MFCC features, xst , · · · ,xst−n, i.e.,

zst = C log

(
n∑
δ=0

exp
(
C−1(xst−δ + µlδ)

)
+ exp

(
C−1ns

t

))
= g(xst , · · · ,xst−n,µl,n

s
t ) (4.5)

Note this equation was derived in Eq. (3.42), section 3.3.1.1. The detailed derivation can

be found in the Appendices. Similar to the mismatch function in Eq. (4.2), the additive

noise is assumed to be stationary and follows a Gaussian distribution. As a result, the noise

parameters Φ for Eq. (4.5) are µl, µn and Σn. Using the continuous time approximation,

a mismatch function for the dynamic parameters can be derived. For example, the delta

cepstral coefficients can be approximated by

∆zt ≈
n∑
δ=0

∂zst
∂xst−δ

∆xt−δ (4.6)

Apart from the continuous time approximation, it is also possible to use the extended VTS

technique [38] to derive the mismatch functions for dynamic parameters. As an example, the

delta cepstral coefficients can be expressed by the following equation using the extended VTS

technique:

∆zt = D

 zst+w
...

zst−w

 = D

 g(xst+w, . . . ,x
s
t+w−n,µl,n

s
t+w)

...
g(xst−w, . . . ,x

s
t−w−n,µl,n

s
t−w)

 , (4.7)

where D is the projection matrix which transforms a sequence of static cepstral coefficients

to the corresponding delta coefficients. Note that, the above equation uses the following

equations derived from Eq. (4.5):

zt−i = g(xst−i, . . . ,x
s
t−i−n,µl,n

s
t−i) i = −w, · · · ,+w (4.8)

It is obvious from the equation that using extended VTS to derive the mismatch function

for delta coefficients requires much more computation. Hence, in this work, the continuous

time approximation is used to derive the mismatch functions for dynamic cepstral coefficients.
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clean
speech x(τ)

short-term
convolution h(τ)

⊕ Room impulse
response h̃r(τ)

point background noise
n(τ)

⊕ corrupted
speech z(τ)

Figure 4.2: Point background noise source in a reverberant environment and the background
noise source is located far away from the microphone.

4.1.3 Alternative Mismatch Functions

In this section, some alternative forms of mismatch functions are discussed. These mismatch

functions can be also used in the reverberant noise model compensation framework which will

be described in section 4.2.

4.1.3.1 Additive Noise From a Point Source

The time domain mismatch function in Eq. (4.4) was derived in section 3.3.1.1 when either

the background noise is a diffuse noise source or the background noise is sufficiently close

to the microphone. In section 3.3.1.1, an alternative scenario, in which a point additive

noise source located far from microphones, was discussed. As a summary, the time domain

mismatch function can be expressed as (see section 3.3.1.1 and Figure 4.2)

z(τ) = h̃r(τ) ∗ (h(τ) ∗ x(τ) + n(τ))

= h̃r(τ) ∗ y(τ) (4.9)

where y(τ) = h(τ) ∗ x(τ) + n(τ) and h(τ) is a short-term convolution, and h̃r(τ) is the RIR

measured at the place where the background noise is emitted. Correspondingly, the cepstral

domain mismatch function for this scenario is

zst = C log

(
n∑
δ=0

exp(C−1(yst−δ + µ̃lδ))

)
= g̃

(
yst , . . . ,y

s
t−n, µ̃l

)
(4.10)

where µ̃l is another set of frame-level distortion terms, yst is the static MFCC of y(τ), and

yst = C log
(
exp(C−1(xst + µh)) + exp(C−1ns

t )
)

= f(xst ,µh,n
s
t ) (4.11)

Here, the noise model parameters Φ̃ are µl, µn, µh and Σn.
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4.1.3.2 Domain of Noise Combination

The mismatch function in Eq. (4.5) combines the energy from the Mel filter bank in the

magnitude domain (see the underlying assumptions in Appendix A). It is possible to combine

the energy in other domains [62] or optimise the phase factor as in [44, 47, 154]. This is referred

to as mismatch function optimisation. In fact, implementations of MFCC parameters differ

in that the Mel filter can be performed either on the magnitude or on the power domain.

Statistics about the speech and noise are usually only available in one domain. However,

as pointed out in [62], scaling these parameters accordingly, assuming that the variation of

the parameters within each of the Mel-spaced frequency bins is small, will yield the desired

domain statistics. Under this assumption, scaling statistics to the other domain is possible.

This only requires a simple change: the DCT matrix C is replaced by 1
γC. Applying this

substitution to Eq. (4.5), a more general form of mismatch function can be expressed as:

zst =
1

γ
C log

(
n∑
δ=0

exp
(
γC−1(xst−δ + µlδ)

)
+ exp

(
γC−1ns

t

))
(4.12)

where γ = 1 represents that noise and speech are linearly additive in the magnitude do-

main, and γ = 2 the power domain. Setting γ to a large value is to approximate the MAX

assumption [178] used in some masking schemes[204, 238].

4.2 Reverberant Model Compensation

From the mismatch functions in Eqs. (4.5) and (4.10), it can be observed that a reverberant

and additive noise corrupted static speech frame is a function of a window of n+1 static clean

speech frames xst , . . . ,x
s
t−n and the additive noise ns

t (or ns
t , . . . ,n

s
t−n to yield yst , . . . ,y

s
t−n).

Therefore, additional model statistics are needed to model this dependency.

4.2.1 Model Statistics

Figure 4.3 shows the generating process of reverberant observations (ignoring the dynamic

parameters) according to the mismatch function in Eq. (4.5). For simplicity, a scenario in

which n = 1 is shown in the figure. Inference on this dynamic Bayesian network (DBN)

is not practical as the number of states and components affecting the current state grows

exponentially. Approximations to this form are possible. For example, in [213] the Viterbi

decoding algorithm is modified where model parameters are adapted based on the current best

partial path. The model adaptation is done at each frame, which results in a large amount

of computation. Alternatively, the model parameters can be adapted prior to recognition,
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based on the estimated preceding states. This can be done by either using the intra-phoneme

preceding states or the context of biphone [198] or triphone [103] models. However, it is

difficult to infer a long preceding state sequence in this way, especially when tied-state cross

word triphone models are used.

qt−1 qt qt+1

mt−1 mt mt

xt−1 xt xt+1

zt−1 zt zt+1

nt−1 nt nt+1

Figure 4.3: Reverberant dynamic Bayesian network, ignoring the dynamic cepstral coeffi-
cients. qt and mt denote the state and component at time t,n = 1.

In this work, another form of approximation is used. The DBN is shown in Figure 4.4. In

this approximation, rather than an explicit dependence on the previous observation or states,

the observation vector zt is assumed to depend on an extended observation vector xt. In this

way, the standard Viterbi algorithm can be used for inference. This approximation results in

two forms of smoothing. First statistics are smoothed over all possible previous states. This

effect is moderated for the context dependent models as the left context automatically limits

the range of possible states. The second impact is the smoothing over components for the

previous state. It is worth noting that this is exactly the same form of approximation that is

used in deriving the standard dynamic parameters.

It is also important to decide which form of the probability distribution, p(xt|mt = m),

to use. To ensure that if there is no reverberant noise, the compensated model becomes the

original model, the following form is used:

xt =


xst
∆xt
∆2xt
x̃t

 = W

 xst+w
. . .

xst−n−w

 ∼ N (µ(m)
x ,Σ

(m)
x ) (4.13)
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qt−1 qt qt+1

mt−1 mt mt

xt−1 xt xt+1

zt−1 zt zt+1

nt−1 nt nt+1

Figure 4.4: Approximate reverberant environment dynamic Bayesian network. xt
is an extended observation vector which denotes the adjacent observation vectors
[xT
t−w−n, · · · ,xT

t+w]T when the t-th state and Gaussian component are q and m respectively.

where w is the window size to calculate the dynamic parameters, x̃t can be any vector,

provided W is square and invertible, and Σ
(m)
x can be approximated by a diagonal covariance

matrix. In this work, W is produced by

W = W ⊗ Id =

 w11Id · · · w1dId
... . . .

...
wd1Id · · · wddId

 (4.14)

where ⊗ denotes the Kronecker product, d is the dimension of xst , wij is the (i, j)-th element

of W; W uses the following form:

τ = w · · · τ = 0 · · · τ = −w · · · τ = −(n+ w)



i = 0 0 · · · 1 · · · 0
0i = 1 α(1)

i = 2 α(2)

i = 3 (
cos
(
iπ
L (τ + 0.5)

))
i,τ

...
i = L− 1

where L = n + 2w + 1, α(1) and α(2) are the vectors which are used to compute delta and
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delta-delta coefficients. This is equivalent to the following equations in a scalar form:

xt,j = xt,j ∀j

xt,d×i+j+1 = α(1)T

 xst+w,j
...

xst−w,j

 ∀j and i = 1, · · · , 2

xt,d×i+j+1 =
w∑

τ=−n−w
cos

(
iπ

L
(τ + 0.5)

)
xt+τ,j ∀j and i = 3, · · · , d× 2w + n+ 1

where xst+i,j is the j-th element of xst+i, xt,d×i+j+1 is the d× i+ j + 1 -th element of xt.

Using this form of W matrix ensures that the extended model statistics always agree

with the standard model statistics, and the compensated acoustic model falls back to the

VTS-compensated model when there is no reverberation noise.

Using this representation, it is simple to derive the clean speech statistics. For example,

the mean and covariance of spliced frames xse = [xsTt , · · · ,xsTt−n]T, 1 µ
(m)
sxe and Σ

(m)
sxe , can be

found using

µ(m)
sxe = Psµ

(m)
x ; Σ(m)

sxe = PsΣ
(m)
x PT

s (4.15)

where Ps is the matrix that projects xt to xe. Since the delta of xe, ∆xe, is also a linear

combination of xt, the mean and covariance of ∆xe, µ
(m)
∆xe and Σ

(m)
∆xe can be obtained in a

similar way, as shown in the following equations:

µ
(m)
∆xe = P∆µ

(m)
x ; Σ

(m)
∆xe = P∆Σ

(m)
x PT

∆ , (4.16)

where P∆ is the matrix which is used to project the extended vector xt to ∆xt. Similar

methods can be used to derive the model parameters of delta-delta cesptral coefficients.

It is clear from Eqs. (4.15) and (4.16) that the model statistics are M = {µ(m)
x ,Σ

(m)
x }.

The simplest way to estimateM is to use clean speech. However, this requires access to clean

data recorded in the target task, which is not always available in practice. An alternative

method is to adaptively estimateM from multi-condition data. Adaptive training ofM will

be discussed in section 4.3.

The above expressions describe the derivation of the “clean” statistics required by the

mismatch function in Eq. (4.5). Given the noise model parameters Φn = (µn,µh,Σn), it is

possible to derive the “noisy” statistics required by the mismatch function in Eq. (4.10). To

1Here, e is used to denote xs
e is an extended vector, which is obtained by cancatenating a window of static

features, xs
t , · · · ,xs

t−n . Note that xs
e is part of the vector projected by the W matrix in Eq. (4.13). This is

because the extended vector xt is a projection of both static and dynamic cepstral coefficients from time t to
t− n. To be able to derive the dynamic parameters, the extended vector needs to contain extra static frames,
i.e., from time t+ w to t− n− w.
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avoid computing a large number of Jacobian matrices, a linear approximation is used. For

example, the mean of yst−δ, µ
(m)
syδ , is given by

µ
(m)
syδ = f(µ(m)

sx ,µh,µn)

≈ f(µ(m)
sx ,µh,µn) + J(m)

x (µ
(m)
sxδ − µ

(m)
sx ) (4.17)

where

J(m)
x =

∂f(xs,h,ns)

∂x

∣∣∣
µ

(m)
sx ,µh,µn

and µ
(m)
sxδ is the mean of xst−δ, conditioning on the component m. µ

(m)
sxδ is a subvector of µ

(m)
sxe ,

which can be obtained by projecting µ
(m)
x using Eq. (4.15). Once µ

(m)
syδ (δ = −w, . . . n + w)

are known, the noisy delta statistics, µ
(m)
∆ye , can be obtained in the same way as µ

(m)
∆xe . Hence,

M = {µ(m)
y ,Σ

(m)
y } are used as the model statistics.

4.2.2 Model Compensation

In the previous section, approximate dynamic Bayesian networks were introduced which re-

quire extended model statistics to take account of the effect of previous clean speech frames

in the reverberant mismatch function. Since the mismatch functions are highly nonlinear,

additional approximations are needed to derive a model compensation form. In this thesis,

the vector Taylor series (VTS) expansion[5], discussed in section 3.3, was extended to handle

reverberant noise.

4.2.2.1 Reverberant VTS and Reverberant VTS-Joint Compensation

Using the mismatch functions in Eqs. (4.10 and 4.5), which take reverberant noise into

account, it is possible to extend the use of VTS to handle reverberant noise as well. Given the

extended model statisticsM = {µ(m)
x ,Σ

(m)
x } (orM = {µ(m)

y ,Σ
(m)
y } for Eq. (4.10)) described

in the previous section, the mismatch function in Eq. (4.5) can be expanded around the model

parameters M and the current noise parameters Φ, i.e.,

zst |m = g(xse,µl,n
s
t ) where xse ∼ N (µ(m)

sxe ,Σ
(m)
sxe )

≈ g(µ(m)
sxe ,µl,µn) + [J(m)

xe ,J(m)
ne ]

[
xse − µ

(m)
sxe

ns
t − µn

]
(4.18)

where

J(m)
xe = [J

(m)
x0 , · · · ,J(m)

xn ] ; J(m)
ne = I−

n∑
δ=0

J
(m)
xδ (4.19)
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and

J
(m)
xi =

∂g

∂xt−i

∣∣∣
µ

(m)
xe ,µl,µn

= CF
(m)
i CT, J(m)

ne = CF(m)
n CT (4.20)

F
(m)
i and F

(m)
n are two diagonal matrices whose q-th diagonal items, f

(m)
iq and f

(m)
n,q , are

f
(m)
iq =

exp(dTq (µ
(m)
xi + µli))∑n

j=0 exp(dTq (µ
(m)
xj + µlj)) + exp(dTq µn)

(4.21)

f (m)
n,q =

exp(dTq µn)∑n
j=0 exp(dTq (µ

(m)
xj + µlj)) + exp(dTq µn)

(4.22)

where dTq are the q-th row vector in the matrix C−1. The static model parameters are

therefore compensated by

µ(m)
sz = E{zst |m} = g(µ(m)

sxe ,µl,µn) (4.23)

For the dynamic model parameters, the continuous time approximation[86] can be applied

µ
(m)
∆z ≈ E

(
∂zt
∂t

∣∣∣m) = E
(
∂zt
∂xe

∂xe
∂t

∣∣∣m) = J(m)
xe µ

(m)
∆xe (4.24)

The delta-delta parameters can be compensated in a similar fashion. This compensation form

will be referred to as Reverberant VTS-Joint (RVTSJ) since it allows the joint estimation of

additive and reverberant noise, which will be demonstrated later.

A similar approximation can be also applied for the mismatch function in Eq. (4.10).

Performing an expansion of the function g̃() around µ
(m)
sye , µ̃l yields

zst |m = g̃(yse, µ̃l) ≈ g̃(µ(m)
sye , µ̃l) + J(m)

ye (yse − µ(m)
sye ) (4.25)

where yse consists of the stacked noisy frames yst , . . . ,y
s
t−n and

J(m)
ye = [J

(m)
y0 , · · · ,J(m)

yn ] ; J
(m)
yδ =

∂g̃

∂yst−i

∣∣∣
µ

(m)
sye ,µ̃l

(4.26)

With this expansion, the static mean is compensated using

µ(m)
sz = g̃(µ(m)

sye , µ̃l) (4.27)

Based on the same continuous time approximation, the delta parameters are compensated

using the following equation:

µ
(m)
∆z ≈ E

(
∂zt
∂t
|m
)

= E
(
∂zt
∂ye

∂ye
∂t
|m
)

= J(m)
ye µ

(m)
∆ye (4.28)
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The delta-delta parameters are compensated in the same way. This form of compensation

will be referred to as RVTS.

It is possible to compensate the variances as well. However, in initial investigations, it was

found that variance compensation is quite sensitive to the errors in the supervision hypothesis

and a reliable compensation is hard to obtain. Thus, in this work the variance compensation

is done using standard VTS, i.e., Σ
(m)
z = Σ

(m)
y , where the VTS noise model parameters Φn

are estimated via standard VTS noise estimation. Variance compensation for reverberant

environments will be left to future work in this thesis.

4.2.3 Noise Estimation

In the previous section, two model compensation forms, RVTS and RVTSJ, were described.

The noise parameters, Φ for RVTSJ or Φ̃ for RVTS, now need to be determined. Though

there exists a simple method to determine the frame-level distortion terms [103] based on the

known reverberation time T60, it is preferable to use the ML estimate of noise parameters, as

it yields a consistent fit with the reverberant data. ML estimation of noise parameters also

helps to address the incorrectness of the mismatch function.

Due to the nature of the RVTS mismatch function in Eq. (4.10), it is required to convert

the clean statistics to noisy statistics using Eq. (4.17). The joint estimation of reverberant and

additive noise parameters is complicated: additional assumptions (e.g., J
(m)
n is independent

of µh,µn) are needed to avoid expensive computation of a large number of Jacobian matrices.

In [73], a sequential ML estimation of noise parameters for the RVTS was presented, where

the additive and convolutional noise parameters, µn,µh and Σn, were first estimated using

standard VTS noise estimation, then the noisy statistics µ
(m)
ye were obtained, followed by

reverberant noise mean µ̃l estimation. In this thesis, the estimation of reverberant noise was

extended for RVTSJ mismatch function, which allows joint estimation of reverberant and

additive noise more easily. As both estimation algorithms share many of the same attributes,

the following presentation will focus on noise estimation for RVTSJ.

The estimation of the reverberant and additive noise means is done using the EM frame-

work, similar to the convolutional and additive noise mean estimation using EM. The following

auxiliary function is maximised:

Q(µ̂l, µ̂n)=
∑
t,m

γ
(m)
t log p(zt;µ

(m)
z ,Σ(m)

z ) +R(µ̂l, µ̂n) (4.29)

where µ̂l, µ̂n are the current noise mean estimates, µl,µn are corresponding old estimates;

γ
(m)
t is the posterior of component m at time t, given the current hypothesis and current
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noise estimates µl,µn, R(µ̂l, µ̂n) is a regularisation term to improve the stability of noise

estimation. In this work, the following form of regularisation was used:

R(µ̂l, µ̂n) = α
(

(µ̂l−µl)
T(µ̂l − µl) + (µ̂n−µn)

T(µ̂n−µn)
)

where α is a tuning parameter, used to improve the stability of noise estimation. The purpose

of this regularisation is to restrict step size of each EM update.

Performing a first-order expansion of µ
(m)
z using the current estimates, µl,µn

1, yields:[
µ̂

(m)
sz

µ̂
(m)
∆z

]
≈

[
µ

(m)
sz

µ
(m)
∆z

]
+

[
J

(m)
le J

(m)
ne

J
(m)
∆le J

(m)
∆ne

] [
µ̂l − µl

µ̂n − µn

]
(4.30)

where

J
(m)
le = [J

(m)
l0 , · · · ,J(m)

ln ] J
(m)
lδ =

∂g

∂µlδ

∣∣∣
µ

(m)
xe ,µl,µn

and

J
(m)
∆le = [J

(m)
∆l,0, · · · ,J

(m)
∆l,n]

J
(m)
∆ne =

∂µ
(m)
∆z

∂µn
= Cdiag

(
n∑
i=0

Λ
(m)
i C−1µ

(m)
∆xi

)
C−1

J
(m)
∆l,δ =

∂µ
(m)
∆z

∂µlδ
= Cdiag

(
n∑
i=0

Ξ
(m)
i,δ C−1µ

(m)
∆xi

)
C−1

Λ
(m)
i and Ξ

(m)
i,δ are diagonal matrices with the size dL × dL and dL is the number of filter

banks. The q-th diagonal elements of Λ
(m)
i and Ξ

(m)
i,δ are given by:

(Λ
(m)
i )qq = −f (m)

iq · f (m)
n,q (4.31)

(Ξ
(m)
i,δ )qq = f

(m)
iq (1[i = δ]− f (m)

δq ) (4.32)

Here, 1[·] is an indicator function, f
(m)
iq and f

(m)
n,q are defined in Eqs (4.21 and 4.22) respectively.

Note J
(m)
∆le and J

(m)
∆ne are nonzero matrices due to the fact µ

(m)
∆z is a function of J

(m)
le and J

(m)
ne ,

which in turn depend on the noise parameters.

Differentiating the auxiliary function and equating to zero gives the following update:[
µ̂l

µ̂n

]
=

(∑
t,m

γ
(m)
t J(m)TΣ(m)−1

z J(m) + αI

)−1

× (4.33)(∑
t,m

γ
(m)
t J(m)TΣ(m)−1

z

(
µ(m)
z − J(m)

[
µl

µn

]))
1To simplify notations, only the delta parameters are shown. Including delta-delta parameters is similar.



CHAPTER 4. REVERBERANT ENVIRONMENTAL ROBUSTNESS 103

where

J(m) =

[
J

(m)
le J

(m)
ne

J
(m)
∆le J

(m)
∆ne

]
.

Note in the noise estimation for RVTS, a similar expression was used. However, for RVTS,

only µ̃l was updated while µn was fixed at the value estimated in VTS. Due to the VTS

approximation, it is necessary to check the auxiliary value to ensure it does not decrease,

otherwise a back-off strategy similar as the one described in [158] is used. When a new noise

estimate is obtained, it is possible to re-expand the mismatch function and update the noise

estimate accordingly. This process can be repeated several times until the auxiliary function

does not increase.

Since the auxiliary function is highly nonlinear, it is crucial to have a good initialisation.

The initialisation scheme in this work uses an initial (rough) estimate of T60 value, similar

to the one used in [103]. The initialisation scheme is slightly modified so that the initial

compensated mean vectors are approximately the same as the VTS compensated means. For

RVTS, the initial frame-level distortion terms are given by

µ̃lδ = C[ δη + ρ . . . δη + ρ]T (4.34)

where

η = −3 log(10)
∆

T60
; ρ = − log

(
1− e(n+1)η

1− eη

)
(4.35)

and ∆ is the shift of analysis window (10ms in this work). Note here the cepstral coefficients

are extracted from the magnitude spectrum rather than power spectrum; therefore Eq. (4.35)

is slightly modified from the one in [103]: since the T60 measures the time needed to attenuate

60dB in the power domain, a 3 log(10) coefficient is used in calculating the frame shift rate η

in the magnitude domain. For RVTSJ, µn is initialised as the additive noise mean estimated

by standard VTS noise estimation, while for µlδ

µlδ = µh + C[ δη + ρ . . . δη + ρ]T (4.36)

and µh is the convolutional noise estimated in VTS noise estimation.

In summary, the noise estimation algorithm for RVTSJ is detailed in Algorithm 4.1. A

similar algorithm is also used for RVTS-based noise estimation. In practice, it is found that

4 EM iterations (NEM) and 2− 3 inner iterations (the “repeat” part) in Algorithm 4.1 work

well.

In section 4.2.2 and section 4.2.3, the RVTS and RVTSJ compensation schemes and noise

estimation algorithms have been presented. It is interesting to compare these two schemes.
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Algorithm 4.1: Noise parameter estimation for RVTSJ

Given:
a sequence of observation vectors {Z = (· · · , zt, · · · )};
a supervision hypothesis H;
VTS-based noise model parameters Φn;
an initial T60 value;

Output:
the RVTSJ-based noise parameters Φ;

• Initialise the reverberant noise parameters Φ using Φn and the initial T60 value
(c.f., Eq. (4.36) ) ;
for i=1,. . . , NEM do
• Compensate the acoustic model using the current noise model Φ;

• Align the hypothesis H to obtain the component level occupancy γ
(m)
t ;

• Compute the initial auxiliary function

Q =
∑
t,m

γ
(m)
t log p(zt;µ

(m)
z ,Σ(m)

z )

repeat
• using the component occupancy and the current noise parameters, collect
sufficient statistics:(∑

t,m

γ
(m)
t J(m)TΣ−1

z J(m)

)
and

(∑
t,m

γ
(m)
t J(m)TΣ−1

z µ
(m)
z

)

• update noise parameters Φ to Φ̂ (c.f. Eq. (4.33));

• check auxiliary to make sure Q(Φ̂) ≥ Q(Φ), otherwise find λ ∈ [0, 1] such
that Q((1− λ)Φ̂ + λΦ) ≥ Q(Φ);
• update the noise parameters ;
• re-compensate the acoustic model ;

until until convergence of Q;

end

The differences in these two approaches are due to the underlying assumption about the nature

of background noise. RVTS is used to model the noise term nr(τ) ≈ h̃r(τ)∗n(τ), where h̃r(τ)

is a long-term convolutional distortion. In consequence, this additive noise is assumed to be

correlated across different frames. In contrast, the RVTSJ models the additive noise without

cross frame correlation. Figure 4.5 compares the assumption of addtive background noise in

RVTS and RVTSJ. In theory, RVTS is able to capture the temporal correlation of background

noise while RVTSJ is better for the additive noise without temporal correlation. In practice,

to avoid the expensive calculation of a large number of Jacobian matrices, a sequential noise

estimation for RVTS is used, i.e., standard VTS is used to estimate the additive noise model
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Clean Speech

Generator

Room Impulse

Response hr(τ)

x(τ)
⊕

x(τ) ∗ hr(τ) Room Impulse

Response h̃r(τ)

Gaussian Noise

Generator

n(τ)n(τ) ∗ h̃r(τ)

z(τ)

(a) Frame-correlated additive noise modelled by RVTS.

Clean Speech

Generator

Room Impulse

Response hr(τ)

x(τ)
⊕ Gaussian Noise

Generator

n(τ)x(τ) ∗ hr(τ)

z(τ)

(b) Frame-uncorrelated additive noise modelled by RVTSJ.

Figure 4.5: Comparing the additive noise modelling forms of RVTS and RVTSJ.

parameters without considering the reverberation effect. As a result, the additive noise model

parameters in RVTS are usually larger than the observed values, since part of the reverberant

speech is taken as the additive noise in the standard VTS mismatch function. In contrast,

RVTSJ model compensation scheme allows joint estimation of the reverberant and additive

noise. Therefore, it is expected RVTSJ can achieve better recognition accuracy than RVTS.

This will be demonstrated by the experiments presented in chapter 7.

4.3 Reverberation Adaptive Training

In the previous sections, the model compensation and noise estimation have been already

discussed, in which the underlying acoustic model M is assumed to be known. The simplest

method to estimate M is to simply use the clean data to train an acoustic model. However,

when a large quantity of found data is available, the recognition performance will be limited

if only clean data is used. Moreover, both model compensation schemes, RVTS and RVTSJ,

make many approximations, which may cause a “residual” mismatch between the compen-

sated models and the observed data, and this “residual” mismatch must be modelled by the

acoustic model. Alternatively, an adaptive training framework can be applied in which both

the acoustic model and the noise model are trained in a ML framework on multi-condition

data. This is a powerful technique to “factor out”[69] the unwanted acoustic factors, for

example, the reverberation and background noise in this work. This is expected to yield a

canonical model Mc that models only the relevant phone variations. This adaptive training

framework also enables acoustic models to be trained on found data, which is more accessible

than data without noise. In this work, the adaptive training framework is extended to handle

to reverberant and additive noise distortions. This will be referred to as reverberant adaptive
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training (RAT). As the RVTSJ modelling scheme allows a joint estimation of the reverberant

and additive noise, this work focuses on RAT using the RVTSJ model compensation scheme.

In adaptive training, both the canonical modelMc
1 and a set of noise model parameters

{Φ(r)} are iteratively estimated using EM, where Φ(r) is the noise model parameter of the

r-th homogeneous block. First, given the current canonical model, the noise models Φ are

estimated for each utterance 2, using the noise estimation algorithm presented in the last

section. Then the canonical model Mc is updated given the current noise models. Multiple

iterations may be performed to interleave optimisation in the EM framework.

In RAT, the canonical model Mc is estimated by maximising the following auxiliary

function:

Q(M̂c;Mc) =
∑
r,t,m

γ
(mr)
t log p(z

(r)
t ; µ̂(mr)

z ,Σ(mr)
z ) +Rc(M̂c,Mc) (4.37)

whereMc is the current canonical model and M̂c is the new canonical model to be updated;

r is the index of utterance; z
(r)
t is the t-th observation vector in the r-th utterance; γ

(mr)
t

is the posterior of the component m at time t for the r-th utterance, calculated using the

current model Mc and the current noise model Φ(r) = (µ
(r)
l ,µ

(r)
n ); the compensated mean

vector µ̂
(m)
z is given by:

µ̂(m)
z =

[
µ̂

(m)
sz

µ̂
(m)
∆z

]
=

[
g(Psµ̂

(m)
x ,µ

(r)
l ,µ

(r)
n )

J
(m)
xe P∆µ̂

(m)
x

]
. (4.38)

In line with RVTSJ model compensation, the standard VTS variance compensation is used to

calculate Σ
(m)
z . As a result, the model variance Σ

(m)
x is not adaptively trained in RAT and the

canonical model consists of the extended mean vectors, i.e., Mc = {µ(m)
x }. A regularisation

term Rc(M̂c;Mc) is used in Eq. (4.37) to ensure the stability of canonical model parameters

update. The following form of regularisation is used in this work:

Rc(M̂c;Mc) = β
∑
m

(µ̂
(m)
x − µ(m)

x )T)(µ̂
(m)
x − µ(m)

x ) (4.39)

and β is a tunable parameter.

Approximations are needed to update the canonical model parameters. Again, the vector

Taylor series expansion technique can be applied to expand µ̂
(m)
z using the current canonical

model estimates:

µ̂(m)
z ≈

[
µ

(m)
sz

µ
(m)
∆z

]
+

[
J

(mr)
xe 0

0 J
(mr)
xe

] [
Ps

P∆

]
(µ̂

(m)
x − µ(m)

x ) (4.40)

1The subscript c is used to emphasis that the underlying acoustic models are adaptively trained canonical
models.

2It is assumed in this work, each utterance has a unique noise condition. Thus a homogeneous block is
defined at the utterance level.
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where J
(mr)
xe is the Jacobian matrix calculated by:

J(mr)
xe =

∂g(µxe,µl,µn)

∂µxe

∣∣∣
Psµ

(m)
x ,µ

(r)
l ,µ

(r)
n

(4.41)

Differentiating the auxiliary function and equating to zero gives the following update:

µ̂
(m)
x = µ(m)

x +

(∑
r

γ(mr)K(mr)TΣ(mr)−1
z K(mr)T + βI

)−1

×

(∑
r

γ(mr)K(mr)TΣ(mr)−1
z (Γ(mr)

z − µ(mr)
z )

)
(4.42)

where

K(mr) =

[
J

(mr)
xe Ps

J
(mr)
xe P∆

]

and γ(mr) =
∑

t γ
(mr)
t ; Γ

(mr)
z = 1

γ(mr)

∑
t γ

(mr)
t z

(r)
t . Due to the VTS approximation in Eq.

(4.40), the update formula in Eq. (4.42) does not guarantee the increase in likelihood. There-

fore, the following update formula with a step size ζ is used:

µ̂
(m)
x = µ(m)

x + ζ

(∑
r

γ(mr)K(mr)TΣ(mr)−1
z K(mr)T + βI

)−1

×

(∑
r

γ(mr)K(mr)TΣ(mr)−1
z (Γ(mr)

z − µ(mr)
z )

)
(4.43)

For every update, the step size ζ is set as 1 initially. If the initial update does not increases

the auxiliary function, a simple back-off procedure, similar to the one in [158], is used to

reduce the step size until the auxiliary function increases. Since the auxiliary function of the

canonical model involves all the utterances, to make this back-off procedure possible, it is

necessary to save Γ
(mr)
z for each component m and each utterance r, provided γ(mr) is not

zero. This is impractical for a large-scale task. An approximation of the auxiliary function

in Eq. (4.37) is used: for each component m, the summation over all the utterances is done

on a subset Rm = {r|γ(mr) ≥ θm}, where θm is chosen such that the top N utterances are

in this subset. N = 156 is used in this work and it was found this yields a good increase in

likelihood. 1

Since the auxiliary function is highly non-linear, it is also crucial to have a good initiali-

sation of the canonical model parameters. The simplest method is to use the multi-condition

1Note that Eq. (4.43) involves a D ×D matrix inversion, of which the main part is a sum of N matrices.
As such, N must be equal to or larger than D for the worse-case scenario in which each of the N matrices
degrades to a rank-1 matrix. For the experiments carried out in this thesis, 39-dimensional feature vectors
were used, thus D = 39; setting N = 4D = 156 guarantees the matrix is invertible.
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Algorithm 4.2: Reverberant adaptive training procedure.

Given:
a set of training utterances {Z(r)|r = 1, · · · , R};

Output:
a set of RVTSJ noise model parameters {Φ(r)|r = 1, · · · , R} and the canonical
model Mc, such that the auxiliary function in Eq. (4.37) is jointly maximised;

• Perform VTS-based adaptive training to initialise canonical model parameters

Mc = {µ(m)
x ,Σ

(m)
x }, which is described in detail in [122];

for m = 1, . . . , M do

• Initialise the extended mean model parameters µ
(m)
x via solving the

optimisation problem in Eq. (4.45);

end
for i=1, . . . , Nmodel do

for r=1,. . . , R do

Given the current canonical model Mc = {µ(m)
x ,Σ

(m)
x }, re-estimate the RVTSJ

noise model parameters Φ(r) Ntrans times (c.f. Algorithm 4.1) ;

end
for j=1,. . . , NEM do

Given the noise models {Φ(r)} and the current canonical model Mc, collect

sufficient statistics γ(mr) and Γ
(mr)
z for each utterance r and each component m;

for m=1,. . . , M do

• Given sufficient statistics {γ(mr)}, {Γ(mr)
z } and the noise model

parameters {Φ(r)}, update µ
(m)
x for each component m using Eq. (4.42);

• Check the auxiliary function in Eq. (4.37). Reduce the step size ζ and
redo the update until auxiliary is increasing;

end
• Gradually reduce the parameters β;

end

end

data as if it were clean, i.e.,

µ(m)
x = W · E


 zst+w

...
zst−n−w

 |m
 (4.44)

However, it was found that this form of initialisation is suboptimal in the initial experiments,

since the extended statistics {µ(m)
x } are initialised using reverberant observations. In this

work, the following strategy is used. The standard model parameters, {µ(m)
x }, are set as the

parameter obtained by the VTS-based adaptive training (VAT); it is assumed that µ
(m)
xδ , δ =

0 . . . n is a smooth trajectory starting from µ
(m)
x0 = µ

(m)
x ; therefore a reconstruction error

needs to be minimised. In this work, µ
(m)
x is initialised to the value which minimises the
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following constrained optimisation problem:

min
n∑
δ=1

wδ‖Qδµ
(m)
x − µ(m)

x ‖2Σ(m)−1

s.t. Q0µ
(m)
x = µ(m)

x

(4.45)

where ‖v‖Σ = vTΣv; Qδ is the matrix that maps µ
(m)
x to µ

(m)
xδ , and wδ is the weight associated

with the reconstruction error of µ
(m)
xδ . In this work, the weight is set as wδ = 10

−δ 3∆
T60 , where

∆ is the shift of the analysis window, and T60 the median of reverberation time in the multi-

condition training data (for example, 400ms in this work). The constrained optimisation in

Eq. (4.45) is a standard linearly constrained quadratic programming problem and can be

solved analytically.

The RAT training algorithm is summarised in Algorithm 4.2. In practice, the number of

iterations in this algorithm are set as: Ntrans ∼ 2, Nmodel ∼ 2 or 3 and NEM ∼ 4.

4.4 Summary

This chapter presents a model-based approach to robust speech recognition in reverberant

environments. Due to the reverberation effect, exact inference is not tractable. The proposed

scheme in this chapter approximates the distribution of preceding frames using a conditional

distribution of an extended vector for every Gaussian component. In this way, conventional

Viterbi decoding can still be used after model compensation. Given these extended model

statistics, VTS was reformulated to handle the nonlinear reverberant mismatch functions.

This yields the RVTS and RVTSJ model compensation schemes, where RVTS is used to

model frame correlated additive noise while RVTSJ is used to model the frame uncorrelated

additive noise. ML estimation of the reverberant noise model is also presented.

The extended model statistics can be estimated from the clean training data. However,

this limits the acoustic models can be only trained on clean data. Training of acoustic

models on multi-condition data is possible. However, models trained on multi-condition data

implicitly model all the variability exhibited in the training data. Another limitation of

multi-style trained models is that it is no longer possible to use the mismatch function to

compensate the acoustic model for a particular environment, as the mismatch function uses

a clean speech distribution. Motivated by the success of VTS-based adaptive training (VAT),

the second part of this chapter investigated model-based approaches to adaptive training in

reverberant environments. RVTSJ is used to compensate acoustic models in both training and

testing, yielding the reverberant adaptive training (RAT) scheme. Maximum likelihood (ML)

estimation of the canonical model parameters in the EM framework is described. This RAT
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scheme provides a powerful method to factor out the effects of reverberant and background

noise from the canonical acoustic models.



CHAPTER 5
Acoustic Factorisation

Framework

In the previous chapters, the impacts of various acoustic factors on speech recognition systems,

such as speaker characteristics (section 3.2),channel distortion, background noise (section 3.3)

and reverberation (chapter 4), were discussed. Adaptation schemes which are designed to im-

prove acoustic model robustness against these factors were presented, with a focus on model-

based approaches. So far, the adaptation schemes mostly focused on robustness against a

single factor. In practice, speech recognition systems often need to deal with complex acous-

tic environments where there are multiple acoustic factors simultaneously affecting speech

signals. For example, a typical speech recogniser is often required to operate in a wide range

of environments for a large number of possible users. It should have the ability to be adapted

to a particular speaker and environment condition rapidly. The conventional approach is to

build a model transform for every target condition. This requires adaptation data for all pos-

sible operating conditions. The acoustic factorisation framework, first proposed in 2001 [69],

addresses this problem in a more effective way. In this framework, a transform is associated

with one distinct acoustic factor and therefore is referred to as a factor transform. These

factor transforms are combined to yield the final model transform for the target acoustic

condition. They can be estimated from the relevant data and can be combined to construct

111
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complex model transforms for conditions never seen before. To achieve factorisation, it is

crucial that each factor transform only models the impact of its associated factor, and keeps

it independent from others. This chapter will discuss three possible options to construct such

factor transforms. The first, data-constrained, approach entirely relies on balanced data as

an implicit constraint, while the second and the third approach use additional constraints to

enforce the independence: the second, transform constrained, approach utilises the knowl-

edge of how acoustic factors impact speech signals while the third approach is based on an

explicit constraint derived from a mathematical analysis of interdependence between factor

transforms.

5.1 Acoustic Factorisation

Before presenting the details of the acoustic factorisation framework, it is worthwhile point-

ing out the fundamental assumptions in this framework.First, acoustic factors are assumed

to impact speech signals differently. For example, background noise normally masks the

speech signals in some acoustic regions with low speech energy, while speaker characteristics

usually differ in the frequency warping. This gives an opportunity to separate the variabil-

ity caused by different acoustic factors. Another crucial assumption is that acoustic factors

impact speech signals independently. For many pairs or groups of acoustic factors, this is

a reasonable assumption, as acoustic factors are usually driven by physical factors, which

often have no connection. One exception is the Lombard effect [120], in which a speaker

can change the way he or she speaks in a very noisy environment; therefore the speaker and

environment characteristics become related. In this thesis, it is assumed that the noise level

is not sufficiently high so that the Lombard effect is not significant.

Based on these assumptions, the acoustic factorisation considered here is an extension to

the previously described model-based framework. In this framework, intrinsic and extrinsic

variabilities are represented by a canonical modelMc and a set of transforms T , respectively.

Consider a complex acoustic environment, simultaneously affected by two acoustic factors si

and nj respectively, where s and n are the types of acoustic factors and i, j are the indices

within each acoustic factor 1. The canonical model is adapted to represent this condition by

the transform T (i,j):

M(i,j) = F(Mc, T (i,j)) (5.1)

1Note the typewriter font (e.g., s) is used to denote the acoustic factor, while the italic font (e.g., i) is
used to denote the index
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Figure 5.1: Speaker and noise adaptation in the factorisation mode.

whereM(i,j) is the adapted acoustic model for condition (si, nj), T (i,j) the transform for the

target condition, and F is a mapping function. The transform is normally estimated using

the ML criterion:

T (i,j) = arg max
T

{
p(O(i,j)|Mc, T )

}
(5.2)

where O(i,j) is a sequence of feature vectors observed in the acoustic condition (si, nj). It

is possible to directly estimate the transform T (i,j) from O(i,j) and use T (i,j) in the target

condition (si, nj). However, in a rapidly changing environment, there is not enough data to

build model transforms for every target condition. As model transforms are built on the same

kind of data to which they are applied, this adaptation strategy will be referred to as batch

adaptation.

To effectively deal with complex acoustic environments, the concept of acoustic factori-

sation was proposed in [69], where the final transform can be decomposed into a few factor

transforms, each of which is constrained to be related to an individual acoustic factor. In the

above example, this requires that the transform T (i,j) can be expressed as:

T (i,j) = T (i)
s ⊗ T (j)

n (5.3)

where ⊗ denotes transform composition and its exact form dependents on the nature of factor

transforms; T (i)
s and T (j)

n are the factor transforms associated with si and nj , respectively. The
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factorisation attribute in Eq. (5.3) offers flexibility for acoustic models to be used in complex

acoustic environments. This can be demonstrated by considering R utterances O(1), · · · ,O(R),

produced by a set of speakers (s1, · · · , sI) in a range of different noise (n1, · · · , nJ) conditions.

In batch mode adaptation, it is required to estimate a transform T (r) for every utterance r.

This requires T (r) should be robustly estimated using a single utterance, which is often not

possible in practice. However, under the acoustic factorisation, T (r) can be decomposed to

factor transforms T (sr)
s and T (nr)

n , where sr ∈ {1, · · · , I} and nr ∈ {1, · · · , J} are the speaker

and noise indices of utterance r respectively. Hence it only needs to estimate I speaker factor

transforms and J noise factor transforms. Utterances produced by the i-th speaker can be

pooled to estimate T (i)
s while utterances recorded in the j-th noise condition can be pooled to

estimate T (j)
n . This enables more powerful transforms with more parameters to be used for

an individual factor as data from multiple conditions can be used. Furthermore, for the data

produced by a seen speaker si in unseen noise condition nj′ , it is only necessary to estimate

the noise transform T (j′)
n and combine this transform with the existing speaker transform T (i)

s .

Figure 5.1 shows the concept of acoustic factorisation for the speaker and noise adaptation.

In summary, algorithm 5.1 illustrates how the speaker and noise adaptation can be per-

formed in this framework. This will be referred to as factorised adaptation mode. Note that

the canonical model,Mc, is assumed to have been trained. Having obtained the speaker and

noise transforms for the adaptation data, the transform for a new acoustic condition (si, nj′),

can be obtained simply by estimating the noise transform

T (j′)
n = arg max

T

{
p(O|Mc, T (i)

s ⊗ T )
}

(5.6)

Given the speaker transform and the noise transforms, the acoustic model is adapted to the

test condition using the transform T (i,j′) = T (i)
s ⊗ T (j′)

n .

The factorisation attribute relies on the “orthogonality” of factor transforms. For exam-

ple, the speaker transform only models speaker attributes and the noise transform the noise

attributes. This is illustrated in detail in Figure 5.2, using the speaker and environment

adaptation as an example. Assuming the impact of speaker and environment on the acoustic

model can be represented by model transforms whose parameters are λs and λn respectively,

two ellipses in figure 5.2 illustrate the speaker and environment coverage in the adaptation

data, where point b and c represent two conditions observed. To adapt the model to the

target condition a, only the parameter λ
(b)
s and λ

(c)
n are needed, which can be estimated from

adaptation data. This is due to the independence between two factor transforms, as shown

in Figure 5.2: when the operating condition is moved from point b towards point a, λn gets

a small update ∆λn to reflect the environment transition; due to the independence between

λs and λn, speaker transform will not be affected by ∆λn.
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Algorithm 5.1: Adaption under the acoustic factorisation framework.

Input:
Acoustic data O(1), · · · ,O(R) observed in a range of acoustic conditions (si, nj) :
i = 1, · · · , I, j = 1, · · · , J ;

Output:
Model transforms T (1), · · · , T (R) such that the likelihood of observed acoustic
data is maximised;

Initialisation:
Initialise the factor transform;

Iterating:
while not converged do

1. Estimate speaker transforms while keeping noise transforms fixed:

T (i)
s = arg max

T

{ ∑
r:sr=i

log p(O(r)|Mc, T ⊗ T (nr)
n )

}
∀i = 1, · · · , I; (5.4)

2. Estimate noise transform while keeping speaker transforms fixed:

T (j)
n = arg max

T

 ∑
r:nr=j

log p(O(r)|Mc, T (sr)
s ⊗ T )

 ∀j = 1 · · · J ; (5.5)

end
Composition:

Combine factor transforms to form the final transformation:

T (r) = T (sr) ⊗ T (nr) r = 1, · · · , R

where sr an nr are the speaker and noise indices of the r-th utterance,
respectively.

5.2 Approaches to Factorisation

As discussed before, acoustic factorisation offers flexibility for adapting canonical models to

complex acoustic conditions. To make the factorisation work, it is important to keep an

independence between factor transforms. The simplest way is to rely on balanced data to

force a factor transform to learn the impact caused by its associated factor, while keeping it

invariant to other factors. Works in the literature that fall in this category will be briefly

reviewed in section 5.2.1. A second approach is to use different forms of factor transforms. It is

hoped by using factor transforms designed for different acoustic factors, they are able to model

the specific factor for which they have been designed to model. This argument is presented

in section 5.2.2. Unlike the first two approaches relying on an implicit constraint to enforce

independence, the third one is based on an explicit constraint. Section 5.2.3 first analyses



CHAPTER 5. ACOUSTIC FACTORISATION FRAMEWORK 116

λs

λn

a

b

c

λ
(c)
n

λ
(b)
s

∆λn ⊥ ∆λs

∆λs

∆λn

: conditions seen during training/adaptation

: target conditions in test

Figure 5.2: Factorised adaptation to the target speaker and environment: transform indepen-
dence. It is assumed that the impact of speaker and environment on the acoustic model can
be represented by model transforms λs and λn respectively; two ellipses illustrate the speaker
and environment coverage in the adaptation data; point b and c represent two observed con-
ditions and point a is the target condition.

the dependence between factor transforms, and derives an explicit constraint. Finally, the

advantages and disadvantages of each approach are compared and discussed in section 5.3.

5.2.1 Data Constrained Approach

When factor transforms are estimated on balanced and representative data, the ML estimators

in Eqs (5.4-5.5) already form an implicit constraint. Take the speaker and noise factorisation

example illustrated in Figure 5.1 again: as the speaker transform is set to maximise the

likelihood of data produced by the same speaker, for example si, under many noise conditions,

{nr|r : sr = i}, the estimated speaker transform optimally models the speaker characteristics

irrespective of the noise factors, as long as the noise conditions of data {O(r)|r : sr = i} are

distributed in a balanced way. In the same manner, the noise transform estimated in Eq.

(5.5) is believed to model only the noise attribute irrespective of speaker characteristics. As

the speaker/noise characteristic is an intrinsic attribute of speaker/environment, it can be

argued that speaker and noise factor transforms are independent of each other.

As this data constrained approach is the simplest method of factorisation, most of the

factorisation works in the literature fall in this category. In [263], structured transforms, clus-

tered mean interpolation combined with CMLLR, are used to remove the effects of unwanted

acoustic factors. However, these component transforms are not constrained to specific acous-

tic factors. Interestingly, structured transform have been applied to polyglot speech synthesis

recently [265], in which CMLLR transforms are used to modelling the speaker factor, while

cluster means are interpolated to yield a particular language space. Under this modelling
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scheme, the probability distribution of the m-th Gaussian component is adapted to the i-th

speaker, si and the j-th language, lj , by:

p(ot|i, j,m) = |A(i)
s |N (A(i)

s ot + b(i)
s ;

C∑
c=1

λ
(j)
l,cµ

(m)
c ,Σ(m)) (5.7)

where l denotes the language factor; cluster means {µ(m)
c |c = 1, · · · , C} and variances Σ(m)

form the canonical model parameter; W
(i)
s = [A

(i)
s , b

(i)
s ] is the speaker transform, and cluster

weight vector λ
(j)
l = [λ

(j)
l,1, · · · , λ

(j)
l,C ]T is used to interpolate cluster means to yield a language

specific mean vector.

In [217, 218], the impacts of speaker and noise factors are represented by two sets of

CMLLR transforms in a cascaded fashion, i.e., the likelihood of a particular observation vector

ot produced by speaker i under environment j emitted by the m-th Gaussian component is:

p(ot|i, j,m) = |A(i)
s ||A(j)

n |N (x̂t;µ
(m)
x ,Σ(m)

x )

x̂t = A(i)
s (A(j)

n ot + b(j)
n ) + b(i)

s

(5.8)

where µ
(m)
x ,Σ

(m)
x are the canonical model parameter, and Ws = [A

(i)
s , b

(i)
s ] and Wn =

[A
(j)
n , b

(j)
n ] are the speaker and noise transforms respectively. Using this cascaded CMLLR

transform, the noise and speaker distorted speech vector ot is normalised to x̂t, where the

transforms are estimated from the corresponding speaker or noise data. This scheme was eval-

uated on the AURORA-2 task and was shown to be able to port a speaker transform from one

noise condition to another noise condition. In [219], another factorisation form was proposed,

where speaker and noise adaptation was performed using CMLLR and MLLR respectively.

The proposed factorisation scheme along with an environment clustering scheme were shown

to be effective on a Bing voice search task. Although effective, there is no built-in mechanism

in the above schemes to prevent the speaker transform from modelling the noise variability.

Thus these schemes rely on balanced data to separate the speaker and noise variability. In

the extreme case, if a speaker’s data are all in a single noise condition, the speaker and noise

transform will model the combined effect, which means they cannot be factorised from each

other.

In speaker recognition or verification, it is important to separate the speaker variability

from the session and/or environment variability. Therefore, the concept of acoustic fac-

torisation is also used in the speaker recognition/verification area. The Joint Factor Analysis

(JFA)[127, 128] model is an example. In JFA, a supervector µ is formed by stacking the mean

vectors of a speaker and session adapted GMM and the variability of this D-dimensional su-

pervector is explained by the speaker and session factors, λs and λn, which sit in lower
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dimensional subspaces:

µ = µ0 + Msλs + Mnλn + Dλz (5.9)

where µ0 is the supervector formed by concatenating the mean vectors of a universal back-

ground model (UBM); Ms ∈ RD×ds and Mn ∈ RD×dn (also known as eigenvoice[126] and

eigenchannel [127] matrices) define the speaker and session subspaces with ds, dn � D ; λs

and λn are ds and dn-dimensional vectors representing the speaker and session factors respec-

tively; D is a diagonal matrix and Dλz models the residual such that JFA can asymptotically

converge to the speaker-dependent model if there is enough speaker data. To apply JFA to

speaker recognition, the speaker and session subspaces (Ms and Mn) are first estimated on

appropriately labelled training corpora, and then for each test utterance, λs and λn are esti-

mated by maximising likelihood. The feature vector of test utterances are scored against the

session compensated speaker-adapted GMM whose supervector is given by µ −Mnλn. JFA

relies on the assumption that Ms and Mn expand different subspaces so that maximising the

likelihood with respect to λs can only explain the speaker variability. However, as Ms and Mn

are in general not orthogonal, it is still possible to move the speaker factor λs to compensate

the session variability, and thus allows session information to be contained in speaker factors.

This is also observed in [40]. Using sub-spaces to represent different factors has also been

applied to emotional speech synthesis [141]. Acoustic factorisation in [141] allows a flexible

control of the speaker and emotion factors to synthesis natural and emotional voices. In sec-

tion 6.3, a similar scheme is applied to the speaker and noise factorisation problem for speech

recognition, where the subspaces are constrained to be orthogonal. This orthogonal subspace

condition is derived by an explicit independence constraint between factor transforms, which

will be developed and discussed in section 5.2.3.

5.2.2 Transform Constrained Approach

As discussed in the beginning of this chapter, it is assumed that acoustic factors impact the

speech signal differently and independently. Intuitively, if the impact (or distortion) of each

acoustic factor can be summarised in a functional form such as a mismatch function, it should

be possible to use predictive transforms to model the impact of acoustic factors. Maximum

likelihood estimation of transform parameters using Eqs (5.4-5.5) amounts to fitting the data

to the distortion model. It is thus sensible to expect the estimated parameters to reflect the

nature of that acoustic factor and thus be independent of each other.

This idea can be illustrated using a speaker and noise factorisation problem. Con-

sider a speaker-independent and noise-free speech vector xt drawn from a canonical model
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N (xt;µx,Σx). The distortion caused by i-th speaker and j-th noise condition is assumed to

be exactly modelled by the following mismatch function:

y
(i,j)
t = f(xt + b(i)

s ,n
(j)
t )

= C log
(

exp(C−1(xt + b(i)
s )) + exp(C−1n

(j)
t )
)

(5.10)

where y
(i,j)
t is the vector observed in the acoustic condition; (si, nj), b

(i)
s is the i-th speaker

bias; n
(j)
t is the additive noise generated in the j-th noise condition, which is assumed to

follow a Gaussian distribution N (µ
(j)
n ,Σ

(j)
n ); C is the DCT matrix, and y = f(x,n) describes

how the noise vector n distorts the clean speech x, resulting in the noisy speech vector y in

the cesptral domain. Note this mismatch function is similar to Eq. (3.33), while the channel

distortion is ignored here to concentrate on the effect of speaker and additive noise.

By combining the VTS transform and the speaker bias transform, a model transform which

maps the canonical model Mc = N (µx,Σx) to the adapted model M(i,j) = N (µ
(i,j)
y ,Σ

(i,j)
y )

can be derived:

µ(i,j)
y = f(µx + b(i)

s ,µ(j)
n )

Σ(i,j)
y = JxΣxJ

T
x + JnΣ

(j)
n JT

n

(5.11)

where Jx and Jn are the Jacobian matrices,

Jx =
∂y

(i,j)
t

∂xt

∣∣∣
(µx+b

(i)
s ,µ

(j)
n )

Jn =
∂y

(i,j)
t

∂nt

∣∣∣
(µx+b

(i)
s ,µ

(j)
n )

(5.12)

It can be seen from the compensation formula that the speaker transform T (i)
s = b

(i)
s lin-

early transforms the model parameters, while a nonlinear transform T (j)
n parameterised by

(µ
(j)
n ,Σ

(j)
n ) is used for the noise factor. Intuitively, as the model parameter adaptation func-

tion in Eq. (5.11) matches the mismatch function in Eq. (5.10) which is used in the generation

process, and T (i)
s and T (j)

n modify model parameters in different ways (linear vs. nonlinear

transforms) they should be “orthogonal” to each other. In fact, it is demonstrated in section

6.2 that the speaker bias estimator is (approximately) independent of the noise estimator, and

vice versa. This is the desired factorisation property which ensures that estimating speaker

bias parameters on the data from the same speaker under different noise condition will remain

the same. Moreover, as the functional form of distortion, or the mismatch function, is known

exactly in this example, the speaker bias estimator will converge to the true parameter used

in the generation process.

In practice, only limited information about how an acoustic factor impacts speech signals

is known. In the above speaker and noise factorisation example, the noise mismatch function

is only an approximation while the impact of speaker differences is more complex than a
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simple bias. However, it is reasonable to expect that combining a VTS transform (which

is designed to model the effect of noise) and an adaptive linear transform (which has been

proven to effectively model the speaker factor) can yield independence between transforms.

As an application of this transform constrained approach, a speaker and noise factorisation

scheme is developed in section 6.2. Results presented in section 8.1 will demonstrate that this

transform constrained approach indeed yields a flexible yet effective factorised speaker and

noise adaptation.

5.2.3 Explicitly Constrained Approach

The factorisation schemes presented in the previous sections rely on various assumptions to

implicitly maintain the independence between factors: the data-constrained approach assumes

that data is distributed over acoustic factors in a balanced manner, while the transform-

constrained approach assumes that acoustic factors distort the speech signals in different

ways, and the relationship between those factors and the observed speech vectors, usually

summarised in a so called mismatch function, is known. However, in many applications, the

data is not distributed in a balanced fashion, or the distortion cannot be summarised by a

mismatch function. As an alternative to the implicit constraint approaches adopted in the

previous sections, the interdependence between factor transforms is analysed mathematically

in this section and an explicit constraint is given.

As discussed in section 5.1, factor transforms are normally ML estimated on their corre-

sponding data. Taking the speaker and noise factorisation problem discussed in section 5.1

as an example, the factor transforms are iteratively optimised using the following steps:

1. Given the current noise factor transforms T (1)
n , · · · , T (J)

n , update each of the speaker

factor transforms by:

T̂ (i)
s = hsi(T (1)

n , · · · , T (J)
n ) i = 1, · · · , I ; (5.13)

2. Given the current speaker factor transforms, T (1)
s , · · · , T (I)

s , update each of the noise

factor transform by:

T̂ (j)
n = hnj (T (1)

s , · · · , T (I)
s ) j = 1, · · · , J ; (5.14)

3. Goto step 1 until converge;
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Here, to emphasise that updated speaker (noise) factor transforms depend on the noise

(speaker) factor transforms, hsi and hnj are defined as functions of the optimal speaker

(noise) factor transforms given all the noise (speaker) factor transforms, i.e.,

hsi(T (1)
n , · · · , T (J)

n ) = arg max
T

∑
r:sr=i

L(O(r);M, T ⊗ T (nr)
n ) (5.15)

hnj (T (1)
s , · · · , T (I)

s ) = arg max
T

∑
r:nr=j

L(O(r);M, T (sr)
s ⊗ T ) (5.16)

where sr and nr are the speaker (s) and noise (n) index of utterance r respectively; L(O(r);M, T )

is the log-likelihood function of O(r) given the canonical modelMc and the model transform

T . It is clear from the definition of hsi , an optimal speaker factor transform is a function of a

set of noise factor transforms, which may break down the factorisation property in Eq. (5.3).

In an extreme case, if there is only one noise source in a particular speaker’s utterances or

vice versa, it is not possible to separate one factor from the other.

To mitigate this problem, it is necessary to ensure the independence between factor trans-

forms. The independence property means the optimal factor transforms do not change when

other factor transforms vary. This requires the following condition of the function hsi and

hnj :

∂hsi

∂T (j)
n

= 0 ,
∂hnj

∂T (i)
s

= 0 ∀i, j (5.17)

The independence constraint in Eq. (5.17) ensures the optimal factor transform will not be

affected by other factor transforms, which allows it to change only when the corresponding

acoustic factor changes. The condition in Eq. (5.17) implies that for any observed utterance

O, the optimal factor transforms T ∗s and T ∗n are independent of each other, where T ∗s =

arg maxTs L(O;Mc, Ts ⊗ Tn) and T ∗n = arg maxTn L(O;Mc, Ts ⊗ Tn). This constraint can be

translated into a constraint in the second order derivatives of the log-likelihood function as

the following proposition demonstrates.

Proposition 1. Let x∗(y) be the local maximiser of function f(x,y) given y. Assuming the

function f has its second order derivatives ∂2f
∂x∂y defined everywhere, the derivatives of x∗ with

respect to y is

∂x∗(y)

∂y
= −

(
∂2f

∂x∂x

)−1
∂2f

∂x∂y

∣∣∣
x=x∗(y)

(5.18)

A sufficient condition for ∂x∗(y)
∂y = 0 is :

∂2f

∂x∂y
= 0 ∀x,y (5.19)

This condition also implies ∂y∗(x)
∂x = 0 .



CHAPTER 5. ACOUSTIC FACTORISATION FRAMEWORK 122

Proof. Define another function g(y) = ∂f(x,y)
∂x |x=x∗(y). On one hand,

∂g(y)

∂y
=

[
∂2f

∂x∂y
+

∂2f

∂x∂x

∂x

∂y

]
x=x∗(y)

On the other hand, as x∗(y) is a local maximiser of f(·,y), thus ∂2f
∂x∂x |x=x∗(y) � 0 and

g(y)
4
=
∂f(x,y)

∂x
|x=x∗(y) = 0

Therefore, ∂x∗(y)
∂y = −

(
∂2f
∂x∂x

)−1
∂2f
∂x∂y

∣∣∣
x=x∗(y)

and ∂2f
∂x∂y = 0 implies ∂x∗(y)

∂y = 0. A similar

argument can be made to establish ∂2f
∂y∂x = 0 implies ∂y∗(x)

∂x = 0.

Proposition 1 ensures that if the second order derivative of the log-likelihood function is

zero everywhere, i.e.,

∂2L(O;Mc, Ts ⊗ Tn)
∂Ts∂Tn

= 0 (5.20)

the independence constraint in Eq. (5.3) is satisfied. The log-likelihood function is usually

maximised via EM using the auxiliary function in the following form:

Q =
∑
m,t

γ
(m)
t log p(ot;µ

(m)
c ,Σ(m)

c , Ts ⊗ Tn) (5.21)

where ot is the observation vector at time t, γ
(m)
t is the posterior of ot belonging to the m-th

component, µ
(m)
c ,Σ

(m)
c are the canonical mean and variance of component m. Assuming γ

(m)
t

does not vary with respect to the change of Ts and Tn, the following constraint is used to

enforce the independence:

∂2Q
∂Ts∂Tn

= 0 (5.22)

It is worthwhile pointing out that though the independence is expressed as the second order

derivative with respect to factor transforms, it is possible to achieve the property in Eq.

(5.22) by enforcing constraints on the canonical model. For example, in section 6.3 where

multiple subspaces are used in the canonical model to represent different acoustic factors, the

subspaces are constrained to be orthogonal to ensure the property in Eq. (5.22) holds.

Compared with the first two approaches, this approach is based on the analysis of de-

pendence of factor transforms and built on a mathematically sound ground, which ensures

the factorisation property in Eq. (5.3) is satisfied. The downside is that the independence

constraint complicates the transform parameter estimation. An application of this approach

to speaker and noise factorisation is presented in section 6.3.
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5.3 Summary

This chapter has presented the concept of acoustic factorisation and how it can be used

in the model-based framework to robust speech recognition. In contrast to conventional

schemes which use model transforms to model the combined effects of multiple acoustic fac-

tors, acoustic factorisation schemes separate the variations caused by various acoustic factors,

each modelled by a single factor transform. This is a useful extension to the model-based

framework for robust speech recognition in complex environments which has multiple acoustic

factors simultaneously affecting the speech signals.

Constructing factor transforms which allows factorisation is the main focus of this chapter.

The key requirement to achieve factorisation is to keep factor transforms independent of each

other. Following this principle, three different approaches to constructing factor transforms

are discussed. The first approach is to rely on balanced data to enforce the independence

constraint. However, in many applications, especially in complex and rapidly changing envi-

ronments, it is likely that the observed data will be highly unbalanced. The second approach

is based on the fact that in some applications, the impact of acoustic factors on the observa-

tion vectors is approximately known, usually summarised in a mismatch function. Therefore

it is possible to design transforms in different forms, each is tuned to a particular factor. As

an acoustic factor has a different impact, the transforms will model different aspects of the

observed signals, which means the interdependence between them is small. A simple speaker

and noise factorisation example is used to demonstrate this. The first and the second approach

require either data or the prior knowledge to implicitly keep the factor transforms indepen-

dent. The third approach is designed for applications in which there is no balanced data and

the impact of various acoustic factors cannot be easily summarised in a mismatch function.

Based on the mathematical analysis of the interdependence between factor transforms, an

explicit constraint to keep them “orthogonal” is proposed. The advantage of this approach

is that it makes no assumption about the data or using specific form of factor transforms. In

theory, it can be integrated into many factorised adaptation schemes.

This chapter presents the theory developed within the acoustic factorisation framework.

In the next chapter, it will be applied to the speaker and noise factorisation problem. Using

the transform constrained approach, a new adaptation scheme, “Joint”, which combines the

VTS and MLLR transforms are compared with a conventional approach, which treats the

speaker and noise distortion as an combined effect. The explicit constrained approach is

applied on CAT transforms to yield factor CAT (fCAT). Experimental evaluation will be

presented in Chapter 8.



CHAPTER 6
Speaker and Noise

Factorisation

In the previous chapter, the acoustic factorisation framework for robust speech recognition

was presented and several approaches to constructing factorised transforms were discussed.

As an application of this framework, this chapter will consider speaker and background noise

factorisation for speech recognition. Speaker differences and background noise are two major

factors which significantly impact the performance of speech recognition systems. A large

amount of research has been devoted to combat the detrimental effects of these two factors.

Some of the most widely used techniques were reviewed in Chapter 3. Most of them focused

on compensating for the effects of a single acoustic factor, either speaker or noise. It is possible

to combine techniques of speaker adaptation and noise compensation to yield speaker and

noise compensation schemes. This will be discussed in section 6.1. The transform constrained

approach is applied to speaker and noise factorisation in section 6.2: two standard techniques,

the model-based VTS transform for noise compensation, which is a nonlinear transform, and

the MLLR transform for speaker adaptation, which is a linear transform, are combined in an

appropriate order. This yields the “Joint” speaker and noise factorisation scheme. A simple

example is also used to illustrate why this yields factorisation in section 6.2. The transform

constrained approach uses prior knowledge of the acoustic factors to build acoustic factorised

124
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schemes. However, this knowledge may not be available in many applications. In this case,

the explicit constrained approach can be used to construct acoustic factorisation schemes. In

section 6.3, a general linear transform, fCAT, is used for speaker and noise compensation,

while an explicit constraint is imposed on the model parameters. It is shown that due to this

constraint, speaker and noise transforms are “orthogonal” to each other.

6.1 Speaker and Noise compensation

In section 3.2 and 3.3, speaker adaptation and noise robustness techniques have been dis-

cussed. It is possible to combine them to adapt the speech recognition systems to both

speaker and noise factors. There are generally two approaches in the literature for joint

speaker and environment adaptation. The first one is to use feature enhancement techniques

to denoise the observation before back-end model adaptation [31]. The other approach, dis-

cussed in [66], is a full model-based approach: acoustic models are first compensated for the

effect of noise using a predictive transform, then linear transform-based adaptation can be

performed to reduce the residual mismatch, including those caused by speaker differences.

Both approaches are designed to model the combined the effects of speaker and noise factors,

instead of separating them. This section presents a model-based speaker and noise compensa-

tion scheme, in which a predictive transform, model-based VTS, is combined with an adaptive

transform, MLLR, thus it is referred to as “VTS-MLLR”.

6.1.1 Speaker and Noise Factors

Before presenting the speaker and noise compensation schemes, it is useful to briefly re-

view the impact of speaker and noise factors on the observed feature vectors. Additive and

convolutional noise corrupt “clean” speech, resulting in the noisy, observed, speech. In the

Mel-cepstrum domain, the mismatch function relating the clean speech static xs and the

noisy speech static ys is approximated by:

ys = xs + h+ C log
(
1 + exp

(
C−1(ns − xs − h)

))
= f(xs,h,ns) , (6.1)

where s is used to denote static parameters, ns and h are the static additive noise and

convolutional noise, respectively, and C is the DCT matrix. It is assumed that for the j-

th noise condition: n is Gaussian distributed with a mean µ
(j)
n and a diagonal covariance

Σ
(j)
n = diag(Σ

(j)
sn ,Σ

(j)
∆n ,Σ

(j)
∆2n

); h = µ
(j)
h is an unknown constant variable. Model-based VTS
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compensation [5, 153] approximates the mismatch function by a first-order vector Taylor

series, expanded at (µ
(m)
sx ,µ

(j)
h ,µ

(j)
n ) 1 for each component m. Under this approximation,

p(ys|m,nr = j) = N (y;µ
(mj)
vts,sy,Σ

(mj)
vts,sy) (6.2)

where the compensated mean µ
(mj)
vts,sy and covariance matrix Σ

(mj)
vts,sy are given by:

µ
(mj)
vts,sy = f(µ(m)

sx ,µ
(j)
h ,µ(j)

n ) ,

Σ
(mj)
vts,sy = diag

(
J(mj)
x Σ(m)

sx J(mj)T
x + J(mj)

n Σ(j)
sn J(mj)T

n

) (6.3)

and µ
(m)
sx and Σ

(m)
sx are the static mean and covariance of component m, J

(mj)
x and J

(mj)
n

are the derivatives of ys with respect to xs and ns respectively, evaluated at µ
(m)
sx ,µ

(j)
h ,µ

(j)
n .

With the continuous time approximation [86], the delta parameters under VTS compensation

scheme are compensated by:

µ
(mj)
vts,∆y = J(mj)

x µ
(m)
∆x ,

Σ
(mj)
vts,∆y = diag

(
J(mj)
x Σ

(m)
∆x J(mj)T

x + J(mj)
n Σ

(j)
∆n J(mj)T

n

) (6.4)

where µ
(m)
∆x and Σ

(m)
∆x are the mean and covariance matrix of clean delta parameters. The

delta-delta parameters are compensated in a similar way. For notational convenience, only

the delta parameters will be considered in the following.

To adapt the speaker independent model to the target speaker i, the MLLR mean trans-

form [148] in the following form is often used:

µ(mi) = A(i)µ(m) + b(i), (6.5)

where [A(i), b(i)] is the linear transform for speaker i, µ(m) and µ(mi) the speaker independent

and speaker dependent mean for the component m respectively.

6.1.2 VTS-MLLR

VTS-MLLR is a simple combination of two successful schemes in speaker adaptation and

environment robustness. In this scheme, acoustic models are first compensated for the additive

and channel distortion using a predictive transform, model-based VTS [5, 153]. This is

followed by an adaptive transform, MLLR, applied for each speaker to reduce the residual

mismatch, which includes the mismatch caused by speaker differences. Let ot = [ysT, ∆yT]T

the observation vector, denote the noise model parameters for j-th noise condition as: Φ(j) =

1As noise is assumed to be stationary µn is used to referred to the static noise mean instead.
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(µ
(j)
n ,µ

(j)
h ,Σ

(j)
n ). For the r-th utterance, the m-th Gaussian component is compensated in

the following form:

p(ot|m, sr, nr) = N (ot;µ
(mr)
o ,Σ(mr)

o ) . (6.6)

where

µ(mr)
o =

[
µ

(mr)
sy

µ
(mr)
∆y

]
, Σ(mr)

o =

[
Σ

(mr)
sy 0

0 Σ
(mr)
∆y

]
(6.7)

Note sr and nr are the indices of speaker and environment condition of the r-th utterance.

In this thesis, a block-diagonal MLLR 1 is used to linearly transform the VTS-compensated

model parameters, i.e.,

µ(mnr)
sy = A(sr)

s µ
(mnr)
vts,sy + b(sr)

s

µ
(mnr)
∆y = A

(sr)
∆ µ

(mnr)
vts,∆y + b

(sr)
∆

(6.8)

and

Σ(mnr)
sy = Σ

(mnr)
vts,sy, Σ

(mnr)
∆y = Σ

(mnr)
vts,∆y (6.9)

Here, W
(i)
s = [A

(i)
s , b

(i)
s ] and W

(i)
∆ = [A

(i)
∆ , b

(i)
∆ ] are the i-th speaker linear transform for the

static and delta features, respectively. The combined MLLR transform will be written as

K(i) = (W
(i)
s ,W

(i)
∆ ). The VTS compensated means and covariance matrices for the m-th

component in the j-th noise condition µ
(mj)
vts,y,Σ

(mj)
vts,∆y are given in Eqs. (6.3 - 6.4).

For notational convenience, the following discussion will only consider a single speaker;

therefore the speaker index i is omitted. The extension to multiple speakers is straightforward.

Without loss of generality, it is also assumed that each utterance has a unique noise condition,

i.e., r = nr.

6.1.3 Transform Estimation

There are two sets of transform parameters to be estimated in the VTS-MLLR schemes:

the linear transform K and the noise model parameters Φ = {Φ(r)}, where Φ(r) is the

noise model parameters of r-th noise utterance , Φ(r) = (µ
(r)
n ,µ

(r)
h ,Σ

(r)
n ). These parameters

can be optimised using EM. This yields the following auxiliary function the VTS-MLLR

compensation scheme

Q(K,Φ) =
∑
r,m,t

γ
(mr)
t logN (o

(r)
t ;µ(mr)

o ,Σ(mr)
o ) , (6.10)

1It is possible to use full-transforms, however in this work to be consistent with the factorisation approach
only block-diagonal transforms are considered.
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where the summation over r involves all the utterances belonging to the same speaker, γ
(mr)
t

is the posterior probability of component m at time t of the r-th utterance given the current

transform parameters (K̂, Φ̂), o
(r)
t is the t-th observation vector of the r-th utterance.

To estimate K and Φ for the “VTS-MLLR” scheme, a block coordinate descent strategy

is adopted: first, for each speaker, K is initialised as [I,0], and Φ as the standard VTS-based

noise estimates for each utterance; then K is optimised at the speaker level while keeping

the noise model parameter fixed at the current noise estimates Φ̂; finally, given the updated

speaker transform, K̂, the noise parameter Φ is re-estimated. This process is repeated NEM

times.

As the VTS-compensated static and dynamic parameters are transformed independently

by Ws and W∆ respectively, the estimation of K = (Ws,W∆) can be done separately. Given

the noise estimates for each utterance, Φ(r), the transform Ws needs to be estimated at

the speaker level, involving multiple utterances thus associated with different noise condi-

tions. The transform estimation statistics in [65] are modified to reflect the changing noise

conditions:

ki =
∑
r

∑
m

∑
t

γ
(mr)
t y

(r)
t,i

σ
(mr)2
vts,i

ξ
(mr)
vts,sy ,

Gi =
∑
r

∑
m

γ(mr)

σ
(mr)2
vts,i

ξ
(mr)
vts,syξ

(mr)T
vts,sy ,

(6.11)

with y
(r)
t,i being the i-th element of y

(r)
t , ξ

(mr)
vts,sy = [µ

(mr)T
vts,sy, 1]T and σ

(mr)2
vts,i the i-th diagonal

item of Σ
(mr)
vts,sy, γ

(mr) =
∑

t γ
(mr)
t . Given these statistics, the i-th row of Ws, wT

i , is obtained

by wT
i = kTi G−1

i . Estimating of W∆ is done similarly.

Given the current linear speaker transform K̂, the parameters of the noise transform can

be updated. This requires the noise estimation approaches in, for example [153, 158, 159] to

be modified to reflect that the compensated model will have the speaker transform applied.

To estimate the additive and convolutional noise mean, a first-order VTS approximation is

made, e.g., the mean and covariance for the static feature are approximated as follows:

µ(mr)
sy ≈µ̂(mr)

sy + ÂsĴ
(mr)
h (µ

(r)
h − µ̂

(r)
h ) + ÂsĴ

(mr)
n (µ(r)

n − µ̂(r)
n )

Σ(mr)
y ≈diag

(
Ĵ(mr)
x Σ(m)

x Ĵ(mr)T
x + Ĵ(mr)

n Σ(r)
n Ĵ(mr)T

n

) (6.12)

where Ĵ
(mr)
x ,Ĵ

(mr)
h , Ĵ

(mr)
n and µ̂

(mr)
y are the Jacobian matrices and the compensated mean

based on the current noise estimation µ̂
(r)
h , µ̂

(r)
n and the current linear transform K̂. Because

of this VTS approximation, the auxiliary is now a quadratic function of the noise means.

Hence µ
(r)
h ,µ

(r)
n can be obtained via solving a linear equation, in a similar fashion to the
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scheme described in [158]. After estimating the noise mean , the noise variances Σ
(r)
n can

be estimated using the second order method, in the same way as [159]. At each iteration

a check that the auxiliary function increases is performed and the estimates backed-off if

necessary [158]1.

6.2 Transform Constrained Factorisation

In VTS-MLLR, the speaker linear transform is applied on top of the noise-compensated

models. This means that it will represent attributes of both speaker and noise factors, as the

VTS compensated model will depend on the noise condition. Thus the VTS-MLLR scheme

will not have the required factorisation attribute, i.e., the linear transform in VTS-MLLR

does not solely represent the speaker characteristics. As discussed in chapter 5, one possible

way to yield acoustic factorisation is to combine different forms of transforms which match the

generation process for each acoustic factor. Here, as an example, VTS model compensation

and MLLR speaker adaptation are combined in a different way than VTS-MLLR. This scheme

is named as “Joint”, in which the speaker transform is applied to the underlying “clean” speech

model prior to the application of VTS. Intuitively, the MLLR transform should therefore

not depend on the nature of the noise, thus will yield an adaptation scheme which allows

factorisation.

6.2.1 “Joint” Speaker and Noise adaptation

As the speaker adaptation in Joint is applied to the clean speech models, this adaptation

stage can be expressed for speaker i as

µ(mi)
x = A(i)µ(m)

x + b(i), Σ(sm)
x = Σ(m)

x , (6.13)

where µ
(mi)
x and Σ

(sm)
x are the compensated clean speech distribution parameters for compo-

nent m of speaker i.

For standard VTS compensation, the compensation and Jacobian are based on the speaker

independent distribution N (µ
(m)
x ,Σ

(m)
x ). For the Joint scheme these terms need to be based

on the speaker compensated distributionN (µ
(mi)
x ,Σ

(mi)
x ). Substituting the speaker dependent

mean Wsξ
(m)
sx (for clarity of notation, the speaker index i will be dropped) into Eq. (6.3)

1Since the second order optimisation assumes the approximation in Eq. (6.12), there is no guarantee that
the auxiliary function in Eq. (6.10) will be non-decreasing.



CHAPTER 6. SPEAKER AND NOISE FACTORISATION 130

yields a new, “Joint”, compensation scheme:

µ(mr)
sy = f(Wsξ

(m)
sx ,µ

(r)
h ,µ(r)

n ) ,

Σ(mr)
sy = diag

(
J

(mr)
x,w Σ(m)

sx J
(mr)T
x,w + J

(mr)
n,w Σ(r)

sn J
(mr)T
n,w

) (6.14)

where ξ
(m)
sx = [µ

(m)T
sx , 1]T, and

J
(mr)
x,w =

∂ys

∂xs
|
Wsξ

(m)
sx ,µ

(r)
h ,µ

(r)
n
, J

(mr)
n,w = I− J

(mr)
x,w . (6.15)

In this work, the MLLR mean transform is constrained to have a block diagonal structure,

where the blocks correspond to the static and delta parameters. With this block diagonal

structure 1 and the continuous time approximation, the compensated delta parameters are

given by:

µ
(mr)
∆y = J

(mr)
x,w (A∆µ

(m)
∆x + b∆) ,

Σ
(mr)
∆y = diag

(
J

(mr)
x,w Σ

(m)
∆x J

(mr)T
x,w + J

(mr)
n,w Σ

(r)
∆n J

(mr)T
n,w

) (6.16)

where µ
(m)
∆x , Σ

(m)
∆x are the m-th component parameters for the clean delta features respectively,

and Σ
(r)
∆n is the variance of ∆n, the noise delta.

The above Joint scheme uses a speaker transform, K = (Ws,W∆) to explicitly adapt the

models to the target speaker. In contrast to the VTS-MLLR scheme, the speaker transform

is applied before the noise transform.

6.2.2 Transform Estimation

Similar to the VTS-MLLR schemes, there are two sets of transform parameters to be estimated

in the Joint scheme: the linear transform K and the noise model parameters Φ = {Φ(r)}.
These transform parameters are optimised to maximise the auxiliary function in Eq. (6.10)

in the EM framework. Again, the block coordinate descent strategy is adopted. The speaker

transform K is initialised as [I,0] per speaker, and Φ as the standard VTS-based noise

estimates for each utterance. This is followed by alternately optimising one of K and {Φ(r)},
while keeping the other fixed.

Estimating the noise parameters, given the current speaker transform K̂ is a simple ex-

tension of VTS-based noise estimation in [153, 158]: prior to the noise estimation, the clean

speech mean is transformed to the speaker-dependent clean speech mean. However, estimat-

ing the speaker transform K is not straight-forward, since the transform is applied to the

“clean” speech and then nonlinear VTS compensation applied. To address this non-linearity,

1It is possible to extend the theory to handle full transforms, however this is not addressed in this thesis.
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a first-order vector Taylor series approximation can again be employed to express µ
(mu)
y and

Σ
(mu)
y as functions of the current, K̂, and new,K, estimates of the speaker transform. For

the static parameters, this can be expressed as

µ(mu)
sy ≈ f(Ŵsξ

(m)
sx ,µ

(r)
h ,µ(r)

n ) + J
(mr)
x,ŵ (Ws − Ŵs)ξ

(m)
sx

Σ(mr)
sy ≈ diag

(
J

(mr)
x,ŵ Σ(m)

sx J
(mr)T
x,ŵ + J

(mr)
n,ŵ Σ(r)

n J
(mr)T
n,ŵ

) (6.17)

while for the delta parameters,

µ
(mr)
∆y ≈ J

(mr)
x,ŵ W∆ξ

(m)
∆x

Σ
(mr)
∆y ≈ diag

(
J

(mr)
x,ŵ Σ

(m)
∆x J

(mr)T
x,ŵ + J

(mr)
n,ŵ Σ

(r)
∆n J

(mr)T
n,ŵ

) (6.18)

Due to the approximation in Eq. (6.18), the optimisation of Ws and W∆ again becomes

two separate but similar problems. The estimation of Ws, given the current noise estimation

Φ̂ and the VTS approximation in Eq. (6.17), uses the following, approximate, auxiliary

function (up to some constant term):

q(Ws; Ŵs) =
∑
r,m,t

γ
(mr)
t logN (z

(mr)
t ; Wξ(m)

sx ,Σ
(mr)
full ) (6.19)

where

z
(mr)
t = J

(mr)−1
x,ŵ (y

s(r)
t − µ̂(mr)

sy + J
(mr)
x,ŵ Ŵsξ

(m)
sx )

Σ
(mu)
full = J

(mu)−1
x,ŵ Σ̂(mu)

sy J
(mu)−T
x,ŵ

and µ̂
(mu)
sy , Σ̂

mu)
sy are the compensated static model parameters using the current transforms

Ŵs and Φ̂(r). As Σ
(mr)
full is a full matrix, this optimisation is equivalent to the MLLR estima-

tion with full covariance matrices [225]. Let p
(mr)T
i be the i-th row vector of Σ

(mr)−1
full , p

(mr)
ij

the j-th element of p
(mr)
i , and

ki =
∑
r,m,t

γ
(mr)
t p

(mr)T
i z

(mr)
t ξ(m)

sx −
∑
j 6=i

Gijwj ,

Gij =
∑
m,r

γ(mr)p
(mr)
ij ξ(m)

sx ξ
(m)T
sx .

(6.20)

Differentiating the auxiliary with respect to wT
i yields

∂q(Ws; Ŵs)

∂wT
i

= −wT
i Gii + kTi . (6.21)

The update formula for wi depends on all the other row vectors through ki. Thus an iterative

procedure is required [225]: first Gij is set as 0 for all j 6= i to get an initial wi; then wi
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and ki are updated on a row-by-row basis. Normally, one or two passes through all the row

vectors is sufficient.

For estimation of W∆, another auxiliary function is used:

q∆(W∆; Ŵs) =
∑
r,m,t

γ
(mr)
t logN (∆z

(mr)
t ; W∆ξ

(m)
∆x ,Σ

(mr)
full,∆) (6.22)

where

∆z
(mr)
t = J

(mr)−1
x,ŵ ∆y

(r)
t

Σ
(mr)
full,∆ = J

(mr)−1
x,ŵ Σ̂

(mr)
∆y J

(mr)−T
x,ŵ .

This has the same form as the auxiliary function in Eq. (6.19). Thus the same procedure can

be applied to estimate W∆.

As a first-order approximation, Eq. (6.17), is used to derive the approximate auxiliary

functions. Optimising K via q(Ws; Ŵs) and q∆(W∆; Ŵs) is not guaranteed to increase

Q(K, Φ̂) or the log-likelihood of the adaptation data. To address this problem, a simple

back-off approach similar to the one used in [158], is adopted in this work. Note the back-off

approach, i.e., step 3 in the following procedure, guarantees that the auxiliary function is

non-decreasing. The estimation of the Joint speaker transform is thus:

1. Collect sufficient statistics ki and Gij based on the current transform Ŵs and Φ̂.

Similar statistics are also collected for W∆.

2. Use the row-iteration method to find the Ǩ = (W̌s,W̌∆) such that

W̌s = arg max
Ws

q(Ws; Ŵs)

W̌∆ = arg max
W∆

q∆(W∆; Ŵs)

3. Find α ∈ [0, 1], such that K = αK̂ + (1− α)Ǩ satisfy Q(K, Φ̂) ≥ Q(K̂, Φ̂)

4. Update current estimate K̂ ← K, and go to step 1 Nq times. It is observed in the

experiments that setting Nq = 5 is enough for the auxiliary to converge in most of the

cases.

The above procedure allows the speaker transform to be estimated. The noise transforms

can then be re-estimated and the whole process repeated. However it is worth noting that

there is no unique optimal value for the speaker and noise transforms. There is no way to

distinguish between the speaker bias, b, from the convolutional noise mean, µ
(r)
h . This is

not an issue as the parameters of the speaker model are estimated given the set of noise

parameters. This ensures that all the convolutional noise means are consistent with one

another.
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t = 1, · · · , T

Figure 6.1: Generation of speaker and noise dependent observation vectors and corresponding
model compensation. Solid lines show the DBN of generating observation vector yt, and the
dashed lines represent the model compensation via transforms.

6.2.3 The Factorisation Property of Joint

The previous section presented the Joint scheme and its transform estimation algorithm. The

speaker transform is applied prior to noise compensation. Intuitively, this will factorise the

speaker and noise variabilities. In this section, the Joint scheme is applied to a very simple toy

problem, where the functional form used to generate speaker and noise distorted observation

vectors is assumed to be exactly known. It can be shown in this example ML speaker and noise

parameter estimators are independent of each other, which ensures factorisation. Moreover,

as the generation process is known exactly, the ML speaker (or noise) estimator will converge

to the true speaker (or noise) parameters.

Consider the following generation process of an observation vector (MFCCs) of yt ∈ Rd

by the i-th speaker in the j-th noise condition. Firstly, for the i-th speaker, a clean speech

vector xt is sampled from a Gaussian distribution, i.e.,

xt ∼ N (µx + b(i),Σx) ; (6.29)

whereMc = (µx,Σx) is the speaker-independent mean and covariance, which form the canon-

ical model parameters; b(i) is the bias vector associated with the i-th speaker. In the mean

time, a noise vector is independently sampled from the j-th noise condition :

nt ∼ N (µ(j)
n ,Σn); (6.30)

The observation vector yt is then generated according to a deterministic mismatch function,

similar to the one introduced in section 3.3.2:

yt = f(xt,nt) = C log
(
exp(C−1xt) + exp(C−1nt)

)
(6.31)
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Algorithm 6.1: ML estimation of speaker and noise transform parameters

Input: a set of vectors {yt|t = 1, . . . , T} observed in the acoustic condition (si, nj).

Output: ML estimators, b̂(i) and µ̂
(j)
n which maximise the likelihood of observed data

b̂(i) is initialised by b0 and µ̂
(j)
n is initialised by µ0

for n1 = 1, . . . , N1 do
• Based on the current estimator, calculate f0 = f(µx + b0,µ0), y = 1

T

∑
yt and

the following matrices:

Zby = (JT
x0Σ

−1
y Jx0)

−1JT
x0Σ

−1
y (6.23)

Zbn = −(JT
x0Σ

−1
y Jx0)

−1JT
x0Σ

−1
y Jn0 (6.24)

Zny = (JT
n0Σ

−1
y Jn0)

−1JT
n0Σ

−1
y (6.25)

Znb = −(JT
n0Σ

−1
y Jn0)

−1JT
n0Σ

−1
y Jx0 (6.26)

where Σy is the compensated covariance based on the current estimator, Jx0 and
Jn0 are the Jacobian matrices calculated at current expansion point.
for n2 = 1, . . . , N2 do

• Update b̂(i) by:

b̂(i) ← b0 + Zby(y − f0) + Zbn(µ̂
(j)
n − µ0) (6.27)

• Update µ̂
(j)
n by:

µ̂(j)
n ← µ0 + Zny(y − f0) + Zny(b̂

(i) − b0) (6.28)

end

• Update expansion point: b0 ← b̂(i),µ0 ← µ̂
(j)
n

end

This process is illustrated in Figure 6.1. For the purpose of illustration, the speaker-independent

mean µx and all the variances are assumed to be known, while the speaker bias b(i) and noise

mean µ
(j)
n need to be estimated based on a set of observation {y1, . . . ,yt, . . . ,yT }. Denote

the true parameters used in the generation process as b∗ and µ∗n.

Using the knowledge of this generation process as a prior, it is possible to design model

transforms to compensate the canonical modelMc. The canonical modelMc is transformed

via a speaker transform T (i)
s (which is a speaker bias transform) followed by a noise transform

T (j)
n (which is a VTS transform presented in section 3.3.2). The compensated model M(i,j)

is again a Gaussian distribution, whose parameters µ
(i,j)
y ,Σ

(i,j)
y are given by:

µ(i,j)
y = f(µx + b(i),µ(j)

n )

Σ(i,j)
y = JxΣxJ

T
x + JnΣnJ

T
n

(6.32)

where Jx and Jn are the Jacobian matrices, Jx = C · diag(u) ·C−1,Jx = I− Jn, C and C−1
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are the DCT matrix and its inverse matrix, and u is a dL-dimensional (dL is the number of

channels) vector whose q-th element is

uq =
ex,q

ex,q + en,q
(6.33)

ex,q = ec
−T
q (µx+b(i)) and en,q = ec

−T
q µ

(j)
n are the speech and noise energy in the q-th channel.

Similar to the noise estimation for VTS, the speaker and noise ML estimators, µ̂
(i)
s and

µ̂
(j)
n can be obtained by the algorithm 6.1. Note in practice, it is usually sufficient to update

the expansion point only once (e.g., [153] ) . At a first glance of this algorithm, it appears

that the ML estimators b̂(i) and µ̂
(j)
n are interdependent via matrices Zbn and Znb. However,

if the MAX approximation in [178] is made, i.e.,

ex,q + en,q ≈ max(ex,q, en,q)

it can be shown that Zbn and Znb are approximately zero matrices (see appendix B for details).

The MAX approximation assumes that channel energy is dominated by either speech or noise,

thus the speaker characteristics and noise distortion impact the observation differently. This

means the variabilities caused by speaker and noise can be separated. For the example

discussed in this section, there are a few interesting consequences from following the MAX

assumption:

• The ML estimator of speaker parameters, b̂(i), is independent of the noise estimator and

vice versa. This means the two estimators are decoupled. When the noise parameters

used in the generation process change, it is not possible to adjust speaker parameters

to fit the data better. Therefore, the speaker parameters are only used to explain the

variations caused by the speaker factor.

• The ML estimator of speaker parameters, b̂(i) will asymptotically converge to the true

speaker parameters, b∗, which is used to generate {y1, · · · ,yT }, provided that the ini-

tialisation is sufficiently good. This can be seen from the following fact:

E{b̂(i)} = b0 + Zby(E{y} − f0)

≈ b0 + Zby(f(µx + b∗,µ∗n)− f(µx + b0,µ0))

≈ b0 + ZbyJx0(b∗ − b0) + ZbyJn0(µ∗n − µ0)

≈ b0 + (b∗ − b0) = b∗

where the derivation to the last line used the approximation ZbyJn0 = Zbn ≈ 0, and

ZbyJx0 = I. Similar formulations can be derived for the noise estimator. Therefore, the
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ML estimator b̂(i) derived from samples {y1, · · · ,yT } draw from the acoustic condition

(si, nj) can be used for speaker adaptation in the other noisy environments, such as

(si, nj′).

It is also interesting to compare the causes of these two phenomena. The first is possible

because speaker and noise factors have different impacts on the observations (induced by the

MAX approximation), while the second one is because that the same functional form is used

for data generation and model compensation. Because of the form of transforms used in

this example, the speaker and noise transforms are “orthogonal” to each other, thus enabling

acoustic factorisation. Inspired by this example, it is expected that the Joint adaptation

scheme can be used in a factorised adaptation, since the Joint scheme combines the MLLR

transform and VTS transforms in an order matching the generation process.

6.3 Explicitly Constrained Factorisation

In section 6.1, a conventional approach, VTS-MLLR is used for speaker and noise compensa-

tion, where no attempt is made to separate the speaker and noise variations. In section 6.2,

a different scheme, Joint, is proposed in which the speaker and noise factors are modelled by

specific model transforms. These model transforms are tuned to fit the variations caused by

the corresponding factors. The acoustic factorisation property is thus achieved via implicit

constraints.

In section 5.2.3, it was argued that acoustic factorisation can be achieved by imposing an

explicit constraint. In this section, an explicit constraint is applied to yield factorised speaker

and noise adaptation. It is also possible to apply the constraint to extend the previously

proposed Joint scheme. However, as a proof of concept study, this work will assume the

knowledge of the noise mismatch function is not known in advance and it will modify a

simple linear transform, namely factored CAT (fCAT) [141], to evaluate the effectiveness of

the proposed independence constraint for acoustic factorisation. fCAT is an extension of the

standard cluster adaptive training (CAT) [70] or eigenvoice[136], which enables adapting the

acoustic models to multiple factors. In fCAT, to compensate the variability of speaker and

noise in the r-th utterance, the m-th Gaussian component is adapted by:

p(o
(r)
t ;µ(m)

c ,Σ(m)
c ,m, sr, nr) = N (o

(r)
t ;µ(mr),Σ(m)

c ) (6.34)

where o
(r)
t ∈ RD is the t-th observation vector in r-th utterance, µ

(m)
c ,Σ

(m)
c are the canonical

mean and variance, sr ∈ {1 . . . I} and nr ∈ {1 . . . J} are the speaker and noise condition
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indices of utterance r respectively and

µ(mr) = µ(m)
c + M(m)

s λ(sr,qm)
s + M(m)

n λ(nr,pm)
n , (6.35)

M
(m)
s ∈ RD×ds , M

(m)
n ∈ RD×dn are the component m’s speaker and noise cluster parameters,

ds and dn are the number of speaker and noise clusters respectively; qm ∈ {1, . . . , Q} (pm ∈
{1, . . . , P}) maps the component index m to the speaker (noise) regression class index; λ

(i,q)
s

is the speaker cluster weight vector associated with q-th speaker base class for i-th speaker;

λ
(j,p)
n is the noise cluster weight vector associated with r-th noise base class for j-th noise

condition. Among these parameters, {µ(m)
c ,Σ

(m)
c ,M

(m)
s ,M

(m)
n } form the canonical model

parameters Mc, while {λ(i,q)
s |q = 1 . . . Q} and {λ(j,p)

n |p = 1 . . . P} are the parameters of i-th

speaker transform T (i)
s and j-th noise transform T (j)

n respectively. Note this modelling form

is similar to the one used in JFA[127] for speaker recognition.

The canonical and factor transform parameter estimation is done with EM via maximising

the following auxiliary function:

Q(Mc, {T (i)
s }, {T (j)

n }) =
∑
r,t,m

γ
(mr)
t log (o

(r)
t ;µ(mr),Σ(mr)) (6.36)

in which γ
(mr)
t is the posterior probability of component m at time t in r-th utterance. In the

normal fCAT, this auxiliary function is maximised without any constraint. As it is discussed

in section 5.2.3, a sufficient condition to keep the optimal factor transforms independent of

each other is:

∂2Q
∂T (i)

s ∂T (j)
n

=
∑

r:sr=i ∧ nr=j

∑
t,m

γ
(mr)
t M(m)T

s Σ(m)−1
c M(m)

n = 0 ∀i, j (6.37)

Hence a sufficient condition for the independence constraint in Eq. (6.37) to hold for every

possible observation sequence is

M(m)T
s Σ(m)−1

c M(m)
n = 0 ∀m. (6.38)

This constraint can be also expressed in another form. Define

Ms =


...

M
(m)
s

...

 ; Σc = diag(· · · ,Σ(m)
c , · · · ) ; Mn =


...

M
(m)
n

...

 (6.39)

where Ms and Mn represent the speaker and noise subspaces. The independence constraint

becomes

MT
s Σ−1

c Mn = 0 (6.40)



CHAPTER 6. SPEAKER AND NOISE FACTORISATION 138

According to the above constraint, in a normed vector space induced by the inner product

function x · y = xTΣ−1y, the speaker subspace Ms is orthogonal to the noise subspace Mn.

This orthogonality guarantees that for a given data point, there is a unique speaker-noise

factorisation, thus it is possible to separate speaker factor even if there is only one data point.

6.3.1 Parameter Estimation

The fCAT model is trained to maximise the likelihood of training data which consists of

various speaker and noise combinations. The canonical model parameter updates are very

similar to those in [141]. The main difference is the constraint in Eq. (6.38) need to be

maintained, thus updating the speaker subspace Ms requires solving the following constrained

optimisation:

maxMs −
1

2
tr
(
MT

s Σ−1
c MsGs

)
+ tr

(
Σ−1

c MsKs

)
s. t. MT

s Σ−1
c Mn = 0 (6.41)

where

Gs = diag(· · · ,G(m)
s , · · · ) Ks = [· · · ,K(m)

s , · · · ]

and

G(m)
s =

∑
t,r

γ
(mr)
t λ(sr,qm)

s λ(sr,qm)T
s

K(m)
s =

∑
t,r

γ
(mr)
t λ(sr,qm)

s (o
(r)
t − µ(m)

c −M(m)
n λ(nr,pm)

n )T

Using the method of Lagrange multipliers [29], it is shown in Appendix C that the solution

is given by:

Ms =

[
I−Mn

(
MT

n Σ−1
c Mn

)−1
MT

n Σ−1
c

]
KT

s G−1
s (6.42)

Note Ms = KT
s G−1

s if the constraint is removed. It is also necessary to point out that since

the speaker (or the noise) variability only lies in a subspace, its dimension ds (or dn) must be

smaller than the full dimension, M ·D, where M is the number of Gaussian components in

the system. Therefore MT
n Σ−1

c Mn is a full-rank matrix with the size ds×ds, thus it is always

invertible. A similar equation is adopted for re-estimating for the noise subspace Mn.

There are three main stages involved to train a fCAT model. In the first stage, speaker

and noise transforms are initialised. It is assumed that the speaker label and the noise type

label are known for each utterance. In this work, the eigen-decomposition[136] approach
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was used for speaker transforms initialisation, while the noise transforms were initialised

by a one-of-K vectors, with the corresponding noise type weighted as 1. In the second,

standard CAT training stage, the speaker transforms, the speaker subspace parameters and

the canonical mean/variance are iteratively updated, while in the third training stage, 5 sets

of parameters: the speaker transforms, speaker subspace parameters, noise transforms, noise

subspace parameters and the canonical mean/variances are re-estimated iteratively. The

overall fCAT training procedure, starting from a well-trained CAT model, is summarised in

the following:

1. Initialise the noise transforms by setting the weight corresponding to the current utter-

ance’s noise type as 1, all the other weights as 0; initialise the speaker transforms using

the transforms obtained during standard CAT training.

2. Given the current speaker subspace (obtained by the standard CAT), and the speaker/noise

transforms the noise subspace is estimated to maximise the log-likelihood function while

maintaining the independence constraint in Eq. (6.38).

3. The noise transforms are updated while keeping all the other parameters fixed.

4. The speaker subspace is updated while keeping all the other parameter fixed. Again,

the independence constraint in Eq. (6.38) needs to be maintained.

5. Update speaker transforms while keeping all the other parameters fixed.

6. Goto step 2 N1(∼ 2) times.

7. The canonical mean and variances are updated given the current speaker/environment

transforms and clusters.

8. Goto step 2 N2(∼ 5) times.

6.4 Summary

This chapter considers speaker and noise compensation schemes within the acoustic factorisa-

tion framework. Conventional approaches to speaker and noise compensation usually combine

an adaptive linear transform with a noise-specific, usually nonlinear, transform to model the

combined effect of speaker and noise factors. An example of a conventional approach, the

VTS-MLLR scheme, was presented in section 6.1, where the MLLR transform is tied to both

speaker and noise factors. This was compared with the Joint scheme in section 6.2, in which

the MLLR transform is designed to represent the speaker factor only. A simple example is
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also used to illustrate why the factorisation attribute is expected in the Joint scheme. The

effectiveness of the Joint scheme and the benefit of acoustic factorisation will be demonstrated

by the experiments presented in section 8.1.

The Joint scheme is designed based on the transform constrained approach to achieve

factorisation. It leverages knowledge of how noise impacts the speech features, which is

summarised in a mismatch function. In practice, the mismatch function is not always known.

In that case, the explicit constrained approach proposed in the previous chapter can be used

to design the factorised transforms. In this chapter, it is also applied to the speaker and noise

factorisation problem. As a proof-of-concept study, a simple linear transform, fCAT, is used

to represent both speaker and noise variability. Without the explicit constraint, fCAT for

speaker and noise factorisation solely relies on the balanced data to factorise. Applying the

proposed independence constraints to fCAT yields orthogonal constraints for the speaker and

noise subspaces. The effectiveness of this constraint for fCAT will be demonstrated by the

experiments in section 8.2.



CHAPTER 7
Experiments on

Reverberant Robustness

In this chapter, the effectiveness of the proposed model-based approaches to robust speech

recognition in reverberant environments will be investigated. Evaluations are based on two

recognition tasks: a reverberant version of the standard AURORA4 task and a Multi-Channel

Wall Street Journal Audio Visual (MC-WSJ-AV) task [161]. In the first task, background

noise and the reverberant noise are artificially added to a medium vocabulary Wall Street

Journal (WSJ) task to simulate background noise in various reverberant environments. In

the second task, single distant microphone data recorded in real reverberant environments

are used as the test data. Results and discussions on these two tasks are presented in Section

7.1 and Section 7.2 respectively.

7.1 The Reverberant AURORA4 Task

To evaluate the proposed noise robustness schemes for reverberant environments, the standard

AURORA4 task is used in this thesis to create a reverberant and background noise corrupted

task, the reverberant AURORA4 task. Training and test data in the AURORA4 task were

filtered by the tool in [102] to simulate various reverberant environments.

141
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Microphone Background Noise Type
Channels no car babble restaurant street airport train

Primary 01 02 03 04 05 06 07

Secondary 08 09 10 11 12 13 14

Table 7.1: The definition of test sets in the standard AURORA4 task. Set A (01) is the clean
data; Set B (02-08) are distorted by 6 different types of background noises; Set C (08) and
Set D (09 - 14) are recorded by secondary microphones, and contains channel mismatch;
Background noises are also used to distort the data in Set D.

7.1.1 Datasets

The standard AURORA4 task and the reverberant AURORA4 task are both created by

artificially corrupting the clean data in the WSJ0 corpus. The creation of these two tasks are

briefly described in the following.

There are two training sets in the standard AURORA4 [188] task: the clean and multi-

condition training sets. Both of these two sets comprise 7138 utterances (about 14 hours)

from 83 speakers. 16kHz data were used in all the experiments in this thesis. In the clean

training dataset, the 7138 training utterances were recorded using a primary microphone,

which is a close-talking microphone. For the multi-condition data, half of them came from

desk-mounted, secondary microphones. The multi-condition data had 6 different types of

noise added, with the SNR ranging from 20dB to 10dB. There are 4 test sets defined in the

standard AURORA4 task. 330 utterances from 8 speakers, recorded by the close talking

microphone, form task 01 (set A). 6 types of noises, the same as those in multi-condition

training data, were added to the clean data, with randomly selected SNRs (from 15dB to

5dB, average 10 dB). These form tasks 02 to 07 (set B). Recordings of these utterances by

desk-mounted secondary microphones were also provided in task 08 (set C). Noise were added

to set C to form tasks 09 to 14 (set D). The definition of test sets in the standard AURORA4

task is summarised in Table 7.1.

The reverberant AURORA4 corpus was created by filtering the clean data in the standard

AURORA4 corpus with a few RIRs and a range of reverberation time T60. Five test sets were

created using two RIRs, office1 and office2, which were measured in two different office

environments respectively. The five test sets are:

• r01 test set: the clean test data in the standard AURORA4 task were filtered by the

RIR office1 to form the test set r01;

• r02 test set: the clean test data in the standard AURORA4 task were filtered by the

RIR office1; the restaurant noise signals in task 04 in the standard AURORA4 task
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Reverberant
Environment

No Background Restaurant Noise
Noise Uncorrelated Correlated

office1 r01 r02 r03

office2 r04 r05

Table 7.2: Definition of 5 test sets in the Reverberant AURORA4 task. The reverberation
time T60 is fixed as 400ms.

were added to the RIR filtered signals to form the test set r02. The background noise

in r02 is referred to as frame-uncorrelated background noise (see Section 3.3.1.1);

• r03 test set: the 04 data (restaurant background noise) in the standard AURORA4

task were filtered by the RIR office1 to form the test set r03. The background noise

in r03 is referred to as frame-correlated background noise (see Section 3.3.1.1);

• r04 test set: the clean test data in the standard AURORA4 task were filtered by the

RIR office2 to form the test set r04;

• r05 test set: similar as the r02 test set, but the RIR office2 was used.

In creating these 5 test sets, the reverberation time T60 was fixed as 400ms. The office1

environment differs from the office2 environment due to the differences in the shape of RIRs

office1 and office2 (e.g., some frequency band in the RIR office1 may attenuate quicker

in RIR office2). Since it is expected that the shape of RIRs and the frame correlation are

two independent factors, a test set r06, which would be frame-correlated restaurant noise

added to the office02 reverberant environment, was not investigated in this work. The

definition of reverberant test sets is summarised in the Table 7.2.

For the training set definition, the clean training set in the standard AURORA4 task

was also used as the clean training set in the reverberant AURORA4 task. To create a

multi-condition reverberation training set, the office1 RIR mentioned before and a RIR

measured in a living room environment, referred to as liv1, were used to filter the standard

AURORA4 clean training set, with the reverberant time T60 ranging from 200ms to 600ms.

The 6 background noise types in the standard AURORA4 task were also added to RIR-filtered

signals, yielding frame-uncorrelated background noise in the multi-condition training set. The

ratio of reverberant speech to the background noise, also known as RNR, ranges from 10dB

to 20dB. Note the test sets r04 and r05 are unseen environments for this multi-condition

training set, as the RIR office2 was not used in creating the multi-condition training data.
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Microphone Background Noise Type
Channels no car babble restaurant street airport train

Primary 7.1 38.5 58.5 56.0 64.7 53.5 64.0
Secondary 47.1 62.4 70.4 71.2 79.8 69.7 76.8

Table 7.3: Recognition performance (in WER %) of the clean-trained acoustic model on the
standard AURORA4 test data.

Reverberant
Environment

No Background Restaurant Noise
Noise Uncorrelated Correlated

office1 70.3 97.3 98.1
office2 60.1 97.6

Table 7.4: Recognition performance (in WER %) of the clean-trained acoustic model on the
reverberant AURORA4 test data.

7.1.2 Baseline Experiments

The HTK front-end was used to derive a 39-dimensional feature vector, consisting of 12

MFCCs, extracted from the magnitude spectrum, appended with zeroth cepstrum, delta

and delta-delta coefficients. The clean training data was used to build the decision tree. A

cross-word tri-phone model set with 3140 distinct states and 16 component per state was ML-

trained on the clean data, and this model topology was used throughout all the experiments.

The standard 5k-vocabulary bi-gram LM for the AURORA4 task was used in decoding. The

language scale factor was fixed as 16 in all the experiments.

An initial decoding was run on the 14 tasks in the standard AURORA4 corpus and the

5 test sets in the reverberant AURORA4 corpus using acoustic models trained on the clean

data without any model adaptation. The large mismatch between the clean training condition

and the noisy test condition can be seen from Table 7.3 and Table 7.4. On the clean data,

the 01 task in the standard AURORA4 corpus, a WER of 7.1% can be achieved, while on all

the other 13 tasks in AURORA4, performance is severely degraded and the average WER on

14 tasks is substantially increased to 58.5%. The impact of reverberant environments is even

more serious, as demonstrated in Table 7.4.

Baseline systems on both the standard AURORA4 task and the reverberant AURORA4

task were established by using the standard VTS-based model adaptation scheme. Two

model sets were used in the baseline systems. The first one is the clean trained acoustic

model. The second is a VTS-based adaptively trained acoustic model, denoted as “VAT”.

Adaptation in all the experiments in the standard AURORA4 and reverberant AURORA4

tasks were performed in an unsupervised mode. All noise parameters were estimated at the

utterance level. Initially, the clean trained acoustic model or the VAT acoustic models were
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Procedure 7.1: VTS-based unsupervised noise estimation and model compensation.

Given:
a set of test utterances {O(r)|r = 1, · · · , R} and the acoustic model M

Output:

VTS-based noise model parameters {Φ(r)
vts|r = 1, · · · , R} and decoding

hypotheses {H(r)|r = 1, · · · , R}
for r=1,. . . , R do

• Initialise Φ
(r)
vts using the first and last 20 frames of O(r);

for i=1,. . . , I (∼ 2) do

• M is compensated to M(r) using the standard VTS model compensation

based on the current noise model Φ
(r)
vts;

• Hypothesis H(r) is obtained by using the compensated acoustic model M(r)

and the standard bi-gram LM;

• Noise model parameters Φ
(r)
vts are re-estimated NEM times.

end

end

compensated using VTS, based on an initial estimation of the additive noise, using the first

and last 20 frames of each utterance. These compensated models were used to decode an

initial hypothesis. With this initial hypothesis, the noise models were re-estimated NEM (4

in this task) times. New hypotheses were then obtained by another pass of decoding. This

process was optionally repeated a few times (2 in this task). Further VTS iterations did

not give any performance gains on either the standard AURORA4 data or the reverberant

AURORA4 data. This VTS-based noise estimation and model compensation procedure is

described in the procedure 7.1.

Table 7.5 shows the performance of unsupervised adaptation of the clean-trained and VAT

trained acoustic models on the 4 sets (set A-D) of the standard AURORA4 task. Using the

unsupervised VTS adaptation, the system robustness is significantly improved on all sets (A-

D). As a result, the average WER was improved to 17.8%. This demonstrates the usefulness

of VTS adaptation on background and convolutional noise corrupted data. Using the VAT

acoustic model and VTS adaptation can further improve the recognition performance to

15.9%. A detailed breakdown of the performance on each of the 14 tasks can be found in

Table 8.1 in the next Chapter.

Unsupervised VTS adaptation of the clean trained acoustic model is also performed on

test data in the reverberant AURORA4 task. Table 7.6 compares the performance of this

system on the clean data (01 task), background noise corrupted data (04 task), data in rever-

berant environments without background noise ( r01 and r04 tasks), and data in reverberant

environment with frame-uncorrelated (r02 task) and frame-correlated background noise (r03
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task). Note in a non-reverberant environment, the background noise is assumed to be frame-

uncorrelated. The substantial impact of reverberant noise is evident by comparing WERs in

Table 7.5 and Table 7.6. On the task r01, which only contains reverberant noise, the VTS-

compensated acoustic model gives a WER of 43.8%, while on its non-reverberant counterpart

data, the 01 task in the standard AURORA4 corpus, the WER performance is 6.9%. On the

task 02, which contains both reverberant noise and frame un-correlated background noise, the

VTS model compensation gives a WER of 51.6%, while on its non-reverberant counterpart,

the 04 task in the standard AURORA4 task, the WER is 19.5%. It is also noted that there is

a large performance variation among the data with different RIRs. For example, the WER on

the r01 data is 43.8%, while the WER on r04 data is 30.9%, though both data were corrupted

by the same reverberation time T60 = 400ms. This illustrates that the shape of RIRs can also

have an impact on the recognition performance. Given the recognition performance in Table

7.5, it is clear that the VTS-based model adaptation is not able to achieve high performance

in reverberant environments.

7.1.3 Model Compensation and Noise estimation

In this section, a set of experiments were run to investigate various aspects of the proposed

RVTS and RVTSJ model compensation schemes. These include: static and dynamic param-

eter compensation; ML noise parameter estimation; sensitivity to the reverberant time T60;

power-domain mismatch function and combination with linear transforms. This section will

focus on the effectiveness of model compensation and only the clean-trained acoustic model

will be used in the experiments. The effectiveness of reverberant adaptive training will be

investigated in Section 7.1.4.

7.1.3.1 Static and Dynamic Parameter Compensation

In this experiment, the clean-trained acoustic model was compensated using an initial noise

model. The noise parameters were obtained using an estimated T60 value as described in

Section 4.2.3. There are a few methods can be used to estimate the T60 value from reverberant

Systems Adaptation A B C D Avg.

clean-trained — 7.1 55.9 47.1 71.7 58.5
VTS 6.9 15.1 11.8 23.3 17.8

VAT VTS 8.5 13.7 11.8 20.1 15.9

Table 7.5: Recognition performance (in WER%) of unsupervised VTS adaptation of the clean-
trained and VAT trained acoustic models on the 4 sets (set A-D) of standard AURORA4 task.
The standard bi-gram LM was used in decoding.
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Reverberant Background Noise
Environment No Frame-Uncorrelated Frame-correlated

No 6.9 (01) 19.5 (04) —

office1 43.8 (r01) 51.6 (r02) 48.9 (r03)
office2 30.9 (r04) 48.8 (r05) —

Table 7.6: Recognition performance (in WER %) of unsupervised VTS adaptation of the
clean-trained acoustic model on the clean data (01 task), background noise corrupted data
(04 task), data in reverberant environments without background noise (r01 and r04 tasks),
and data in reverberant environment with frame-uncorrelated (r02 task) and frame-correlated
background noise (r03 task). The standard AURORA4 bi-gram LM is used in decoding.

signals, e.g., [103]. In this experiment, it is assumed that a correct T60 estimate is available:

T60 is fixed as 400ms, the same value as was used in artificially corrupting the test data. The

impact of using an incorrect T60 value on the recognition performance will be investigated

later.

Table 7.7 compares the WERs (in %) of VTS, RVTS and RVTSJ compensated acoustic

models. Note that the proposed RVTS and RVTSJ schemes only compensate the mean

parameters while the variance parameters were compensated by the standard VTS scheme.

It can be seen from this table that when only static mean parameters are compensated, both

RVTS and RVTSJ schemes gain over the standard VTS scheme on the background noise

free task r01. However, on the tasks r02 and r03, which have background noise distortion,

RVTS and RVTSJ performance is degraded, especially for RVTSJ. Extending the model

compensation to the dynamic mean parameters substantially improves the performance on all

tasks. This demonstrates that dynamic parameters compensation is essential in reverberant

environments. When both static and dynamic mean parameters are compensated, RVTSJ and

RVTS performed similarly on task r01, while RVTSJ is slightly better than RVTS on tasks

r02 and r03. Note the task r03 was created using frame correlated background noise, which

matches the mismatch function used for RVTS model compensation. Since compensating all

the mean parameters always gives the best performance, this configuration is used in the all

the following experiments.

It is also observed in this table that RVTS and RVTSJ using this simple noise model

initialisation have already significantly 1 improved the performance over VTS model com-

pensation (average WER 42.7% of RVTS and 41.2% of RVTSJ vs 48.1% of VTS). This is

expected as the RVTS and RVTSJ model compensation is designed for reverberant environ-

ments, while standard VTS only handles the background noise and convolutional noise. It is

1All statistical significance tests in this thesis were based on a matched pair-wise significance test at a
99.5% confidence level.
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Schemes Compensation test Avg.
mean var. r01 r02 r03

VTS µVTS ΣVTS 43.8 51.6 48.9 48.1

RVTS
µsz

ΣVTS

39.5 52.3 50.8 47.5
µsz, µ∆z 33.6 52.6 52.1 46.1

µsz, µ∆z, µ∆2z 29.7 49.7 48.7 42.7

RVTSJ
µsz

ΣVTS

41.2 86.5 86.0 71.2
µsz, µ∆z 33.2 69.5 67.0 56.6

µsz, µ∆z, µ∆2z 29.4 47.3 46.9 41.2

Table 7.7: Recognition performance (in WER %) of static, delta and delta-delta mean pa-
rameter compensation using RVTS and RVTSJ. The clean-trained acoustic model was used.
The noise model parameters is initialised by the known reverberation time T60 = 400ms.

also noted that reference[103] reports a WER of 39.8% on a test set similar to the r01 task,

in which the noise model parameters are also initialised from the estimated T60 value. As a

contrast, the RVTS and RVTSJ schemes achieve WERs of 29.7% and 29.4% respectively on

the r01 task.

7.1.3.2 ML Noise Estimation

Experiments in Table 7.7 used a simple reverberant noise estimation, which only has one free

parameter, the T60 value. As demonstrated in the development of VTS model compensation

schemes (e.g., [153, 159]), using ML estimated noise model parameters always yields large

gains over using simple initial estimates of noise. Hence, it is also preferable to use ML

estimated noise for RVTS and RVTSJ compensation. The VTS hypothesis (the first row in

Table 7.7) was taken as the initial supervision; noise parameters were re-estimated while the

model variance was locked at the VTS compensated variance. A few EM iterations were used

to re-estimate the reverberant noise model parameters. The supervision hypothesis was also

updated to yield better noise estimation before the final decoding. The detailed RVTS/RVTSJ

noise estimation and model compensation procedure is illustrated in procedure 7.2, with the

number of hypothesis update iterations I = 1 and NEM = 4.

The recognition performance of RVTS and RVTSJ model compensation with unsupervised

noise estimation are presented in Table 7.8. In the first rows of block 2 and 3 in Table 7.8

(“Init”), noise model parameters were initialised based on an estimated T60 value, while in

the second rows of block 2 and 3 (“ML”), the noise model parameters were ML estimated

given the VTS hypothesis. Additionally, the hypothesis was also updated to re-estimate the

noise parameters (the third rows of block 2 and 3, “upd. hyp.”). As expected, ML estimation

of noise yields consistent gains over initial noise estimation. RVTSJ outperforms RVTS in
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Procedure 7.2: RVTS/RVTSJ model compensation and unsupervised noise estimation
procedure.

Given:
a set of test utterances {O(r)|r = 1, · · · , R};
VTS noise model parameters {Φ(r)

vts|r = 1, · · · , R};
VTS supervision hypotheses {H(r)|r = 1, · · · , R};
and an estimate of T60 value;

Output:
RVTS and RVTSJ noise model parameters {Φ(r)|r = 1, · · · , R} and final
decoding hypotheses {H(r)|r = 1, · · · , R}

for r=1,. . . , R do

• Initialise Φ(r) using the known T60 value;
for i=1,. . . , I do

• Noise model parameters Φ(r) are re-estimated NEM times;

• M is compensated to M(r) using RVTS or RVTSJ based on the current
noise model Φ(r);

• Decoding hypothesis H(r) is obtained by using acoustic model M(r) and the
standard LM;

end

end

all three task. This is due to the sequential approach to noise estimation in RVTS, where

the additive noise was estimated using the VTS-style mismatch function, then the frame-level

distortion terms were estimated given the additive noise. Because of this sequential approach,

the additive noise was used to model some attributes of reverberation, yielding inaccurate

noise estimates. Joint estimation of both additive and reverberant noise alleviates this issue by

taking the effect of both reverberant and additive noise into account. It is also observed from

Table 7.8, though the supervision WERs have been significantly reduced by RVTS/RVTSJ

compensation (from an average 48.1% to 39.1% for RVTS and 36.3% and RVTSJ), updating

the supervision hypotheses does not yield significant gains. This may suggest that RVTS and

RVTSJ schemes are relatively insensitive to the errors in the supervision hypothesis. It is also

noted that RVTS and RVTSJ yield large gains on reverberant noise only set r01, about 15-

20% absolute gains, while the gains on sets r02-r03 are reduced to about 10% absolute. This

may suggest that the mismatch function for background noise in reverberant environments

is not as accurate as the one for reverberant noise only, and the temporal correlation of

background noise is either discarded in RVTSJ or not well estimated in RVTS due to the

employed sequential noise estimation procedure.



CHAPTER 7. EXPERIMENTS ON REVERBERANT ROBUSTNESS 150

Schemes test Avg.
r01 r02 r03

VTS 43.8 51.6 48.9 48.1

RVTS (Init.) 29.7 49.7 48.7 42.7
+ML 27.3 46.0 44.0 39.1
+upd. hyp. 26.7 45.8 43.9 38.9

RVTSJ (Init.) 29.4 47.3 46.9 41.2
+ML 24.8 43.6 40.8 36.3
+upd. hyp. 24.1 43.1 40.4 35.8

Table 7.8: Recognition performance (in WER%) of RVTS and RVTSJ compensation of the
clean-trained acoustic model with unsupervised noise model estimation. “Init.” means noise
model parameters are initialised based on the correct T60 value; “ML” stands for the noise
model parameters are ML estimated using the VTS hypothesis; “upd. hyp.” denotes that
the hypothesis was updated to re-estimate the noise parameters.

7.1.3.3 Sensitivity to Reverberant Time Estimation

The above experiments assume that the correct reverberation time T60 is known. In practice,

this information is often not available, and an estimate of T60 is used. It is therefore interesting

to investigate the sensitivity of the proposed model compensation schemes with respect to the

variations of T60 values. Another set of experiments were run on task r01 and the initial T60

ranges from 100ms to 800ms, with a step size of 100ms. Results are presented in Table 7.9.

Note the supervision hypothesis was fixed as the VTS hypothesis. The results demonstrate

that when noise models are simply initialised from the T60 value, both RVTS and RVTSJ

yield the best performance (after ML estimation of noise parameters) when the estimate of

T60 is around its correct value. There is a small performance variation when the estimate

of T60 deviates from its correct value. After ML estimation, the variations are reduced.

This indicates that the proposed RVTS and RVTSJ schemes with ML noise estimation are

insensitive to the error in T60 estimation.

T60 RVTS RVTSJ
Init. ML Init. ML

100 31.0 28.2 30.2 25.9
200 28.4 28.0 27.5 24.9
300 29.1 27.6 28.4 24.9
400 29.7 27.3 29.4 24.8
600 31.7 27.6 30.8 24.9
800 32.4 27.4 31.7 25.3

Table 7.9: Recognition performance (in WER %) of the RVTS and RVTSJ model compen-
sation using a range of initial T60 values on the r01 task. Noise model parameters are either
initialised using the given T60 value (“Init.”) or ML estimated (“ML”).
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7.1.3.4 Power-Domain Mismatch Function

The above experiments assume the noise and speech are additive in the magnitude domain,

as it was empirically found magnitude domain combination yielded better results [72] for

additive noise corrupted data. It is also interesting to examine this conclusion for reverberant

noise corrupted data. VTS and RVTSJ adaptation experiments were re-run on tasks r01 and

r03 using the power domain mismatch functions (γ = 2) with the same setup. Results are

shown in Table 7.10. Consistent with the findings in [72], magnitude domain combination

performs better.

Schemes domain test Avg.
r01 r03

VTS
power 46.7 61.1 53.9

magnitude 43.8 48.9 46.4

RVTSJ
power 30.5 53.1 41.8

magnitude 24.8 40.8 32.8

Table 7.10: VTS and RVTSJ model compensation recognition performance on tasks r01 and
r03 using the power-domain and magnitude-domain mismatch functions. Noise parameters
are ML estimated. Note the average WERs are calculated on r01 and r03; thus they are not
comparable with those in the previous tables.

7.1.3.5 Combination with Linear Transforms

To further improve the performance, a linear transform, the CMLLR transform [67], was

combined with previous model compensation schemes. A global CMLLR transform was es-

timated for each speaker using the VTS hypothesis. Results are shown in Table 7.11. As

expected, adding linear transforms to further reduce the mismatch yielded large gains. The

best performance was achieved by RVTSJ combined with CMLLR adaptation, the average

WER 28.4% on tasks r01 and r03. This was a 38.8% relative error reduction, compared with

the VTS model compensation scheme. The combination of RVTSJ and CMLLR transform

also outperforms the Direct CMLLR scheme proposed in [73], in which a linear transform per

speaker was employed to project several neighbouring frames. This demonstrates that the

use of nonlinear mismatch functions is helpful for the reverberant noise distortion.

7.1.4 Reverberant Adaptive Training

In the previous section, the clean-trained acoustic model was used in the experiment. It is

demonstrated in [214] that when multi-condition data is available, multi-style trained acoustic

models can yield significant gains over adapting clean-trained acoustic models. However, a
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Schemes test Avg.
r01 r03

VTS
ML 43.8 48.9 46.4
+CMLLR 32.0 45.2 38.6

RVTS
ML 27.3 44.0 35.7
+CMLLR 22.8 41.0 31.9

RVTSJ
ML 24.8 40.8 32.8
+CMLLR 20.2 36.5 28.4

Table 7.11: Recognition performance (in WER%) of combing VTS, RVTS and RVTSJ model
compensation schemes with CMLLR adaptation. For RVTS and RVTSJ model compensation,
noise parameters and the CMLLR transform were ML estimated based on the VTS hypothesis.
Average WERs are calculated on r01 and r03.

System Adaptation
office1 office2 Avg.

r01 r02 r04 r05

Clean-trained
VTS 43.8 51.6 30.9 48.8 43.8

RVTSJ 24.8 43.6 25.4 43.2 34.3

MST
– 19.9 38.3 37.4 63.6 39.8

CMLLR 14.1 30.1 14.7 48.4 26.8

VAT
VTS 15.1 29.0 18.7 44.5 26.8

RVTSJ 14.9 29.6 18.3 43.6 26.6

RAT RVTSJ 13.7 28.5 15.0 42.2 24.9

Table 7.12: Performance (in WER%) of clean-trained, multi-style trained and adaptively
trained acoustic models in reverberant environments. Reverberant environment “office1”
was seen in the multi-condition training data while “office2” was not seen; r01 and r04

tasks do not contain background noise, while r02 and r04 tasks contain frame-uncorrelated
background noise. Average WERs are calculated on r01, r02, r04 and r05.

limitation of multi-style trained acoustic models is that it may not generalise well to rever-

berant conditions unseen in the training data. As an alternative to this multi-style training

(MST), reverberant adaptive training (RAT) is proposed in section 4.3.

The MST acoustic model was built first. Starting from this MST model, the VAT system

was built, which in turn serves as an initialisation for the RAT acoustic model. Following the

procedure in Algorithm 4.2, a RAT acoustic model was built, where the number of iterations

were set as Nmodel = 3, Ntrans = 2 and NEM = 4. Within each NEM iterations of canonical

model update, β is reduced from 8 to 1, halving at every iteration. As a comparison, the

extended mean parameters µ
(m)
x which were obtained by solving the optimisation problem in

Eq. (4.45) were appended with the VAT acoustic model. In this way, the RVTSJ adaptation

can be also be performed using the VAT acoustic model.

An initial decoding using the MST acoustic model without adaptation was run. Results
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are shown in the first row of the second block in Table 7.12. Compared with adapting

the clean-trained acoustic models (details were described in the previous section and the

WERs are duplicated in the first block of Table 7.12), the MST model considerably improves

the WERs in the “office1” environment. However, when operated in an environment not

observed during training, “office2”, WER increased. This demonstrates multi-style training

introduces a bias toward the training environments and may not generalise well to unseen

conditions. The MST system was also adapted by a CMLLR transform for each speaker,

using the initial MST decoding hypothesis as the supervision hypothesis. As shown in the

fourth row in Table 7.12, CMLLR adapted MST system yields large error reductions in all

conditions. This is consistent with the findings reported in [169, 214]. Note that, though

powerful, the CMLLR transform needs to be estimated on multiple utterances in the same

condition. As a result, the CMLLR scheme is not as flexible as VTS and RVTSJ schemes

which can be estimated on a single utterance.

RVTSJ adaptation experiments using the VAT and RAT models were also performed in

an unsupervised mode. The adaptation procedure is the same as the one used in the previous

section, except that the MST+CMLLR hypothesis was used as supervision, as the initial

investigation shows that this is helpful for the recognition performance. Results are displayed

in the third and fourth blocks of Table 7.12. Compared with the CMLLR adapted MST

acoustic model, the VAT acoustic model with VTS adaptation performed worse when there is

only reverberation distortion, but gave gains when the background noise is also present. This

is due to the fact that VTS is designed to compensate the impact of background noise, while

the CMLLR can be used for general adaptation. RVTSJ adaptation of the VAT acoustic

model was also performed, which gave small gains over VTS adapted VAT system in average.

RVTSJ adaptation of the RAT acoustic model further improves the performance. Compared

with the VAT acoustic model, RAT yields 0.5% to 1.3% absolute gains for the “office1”

environment, and 2.3% to 3.7% for the “office2” environment. This demonstrates that

reverberant adaptive training produces a canonical model neutral to the reverberant and

background noise distortions to some extent. On average, the RAT system gave the best

performance, yielding 1.9% absolute gains over the CMLLR adapted MST system.

7.2 MC-WSJ-AV Task

In the previous section, the proposed reverberant robustness schemes were evaluated on the

reverberant AURORA4 task where the reverberant and background noises are artificially

added. In this section, these schemes will be evaluated on the Multi-Channel Wall Street

Journal Audio Visual (MC-WSJ-AV) task [161], where data was recorded in “real” reverberant
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environments. The MC-WSJ-AV task consists of a collection of read Wall Street Journal

(WSJ) sentences taken from the development and evaluation sets of the WSJCAM0 database

[203]. The data were recorded in a number of instrumented meeting rooms constructed

within the framework of the European Augmented Multi-party Interaction (AMI) project.

Three different scenarios were considered during the recording of the database, where only

the “single stationary speaker” scenario is considered in this thesis. Furthermore only the

test speakers recorded at University of Edinburgh (UEDIN) were used. Data were recorded

simultaneously by a headset microphone, a lapel microphone and two 8-element circular

microphone arrays placed on the table. The configuration examined here is primarily the

single distant microphone (sdm), where element 1 of microphone array 1 was used. One

development (dev1) and two evaluation sets (ev1 and ev2) were used in the experiments.

Each set consists of 5 test speakers, with around 17 adaptation sentences per speaker for

speaker/environment adaptation. The number of sentences associated with each of the test

sets was dev1 178, evl1 188 1, and evl2 183. It was measured in [151] that the ratio

of reverberant speech to the background noise (RNR) of test data is 15-20dB in average.

Estimates of the room reverberation time range from 380ms [140] to 700ms [161].

The training data were taken from the WSJCAM0 database, which include 7861 utterances

from 92 speakers, all with British English accents. The WSJCAM0 data were recorded by

close talking microphones in quiet environments. As such, it was used as clean training data

in the experiments. Multi-condition training data was also created using a script provided by

the 2013 REVERB (REverberant Voice Enhancement and Recognition Benchmark) challenge

[1]. Clean training data in WSJCAM0 were convolved with various RIRs and background

noise signals were subsequently added. The RIRs were measured in 6 different reverberant

environments: 3 rooms with different volumes (small, medium and large size), 2 types of

distances between a speaker and a microphone array (near=50cm and far=200cm). Only the

element 1 in microphone arrays was used in the experiment, as the single distant microphone

is the main focus of this work. Stationary background noise, which was mainly caused by

air conditioning systems in rooms, was measured under the same conditions with the same

arrays as used for RIR measurement. These RIRs and background noise signals were randomly

selected to corrupt each utterance in the WSJCAM0 training set, forming the multi-condition

reverberant WSJCAM0 training set. The background noise was added at a RNR of 20dB.

Reverberation time of small, medium, and large-size rooms for the far field microphone array

are about 250ms, 500ms, 700ms respectively.

1The data for one sentence was missing for this set. Therefore results presented in this thesis are slightly
mismatched with the numbers quoted in [161] and [151].
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There are several published works reporting their results on the MC-WSJ-AV tasks,e.g.,

[140, 151, 161] and [73]. References [140, 161] mainly focus on microphone array techniques to

reduce the impact of reverberation while[151] and [73] focus on the single distant microphone

scenario. All the previous works used clean training sets to build acoustic models.

7.2.1 Experimental Setup

Initial experiments were performed using the acoustic model built from the clean training

data. The same feature extraction procedure as the one used for the reverberant AURORA4

task was used. Cross-word triphone models with 3066 distinct states were constructed with

12 Gaussian components per state. The extended model statistics were estimated from the

cleaning training data in the same way as the reverberant AURORA4 task. The parameters

n = 10 and w = 4 were used. These model statistics were also adaptively trained from the

multi-condition reverberant WSJCAM0 set using RAT in the second set of experiments. A

trigram language model was used for decoding.

Adaptation in this task was performed in a supervised mode. VTS, RVTS/RVTSJ, CM-

LLR transforms were estimated from the adaptation read utterances at the speaker level.

Multiple EM iterations were performed to reduce the performance differences due to the

number of iterations. A global class was used for CMLLR transform. The T60 value was

initialised as 400ms in all the experiments.

7.2.2 Results

Table 7.13 compares recognition performance of VTS, RVTS and RVTSJ adaptation of clean

trained acoustic models on this task. Similar to the reverberant AURORA4 task, using

RVTS/RVTSJ compensation based on the initial reverberant noise model parameters already

yields gains over the baseline VTS scheme. Using ML-estimated noise model parameters yields

additional gains, giving about 20% relative reduction over the baseline VTS scheme. RVTS

and RVTSJ yield similar WERs in this task, with RVTSJ slightly better. This is expected,

as the background noise level is relatively low in this task. Further gains were obtained when

RVTS/RVTSJ was combined with CMLLR adaptation. However, the differences between

VTS and RVTS/RVTSJ are reduced. The best WER performance is obtained by combining

RVTSJ with CMLLR adaptation, which yields 5.5% absolutely gains over VTS+CMLLR. It

is noted reference [151] reports their best WERs on evl1 set are around 39-40%, using a

feature enhancement technique. This represents the state-of-the-art performance of feature

enhancement-based approach on this task. Also note [151] uses a bigram language model and
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Scheme Test Set Avg
dev1 evl1 evl2

VTS
ML 58.7 53.7 69.5 60.6
+CMLLR 45.4 38.9 49.1 44.4

RVTS
Init 52.7 46.5 56.0 51.7
ML 49.8 42.9 52.1 48.2
+CMLLR 43.8 35.5 43.6 40.9

RVTSJ
Init 50.3 44.5 55.1 49.6
ML 48.2 40.9 53.8 47.5
+CMLLR 40.2 32.9 43.6 38.9

Table 7.13: VTS, RVTS and RVTSJ MC-WSJ-AV dev and eval results (in WER %). Clean
trained acoustic models are used in the experiments.

Adaptation Test Set Avg
headset lapel sdm

— 46.6 77.4 97.4 73.8
CMLLR 9.8 16.1 90.0 38.6

VTS 14.8 22.8 58.7 32.2
RVTSJ 15.4 23.2 48.2 28.9

Table 7.14: Performance (in WER%) of CMLLR, VTS, and RVTSJ on MC-WSJ-AV dev1
set. Three types of data are used: headset, lapel, and single distant microphone (sdm) .

does not use any adaptation data, thus the comparison is not completely fair. A compre-

hensive comparison of state-of-the-art model-based and feature-based techniques on this task

will be left to future work.

The proposed RVTS and RVTSJ schemes are specifically designed to handle reverberation.

It is thus interesting to examine their performance on data recorded by less reverberant

channels, such as the lapel and headset. Headset, lapel and single distant microphone (sdm)

data in set dev1 were used in the second set of experiments. Results are presented in Table

7.14. Due to differences in accent, speaking rate and styles, acoustic models trained on

WSJCAM0 do not perform well even on the headset data. However, a CMLLR adaptation

can largely compensate for these differences, and reduce the WER to 9.8%. As headset data

is relatively clean, there is no advantage to use VTS and/or RVTSJ adaptation, as indicated

by the corresponding WERs. A similar trend is also observed for lapel data. However, for the

sdm data, due to reverberation, CMLLR adaptation alone is not able to recover the WER

performance. In contrast, VTS reduced the WER to 58.7% and RVTSJ further reduced the

WER to 48.2%. This results demonstrated that RVTSJ is specifically designed to handle the

reverberation effect. In contrast, the CMLLR adaptation, which is a general purposed linear

transform scheme, is not able to handle reverberation effectively.
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In the third set of experiments, acoustic models were built on the multi-condition rever-

berant WSJCAM0 set. The MST model was firstly built. Following the same procedure

for the reverberant AURORA4 task, the VAT and RAT systems were subsequently built.

Results are presented in Table 7.15. Note, although adaptation for test set was performed

on the speaker level, utterance level adaptation was performed during the adaptive training.

As expected, CMLLR adaptation of MST acoustic model achieves good performance on all

three sets. On average, it reduces WER more than 50% relatively (from 78.6% to 35.5%).

Compared with the numbers in the first block of Table 7.13, the VAT system yields consis-

tent and large gains over clean-trained acoustic models,reducing average WER from 60.6%

to 40.3%. RVTSJ adaptation of the RAT system yields further gains, though much smaller.

Both adaptively trained systems give large gains over clean-trained acoustic models. Again,

the best performance was achieved by combing RVTSJ adaptation with CMLLR transform.

Systems Adaptation Test Set Avg .
dev1 evl1 evl2

MST
— 84.6 70.8 80.5 78.6

CMLLR 36.5 29.3 40.7 35.5

VAT VTS 38.0 34.9 49.6 40.3

RAT
RVTSJ 37.4 30.3 46.0 37.9

+CMLLR 33.6 27.5 40.3 33.8

Table 7.15: Performance (in WER%) of Multi-style trained (MST) and adaptively trained
(VAT and RAT) acoustic models in reverberant environments on sdm test sets in the MC-
WSJ-AV task.

7.3 Summary

This chapter has examined the proposed model-based techniques to handle reverberant en-

vironments. Two model compensation techniques, RVTS and RVTSJ adaptation, were in-

vestigated on two tasks, the reverberant AURORA4 task and the MC-WSJ-AV task. By

controlling how the background noise and reverberation are added to the clean signals, a

series of test sets were created for the reverberant AURORA4 task. This task was used to

examine the RVTS and RVTSJ schemes thoroughly. Results demonstrated that RVTS and

RVTSJ performed better than VTS even when the reverberant noise model parameters are ini-

tialised using a simple method. ML estimation of noise model parameters gave further gains.

It is also showed that RVTSJ performed consistently better than RVTS on three test sets.

This is due to the joint estimation of reverberant and background noise in RVTSJ. Results

also demonstrated that RVTS and RVTSJ adaptation are insensitive to the supervision error
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and reverberation time estimation. It is also shown that combining RVTS or RVTSJ model

compensation, which are nonlinear adaptation schemes, with CMLLR adaptation, which is a

linear transform based scheme, is very helpful. Adaptive training schemes were also exam-

ined in this task. CMLLR adaptation of MST systems gave very large gains, while both the

VAT and RAT models gave better performance than CMLLR adapted MST systems, with

RAT slightly better. Compared with the MST system, the RAT system generalised better to

unseen conditions during training.

The proposed model-based schemes were also evaluated on the MC-WSJ-AV task, where

the test data was recorded in the “real” reverberant environment. A similar trend to the

reverberant AURORA4 task was observed. Combing RVTSJ and CMLLR adaptation schemes

using the RAT system yields the best recognition accuracies on all three sets.



CHAPTER 8
Experiments on Acoustic

Factorisation

This chapter will present experimental results on acoustic factorisation. Three approaches to

acoustic factorisation are discussed in Chapter 5, namely the data constrained, transform con-

strained and explicitly constrained approaches. These approaches are applied to yield speaker

and noise factorised adaptation for robust speech recognition in Chapter 6. In this chapter,

the “Joint” adaptation scheme, proposed in section 6.2, which is a transform constrained ap-

proach to acoustic factorisation, is compared with a simple speaker and noise compensation

scheme “VTS-MLLR” to demonstrate the flexibility of the acoustic factorisation framework

and the factorisation property can be achieved by a carefully designed transform constrained

approach. “Joint” and “VTS-MLLR” schemes are compared in section 8.1 on a standard noise

robustness benchmark task, the AURORA4 task. Different from the first two approaches, the

explicitly constrained approach does not make assumptions about how acoustic factors impact

speech signals and aim to keep transform independence even when data is highly unbalanced.

To evaluate the effectiveness of the explicit independence constraint presented in section 5.2.3,

the fCAT adaptation scheme discussed in section 6.3 is examined on a noise corrupted WSJ

task, with the focus on test data which is unbalanced distributed over the speaker and noise

factors.

159
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8.1 The AURORA4 Task

The AURORA4 [188] corpus has been used to test the baseline systems in the previous

Chapter. Here, it is used to evaluate the effectiveness of speaker and noise factorisation using

the transform constrained approach. The detailed description of the AURORA4 corpus was

presented in Section 7.1.1 and the test set definition is summarised in Table 7.1.

All the acoustic models used in experiments were cross-word triphone models with 3140

distinct tied-states and 16 components per state. The standard bi-gram language model pro-

vided for the AURORA4 experimental framework was used in decoding and a language scale

factor 16 was used. For all the experiments unsupervised adaptation was performed. Where

MLLR adaptation was performed, block-diagonal transforms with two regression classes (one

speech, one silence) were used. It is assumed that each utterance is in a unique noise condition

(noise types plus SNR) in the AURORA4 task, therefore the VTS-based noise estimation was

performed on a per-utterance basis. The speaker adaptation was performed on the speaker

level. To minimise differences due to the different forms of adaptation, multiple EM iterations

were performed when estimating transforms.

8.1.1 Baseline Systems

In order to evaluate the effectiveness of the proposed speaker and noise adaptation scheme, a

series of baseline systems were built. The first two systems are a clean-trained acoustic model

without adaptation (“clean”) and a VAT-based adaptively trained acoustic model (“VAT”).

Details of building these baseline systems can be found in Section 7.1.2. As a comparison

of model compensation versus feature compensation approaches, the ETSI advanced feature

(AFE) was used to build the third system. This system is referred to as “AFE” [230].

Results of these baselines are presented in Table 8.1. Using the VTS-based noise adapta-

tion, the clean-trained model achieved a WER of 17.8%. Compared with other feature-based

or model-based noise robustness schemes on AURORA4 (e.g., [43]), it is clear this provides

a reasonable baseline on this task. As expected, the use of the adaptively trained acoustic

model (the VAT system) gave gains over the clean system on noisy data: the average WER

was further reduced from 17.8% to 15.9%. However, a small degradation on the clean set

(8.5% of VAT vs. 6.9% of clean) can be seen. This may be explained as VTS is not able to

completely remove the effects of noise. Thus the “pseudo” clean speech parameters estimated

by adaptive training will have some residual noise effects and so will be slightly inconsistent

with the clean speech observation in set A. It is also interesting to look at the performance of

the AFE system. With AFE, multi-style training achieved a WER of 21.4%. Note that, the
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multi-style model using MFCC features achieved a WER of 27.1%. However, the large per-

formance gap (21.4% vs. 15.9%) between AFE and its counterpart of model-based schemes,

the VAT system, demonstrates the usefulness of model-based schemes for this task.

8.1.2 Batch-mode Speaker and Noise Adaptation

The above experiments built a series of baseline systems, where only noise adaptation was

performed. In the following experiments, acoustic models were adapted to both the target

speaker and environment. In the first set of experiments, speaker and noise adaptation was

performed in a batch mode (referred to as “bat”), i.e. the adaptation experiments were run

where speaker and noise (utterance-level) transforms were estimated for each speaker for each

task1. The “Joint” and “VTS-MLLR” schemes were first examined using the clean-trained

acoustic model. Following the same procedure used in the baseline systems, one VTS iteration

was run for each utterance to generate the supervision hypothesis. The generated noise mod-

els were also taken to initialise the noise parameters Φ. The speaker level transform, K, was

initialised as the identity transform. Then, as discussed in Section 6.2.2, the block coordinate

descent optimisation strategy is applied for “Joint” and “VTS-MLLR”. Multiple iterations,

NEM = 4, were used to update the speaker transform and noise models. This batch-mode

speaker and noise adaptation procedure is illustrated in Figure 8.1. As an additional contrast,

an MLLR transform was applied on top of the “Joint”, again estimated at the speaker level,

yielding another scheme “Joint-MLLR”. The results of these batch-mode speaker and noise

adaptation experiments are presented in Table 8.2. Significant performance gains2 were ob-

tained using both “Joint” (14.6%) and “VTS-MLLR” (14.7%), compared to the baseline VTS

performance (17.8%). The best performance was obtained using the “Joint-MLLR” scheme

(14.1%), which indicates that there is still some residual mismatch after “Joint” adaptation

and a general linear transform can be used to reduce this mismatch. These experiments serve

as a contrast to the factorisation experiments in the next section.

8.1.3 Speaker and Noise Factorisation

To investigate the factorisation of speaker and noise transforms, a second set of experiments

were conducted. Again, the noise transforms were estimated for each utterance. However in

contrast to the batch-mode adaptation, the speaker transforms were estimated from either

1The speaker transforms were estimated for each speaker on each noise condition ( 01-14 ), and were used
only in the noise condition where speaker transforms were estimated from. The noise transform was always
estimated for every utterance.

2All statistical significance tests are based on a matched pair-wise significance test at a 95% confidence
level.
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test 01 test 14

Iterate NEM times for all r and i:

Φ(r) = arg max
Φ
Q(O(r); K(sr),Φ)

K(i) = arg max
K

∑
r:sr=i

Q(O(r); K(i),Φ(r))

Iterate NEM times for all r and i:

Φ(r) = arg max
Φ
Q(O(r); K(sr),Φ)

K(i) = arg max
K

∑
r:sr=i

Q(O(r); K(i),Φ(r))

...

...

speaker i O(r)

...

...

Model adaptation:

M(r) = F(Mc,K(sr),Φ(r))

Decoding:

using M(r) for r-th utterance

Model adaptation:

M(r) = F(Mc,K(sr),Φ(r))

Decoding:

using M(r) for r-th utterance

{Φ(r)} {K(i)} {Φ(r)} {K(i)}

{O(r)} {O(r)}

Final hypothesis of 01 Final hypothesis of 14

Figure 8.1: Illustration of batch-mode speaker and noise adaptation and decoding procedure.

Adaptation A B C D Avg.

VTS 6.9 15.1 11.8 23.3 17.8

VTS-MLLR 5.0 12.1 9.0 19.8 14.7
Joint 5.0 12.1 8.6 19.7 14.6

Joint-MLLR 5.0 11.5 8.1 19.1 14.1

Table 8.2: Performance (in WER%) of speaker and noise adaptation in a batch mode. The
clean-trained acoustic model was used. The speaker level linear transform was estimated on
each of the 14 tasks and applied to the same task.

01 or 041. These speaker transforms were then fixed and used for all the test sets, just the

utterance-level noise transforms were re-estimated. The same setup as the previous experi-

ments was used to estimate the speaker transform from either 01 or 042. This factorisation

mode allows very rapid adaptation to the target condition.

Table 8.3 presents the results of the speaker and noise factorisation experiments using

clean-trained acoustic models. It is seen that speaker transforms estimated from either 01

1In principle, it is possible to estimate speaker transform from any of the 14 test sets. Unfortunately,
utterances from three speakers in set C and set D were recorded by a handset microphone which limits the
speech signal to telephone bandwidth. This also means it is not useful to estimate speaker transforms from
set C or set D.

2When the clean-trained acoustic models were adapted by VTS (line 1, Table 8.3), 04 was the worst
performed in set B. This trend was also observed in line 1, Table 8.4.
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{O(r)} {O(r)}

Final hypothesis of 01 Final hypothesis of 14

Figure 8.2: Illustration of factorised speaker and noise adaptation and decoding procedure.
The dashed line shows that speaker transforms estimated from 01 are used for other test sets.

(clean) or 04 (restaurant) improve the average performance over all conditions ( 16.7% and

15.4% compared with 17.8% ). This indicates that it is possible to factorise the speaker and

noise transform to some extent. For the speaker transform estimated using 01, the “clean”

data, gains in performance (compared with VTS adaptation only) for all the four sets were

obtained. Interestingly the average performance was improved by estimating the speaker

transform in a noisy environment, 04. Other than on the clean set A this yielded lower

WERs than the clean estimated model for all of the B test sets. This indicates that although

the speaker and noise transforms can be factorised to some extent, the linear transform for

the speaker characteristics derived from the “Joint” scheme is still modelling some limitations

in the VTS mismatch function to fully reflect the noise environment. It is also interesting to

compare the results with the batch-mode system from Table 8.2. For test set B the average

WER for the batch-mode “Joint” scheme was 12.1%, compared to 12.5% when the speaker

MLLR transform was estimated using 04 and then fixed for all the test sets. This indicates

that for these noise conditions the factorisation was fairly effective. However for the clean

set A, the performance difference between the batch-mode and the factorisation mode was

greater. This again indicates that the speaker transform was modelling some of the limitations

of the VTS mismatch function. Results of speaker and noise factorisation using the “VTS-
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Scheme Spk. Est. A B C D Avg.

VTS — 6.9 15.1 11.8 23.3 17.8

VTS- 01 5.0 20.2 16.5 28.0 22.2

MLLR 04 10.2 19.7 19.7 28.0 22.5

Joint
01 5.0 14.1 10.4 22.3 16.7

04 7.0 12.5 11.0 20.4 15.4

Table 8.3: Performance (in WER%) of speaker and noise adaptation in a factorised mode.
The clean-trained acoustic model was used. The speaker level linear transform was estimated
on either 01 and 04 task and applied to all the 14 tasks.

MLLR” scheme are also presented in Table 8.3. It is clear that the “VTS-MLLR” scheme

does not have the desired factorisation attribute, as the linear transforms estimated from one

particular noise conditions cannot generalise to other conditions. Hence, the “VTS-MLLR”

scheme is not further investigated for factorised speaker and noise adaptation.

The above experiments demonstrate the factorisation attribute of “Joint” when the clean-

trained acoustic models were used. To examine whether this attribute is still valid for adap-

tively trained acoustic models, a second set of experiments was run. VAT acoustic models

were adapted by “Joint”, in both batch and factorisation modes. For the latter, 01 and 04

were again used for speaker transform estimation. Results on all 14 subsets are presented

in Table 8.4. Since the acoustic models are adaptively trained, improved performance is

expected, compared with those in Table 8.3. Note that factorisation mode adaptation on

01(04) using the speaker transform estimated from 01(04) is equivalent to the batch-mode

adaptation, thus gives identical results to bat on 01(04). The same trends as those observed

in the previous experiments can be seen: a batch-mode “Joint” adaptation yielded large gains

over VTS adaptation only ( 13.4% vs. 15.9%, average on all 4 sets), while using the speaker

transform estimated on 04 achieved a very close performance, 14.1%. The advantages of using

the “Joint” scheme were fairly maintained with the adaptively trained acoustic models.

It is also of interest to look at the experiments of the speaker and noise adaptation

with the AFE acoustic models. Speaker adaptation for AFE model was done via an MLLR

mean transform with the same block diagonal structure, again estimated at the speaker

level. The AFE model was first used to generate the supervision hypothesis, following the

MLLR adaptation, and then the final hypothesis was generated. Though multiple iterations

of hypothesis generation and transform re-estimation could be used, it was found in the

experiments the gain was minimal. In the batch-mode adaptation, speaker transforms were

estimated for every single set, while for the factorisation mode, speaker transforms were

estimated from 01 or 04. Results of these experiments are summarised in the first block of
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Table 8.4. It can be seen that the speaker transform estimated from 01 did not generalise

well to other noisy sets (WER increased from 21.4% to 25.6%), while the one estimated from

04 can generalise to other noise conditions. This suggests that for feature normalisation style

trained acoustic models, the linear transform estimated from one noise data can be applied

to other noise conditions for the same speaker. However examining the results in more detail

shows that this factorisation using AFE is limited. A 19% relative degradation ( 18.4% of the

factorisation mode vs 15.5% of the batch-mode ) was observed. This compares to only 5%

relative degradation for the “Joint” scheme. It is worth noting that batch-mode AFE with

MLLR (15.5%) is still significantly worse that the “Joint” scheme run in a factorised mode

on the 04 data (14.1%).

8.2 The Noise-Corrupted WSJ task

In AURORA4 task, data is well-balanced between speaker and noise factors. The number of

utterances from a speaker in 6 different noise conditions are the same. In order to evaluate

performance of factorised adaptation when data is distributed among acoustic factors in an

unbalanced manner, a new task, the noise-corrupted WSJ task, is created to simulate practical

scenarios, in which utterances from a particular noise conditions may dominate a speaker’s

data.

In the same manner as in creating the AURORA4 task, artificial background noise is

added to the original WSJ task [52] to create this task. Both WSJ0 and WJS1 training

data were used. There are in total 36,515 utterances in the training set, produced by 284

speakers. To simulated the background noise, 6 types of noise (similar to those used in

AURORA4 task) were added to the training set to form a multi-condition training set with

7 noise conditions (including the clean condition). As an initial investigation, the training

set was created in a speaker-noise balanced manner, i.e., utterances from each speaker were

exposed to 7 noise conditions with equal probability. The SNRs in training data ranged

from 20dB to 10dB. 3 evaluation sets were defined to simulate different scenarios in which

factorised adaptation can be used. The first one, based on the original WSJ1 non-verbalised

5k-vocabulary development set (wsj1 dt), had 10 speakers, each comprising 40 adaptation

read utterances and roughly 50 test utterances. These utterances were distorted in the same

way as training utterances, except only 6 noisy environment conditions were created with

the SNR ranging from 15dB to 5dB. The second one, based on the WSJ0 non-verbalised 5k-

vocabulary development set (wsj0 dt), simulated a more realistic operation scenario, where

a majority (75%) of adaptation utterances (400 in total) were distorted by the same noise

source (“restaurant noise”), while the 410 test utterances were distorted by the 6 noise sources
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with a uniform distribution. The third set, based on the WJS0 evaluation set (wsj0 et, or the

Nov’92 non-verbalised 5k closed test set which was used in the November 1992 ARPA WSJ

evaluation) simulated the practical enrollment scenario: all the 321 adaptation utterances

were distorted by a single noise source (“restaurant noise”), while the noise conditions of

the 330 test utterances were uniformly distributed. The SNRs for the adaptation and test

utterances in the three evaluation sets were ranging from 15dB to 5dB. Adaptation for the

first two sets (wsj1 dt and wsj0 dt) ran in a unsupervised adaptation mode, while wsj0 et

set ran in a supervised mode. It was assumed all the speaker and noise identities were known

in advance.

8.2.1 Experimental Setup

A 39 dimensional front-end feature vector was used for the experiments, consisting of 12

MFCCs appended with the zeroth cepstral coefficients, delta and delta-delta coefficients.

Cepstral mean normalisation was performed for each utterance. To verify the baseline CAT

system on this task, a cross-word triphone acoustic model with 3955 tied states, 16 components

per state was first ML trained on the clean data. Initialised by this ML system, a standard

CAT acoustic model with 8 clusters was also trained, in which a 32-node regression tree was

used for CAT adaptation on the speaker level. Using the clean-trained ML system, a MST

system is built using single pass re-training (SPR) technique on the multi-condition training

set. Initialised by this MST model, a standard CAT model with 8 clusters were also trained,

where a 32-node regression tree was used for CAT adaptation on the speaker level. On top

of this CAT model, fCAT model was trained to take the noise variability into account, in

which the noise space consists of 7 clusters and a 256-node noise regression tree was used.

Different from the experiments in the previous section, utterances corrupted with the same

noise environment are considered as in the same homogeneous block. Another fCAT model

was also trained without the orthogonal constraint, which represents the data constraint

approach to factorisation. A 5k-vocabulary non-verbalised bi-gram language model was used

throughout the experiments.

8.2.2 Results

The first set of experiments were performed on the clean data, in which the non-speech

variability is mainly the speaker differences. The baseline performance of clean-trained system

on clean test data are presented in Table 8.5. Because the training data and the test data come

from the same clean condition, the accuracy of the unadapted ML system is already high.

Using the ML acoustic model, an initial hypothesis for each of the adaptation utterances in
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the unsupervised adaptation tasks, wsj1 dt and wsj0 dt, was generated. For the supervised

adaptation task, wsj0 et, the ML acoustic model was used to generate phone-level alignments

against the reference hypothesis. Using the supervision hypothesis for adaptation utterances,

an interpolation weight vector is estimated for each speaker, which enables adaptive decoding

using the CAT acoustic model. Compared with the performance of the ML system (shown

in first row of Table 8.5), the CAT system further improves the performance (shown in the

second row of Table 8.5). This demonstrates that the baseline CAT system is effective for

speaker adaptation.

System wsj1 dt wsj0 dt wsj0 et

ML 8.5 5.8 4.8
CAT 6.9 4.8 4.0

Table 8.5: Performance (in WER%) of the clean-trained ML and CAT systems on the clean
test data. For the CAT system, cluster weights are estimated at the speaker level.

On the noise corrupted data, the main non-speech variabilities are the speaker and noise

differences. Recognition of the noise corrupted data was first performed by unadapted de-

coding using the MST model. The first row of Table 8.6 shows the performance on three test

sets. The MST model was also used in decoding the adaptation utterances in set wsj0 dt

and wsj1 dt to provide the supervision hypothesis for the following adaptation run. For

supervised adaptation with wsj0 et, the MST model was used to generate the phone align-

ment against the reference hypothesis. Compared with the WERs in Table 8.5, the impact

of background noise is evident. It also indicates that multi-style training is not able to model

all the variabilities seen in the training data.

To run adapted decoding using CAT, speaker transforms were first estimated on the

adaptation utterances, and then applied on the test withs. The second row of table 8.6 shows

the performance of adapted decoding using the CAT model. As expected, speaker adapta-

tion improved the performance. To perform factorised adaptation, speaker and environment

transforms were iteratively estimated on the adaptation data. In the very first iteration,

environment weight vectors were set as the one-of-N vector according to the known environ-

ment type, and the speaker transforms were estimated while the component posterior was

calculated using the MST model. Given the set of speaker transforms, a set of environment

transforms were estimated for each environment condition appeared in the adaptation data.

A few(∼ 5) iterations 1 were performed. Then the speaker transform estimated from adapta-

1It is possible to only estimate the speaker transform while borrowing the environment transforms obtained
during training as in [218]. In this work, iterative estimation of both transforms was used to investigate what
a fCAT model can learn on each factor.
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System wsj1 dt wsj0 dt wsj0 et

MST 23.3 15.7 14.9
CAT 20.3 13.3 13.0

fCAT(w/o constr.) 19.5 13.6 14.4
fCAT 19.7 12.9 12.3

Table 8.6: Performance (in WER%) of multi-style or adaptively trained MST, CAT and
fCAT systems on noise-corrupt data. “w/o constr.” means the orthogonal constraint is not
maintained in training a fCAT system. Utterances in test set wsj1 dt are distorted by 6
noise types with an equal probability; A majority (75%) of utterances in set wsj0 dt are
distorted by the “restaurant” noise, and all the utterance in set wsj0 et are distorted by the
“restaurant” noise.

tion data in conjunction with the environment transforms obtained during training were used

in decoding. This enables the comparison of speaker transforms estimated by different fCAT

systems.

fCAT systems trained with and without the independence constraint are compared in

the second block of Table 8.6. On the first set, wsj1 dt, which is speaker-environment bal-

anced, both systems achieved gains over the speaker-adapted CAT system (19.5% and 19.7%

vs 20.3%). This illustrates the benefit of adapting acoustic models to both speaker and en-

vironment. However, when used in more realistic scenarios where the speaker-environment

distribution of adaptation data is imbalanced, i.e., on the wsj0 dt and wsj1 et sets, fac-

torised adaptation using fCAT model trained without independence constraint degraded per-

formance, compared with the performance of speaker adaptation using CAT (13.6% vs 13.3%

and 14.4% vs 13.0%). This demonstrates that the speaker transform which was estimated

on imbalanced data modelled not only the speaker but also the environment variability. In

contrast, factorised adaptation using fCAT trained with the independence constraint achieved

gains over speaker adaptation on both sets (12.9% vs 13.3% and 12.3% vs 13.0%). The gain

of this fCAT system on wsj0 et set is more interesting, as there is only one environment

condition in the adaptation data. Other adaptation schemes using linear transforms on this

set can only learn the combination effect of speaker and noise factors, not able to distinguish

one factor from the other. With fCAT, as the subspace expanded by the speaker cluster is

orthogonal to the subspace expanded by the environment cluster, speaker transforms learned

on adaptation data can only explain the speaker distortion. This enables speaker variabilities

to be factorised out from the adaptation data.
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8.3 Summary

This chapter has described experiments concerning several approaches to acoustic factori-

sation. In the first set of experiments, the proposed “Joint” adaptation scheme, which is

a transform constraint approach to factorisation, were compared with two alternatives, the

“VTS-MLLR” and “AFE-MLLR” schemes, on the standard AURORA4 task. Experimental

results demonstrate that if operated in a batch mode, both “VTS-MLLR” and “Joint” give

gains over noise adaptation alone. However, only “Joint” supports the factorisation mode

adaptation, which allows a very rapid speaker and noise adaptation. The “Joint” scheme

was also compared with the scheme that uses feature-based approach to noise compensation,

“AFE-MLLR”. Results show “AFE-MLLR” does not achieve the same level of performance

as “Joint”. These results confirm that by using different forms of transform as an implicit

constraint, transforms associated with different acoustic factors can be kept independent of

each other.

In the second part of this chapter, the effectiveness of the proposed explicit independence

constraint was evaluated on the noisy WSJ task, with the focus on test data which has a

unbalanced distribution. Experimental results demonstrated that similar performance can

be achieved with or without the independence constraint on a speaker-environment balanced

set. However, when a majority of data is distorted by a single noise condition, the speaker

weights estimated from the fCAT system trained without the independence constraint are

biased towards the dominant noise environment, and thus cannot be used in a factorisation

mode. However, the fCAT system with the proposed explicit independence constraint is

able to factorise out the speaker variability from the environment variability even when the

adaptation data is distorted by the same noise type. This demonstrates that the usefulness of

the proposed explicit independence constraint. This is especially true when no prior knowledge

about the concerned acoustic factors is available and the data has a unbalanced distribution

over concerned acoustic factors.



CHAPTER 9
Conclusion

Several model-based approaches to robust speech recognition in diverse environments were

investigated in this thesis. First, a novel model-based scheme for robust speech recognition

in reverberant environments was proposed. In this scheme, extended model statistics were

used to represent the distribution of previous clean speech vectors. Given these extended

statistics and certain noise model parameters, the vector Taylor series expansion technique was

extended to compensate the acoustic models for the effects caused by both background noise

and reverberation. Maximum likelihood estimation of noise model parameters and adaptive

training of the extended statistics were also developed. This contribution will be summarised

in section 9.1. Second, to adapt the acoustic models flexibly to diverse environments, several

model adaptation schemes were investigated within the acoustic factorisation framework.

The investigation demonstrates that it is essential to keep the independence between factor

transforms to make acoustic factorisation work. Several approaches can be used to enforce

this independence. They were discussed in this thesis and also applied to speaker and noise

factorisation problem in chapter 6. This contribution will be summarised in section 9.2. Some

possible future works will be discussed in section 9.3.
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9.1 Reverberant Environment Robustness

Speech recognition in reverberant environments is a challenging problem due to the highly

dynamic nature of reverberated speech. As discussed in section 3.3.3, there are mainly two

approaches to acoustic model adaptation for reverberant environments, depending on whether

acoustic models are adapted statically or dynamically. Due to the reverberation effect, the

current feature vector is influenced by the feature vectors of several preceding frames. This

seriously invalidates the conditional independence assumption in HMM models. The advan-

tage of dynamic model adaptation schemes such as[212, 232] lies in that the compensated

acoustic model is not a traditional HMM, so those schemes are able to model the dynamic

nature of reverberation to certain extent. However, this comes at an expensive price: as

the acoustic model needs to be dynamically modified, usually at the frame level, decoding is

computationally expensive. This makes the application of this approach in large vocabulary

ASR systems impractical. On the other hand, the static model adaptation approach modi-

fies acoustic models before recognition, and a standard HMM model set is used in decoding.

Hence, the standard Viterbi search algorithm can still be employed. This static model adap-

tation approach for reverberant environments was explored in [103, 198]. One limitation of

the methods presented in [103, 198] is that the mean vectors of the previous several frames

needs to be inferred before recognition. This was achieved either by using a left-to-right state

sequence or via the context of the acoustic units. The inference process using the methods in

[103, 198] is rather unreliable, especially for speech frames with a large distance from the cur-

rent frame. It also smooths the trajectory of speech as the previous mean vectors are inferred

from the state level. This reduces the discriminant power of the compensated acoustic model.

One novelty of the proposed scheme in this thesis is that extended statistics for each Gaussian

component are appended with the standard acoustic model. These extended statistics rep-

resent distributions of the preceding clean speech vectors conditioned on the corresponding

Gaussian component. This avoids inferring the previous hidden states and the distributions

of previous clean speech vectors are modelled at the Gaussian component level, rather than at

the state level. Given the distribution of previous clean speech vectors, the model parameters

are compensated using the VTS approximation, rather than the log-normal approximation in

[103, 198]. This yields the RVTS and RVTSJ compensation schemes, depending on how the

interaction between background noises and reverberation is modelled. A maximum likelihood

estimation of reverberant noise and background noise parameters can be also derived. In

addition, a reverberant adaptive training scheme is used to estimate the extended statistics

from the multi-condition data in a full ML framework.
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Experimental results on an artificially corrupted corpus and a real noise corpus demon-

strate that the proposed RVTS and RVTSJ schemes performed significantly better than the

standard VTS scheme. Experimental results also show that RVTSJ was slightly better than

RVTS because the reverberant noise and background noise parameters are jointly estimated

in the RVTSJ scheme. It is also demonstrated that reverberant adaptively trained acoustic

models performed better than multi-style trained acoustic models.

9.2 Extensions to Acoustic Factorisation Framework

Acoustic factorisation is a framework in which the variabilities of different acoustic factors are

separately modelled. This offers additional flexibility in adapting acoustic models to diverse

acoustic conditions. The second part of this thesis made several extensions to this framework.

It is pointed out in section 5.1, the independence between factor transforms is essential to

factorisation. Previous works normally rely on the attributes of acoustic data to achieve the

independence while imposing no constraints on acoustic models or transforms. This thesis

has proposed two extensions to the acoustic factorisation framework.

The first extension is a transform constraint approach, in which each acoustic factor is as-

sociated with a different form of factor transform. The factor transform is designed to model

the nature of the corresponding acoustic factor. In this way, the maximum likelihood esti-

mated factor transforms reflect the nature of impacts caused by the corresponding factor, thus

they should be independent of each other. Applying this approach to the speaker and noise

factorisation problem, a so-called “Joint” scheme is derived by combining a linear transform,

the MLLR mean transform, and a non-linear transform, the model-based VTS transform.

The MLLR mean transform is applied prior to the VTS transform, which matches the gen-

eration process of the speaker and noise corrupted speech, thus the MLLR mean transform

will only model the speaker variability. This approach is compared with the conventional

VTS-MLLR scheme, in which VTS transform is applied after MLLR. In this way, the MLLR

transform is coupled with both speaker and noise conditions, therefore it cannot be used in

factorised adaptation. One advantage of using the “Joint” scheme is that a speaker transform

estimated from one noise condition can be used in another noise condition, which allows a very

rapid speaker adaptation in noisy environments. This is demonstrated by the experimental

results on the AURORA4 task. Compared with the VTS-MLLR scheme, which can only be

used in batch adaptation, “Joint” supports both batch and factorised adaptation, and the

performance of factorised adaptation is comparable to batch adaptation.

The transform constrained approach is based on partial knowledge of how one or several

acoustic factors distort the clean speech signals. For example, the proposed “Joint” scheme
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relies on a mismatch function which describes how speaker and noise factors affect the clean

speech. In many practical applications, the nature of the distortions caused by concerned

acoustic factors is not known. In this scenario, it is still possible to use a data constrained

approach to construct factorised adaptation. However, there is no guarantee that factor

transforms are independent of each other using the data constrained approach.In contrast

to the data constrained and transform constrained approaches, which enforce the indepen-

dence between factor transforms implicitly, an explicit independence constraint, based on a

mathematical analysis of the interdependence between ML-estimated factor transforms, was

proposed in this thesis. It was also applied to speaker and noise factorisation for speech

recognition, in which the cluster adaptive training (CAT) scheme was generalised to the fac-

torised CAT (fCAT) scheme. An orthogonal constraint of the speaker and noise subspaces

was derived as a result of the proposed independence constraint. Experimental results on an

artificially corrupted WSJ task demonstrated that fCAT with the independence constraint is

able to separate the speaker and noise variability, even when all the data are corrupted by

the same type of noise.

9.3 Future Work

There are a number of possible directions to be further explored along the line of research

works presented in this thesis. Some of these directions are summarised in the following:

• Reverberant Environment Robustness:

There are a few issues and limitations of the proposed model-based schemes that need

to be addressed. For example, only the mean vector is compensated for the effect of

both reverberation and background noise in the proposed scheme, while the variance

is compensated using standard VTS scheme, which does not take reverberation into

account. As reverberant speech is highly dynamic and usually highly correlated with

the original clean speech, the variance compensation is important to reverberant model

robustness.

Another limitation of the proposed scheme is that it is not easy to be combined with

front-end schemes, as it makes strong assumptions of the relationship between corrupted

speech and the clean speech. However, in a state-of-art ASR system, a set of feature

transforms, e.g., CMN/CVN and HLDA, are usually applied after feature extraction.

Moreover, for acoustic model robustness in reverberant environments, front-end process-

ing schemes such as linear filtering, feature de-reverberation, have been demonstrated

to be very effective, especially when a microphone array is used. Therefore, it is also
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interesting to combine the proposed model-based robustness schemes with the front-end

based processing schemes.

• Acoustic Factorisation:

There are also several research directions which can be explored to extend the acoustic

factorisation framework. For example, the proposed explicit independence constraint is

only applied to a simple model, the fCAT model. It will be interesting to apply this

constraint to more complex and powerful adaptation schemes or combine this explicit

constraint approach with the transform constrained approach.

The concept of acoustic factorisation can be applied to a wider domain. For example,

speaker recognition will benefit if it is possible to factorise speaker and session variability.

In fact, as already discussed in Chapter 6, the proposed fCAT is similar to the famous

Joint Factor Analysis (JFA) technique for speaker recognition, and fCAT can be also

applied to enforce the orthogonality between noise and speaker subspace. Acoustic

factorisation is also an important topic for speech synthesis. Besides intelligibility of

synthesised speech, more and more applications of speech synthesis put emphasis on

the quality of naturalness and expressiveness. This requires a versatile speech synthesis

system which is able to simulate effects of many acoustic factors, such as speakers,

languages, and emotion. Using independent factor transforms constructed under the

acoustic factorisation framework is therefore an appealing approach to this problem.

Another research direction to apply the concept of acoustic factorisation to the recently

popular deep neural network approach for speech recognition. Rather that using a

single neural network to model all the desired and unwanted variabilities, it would be

attractive to use separate modules or sub-networks to represent various acoustic factors.

In this case, the independence between each modularised sub-network is still the key to

factorisation.



APPENDIX A
Derivation of mismatch

functions

In chapter 4, the impact of environments on the ASR systems are discussed. In particular,

the impact of background noises, short-term convolutional noises and reverberation on the

extracted feature vectors for ASR systems are usually summarised as mismatch functions.

In this appendix, the feature extraction procedure used in ASR systems is first described

in detail. This is followed by the derivation of mismatch functions for additive noise and

reverberant noise respectively.

A.1 Feature extraction procedure

In the feature extraction stage, the input speech signal (in the time domain) is analysed and a

sequence of feature vectors is extracted for better speech representation. Among various rep-

resentation forms used, Mel frequency cepstrum coefficients (MFCC)[39] is the most popular

and widely used one. The procedure to extract MFCC features is standardised by the ETSI

document in [51]. In order to focus on the functional relationship between features extracted

in different stages, the following procedure describes a slightly modified procedure. Here, it

is assumed the input signal is not corrupted by noise.
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step 1. The input signal is offset compensated, pre-emphasised. This gives a time signal x(t).

step 2. x(t) is framed and weighted by an analysis window function w(t) with a finite length Lw.

After this step, a frame dependent and windowed signal segment x̃(m, t) is obtained,

where

x̃(m, t) = w(t)x(t+mB) t = 0, · · · , Lw − 1 (A.1)

and w(t) = 0 if t < 0 or t > Lw, B is the frame shift.

step 3. A short-time discrete Fourier transform (STFT) is applied on each signal segment, i.e.,

X̃(m, b) =

Lw−1∑
t=0

x̃(m, t)e
−j 2πb

Lb
t

(A.2)

where b is frequency bin index, b = 0, · · · , Lb − 1.

step 4. A bank of Lf overlapping triangular filters, spaced equally on the Mel scale, are used

to filter the power spectrum, i.e.,

X(m, k) =

Lb−1∑
b=0

Λk(b)|X̃(m, b)|2 (A.3)

where k = 0, · · · , Lf , Λk(b) − 1 is the k-th filter weight for the b-th frequency bin and∑Lb−1
b=0 Λk(b) = 1. The above equation assumes the power spectrum is used. In many

implementations, the magnitude spectrum is used, i.e.,

X(m, k) =

Lb−1∑
b=0

Λk(b)|X̃(m, b)| (A.4)

step 5. Mel spectral coefficients are nonlinear transformed by the logarithmic function, yielding

the logarithmic mel-spectral features:

x
(l)
m,k = logX(m, k) (A.5)

step 6. The logarithmic mel-spectral features are decorrelated by a discrete cosine transform

(DCT), yielding the well-known MFCCs:

xm,c =

Lf−1∑
k=0

x
(l)
m,k cos

[
cπ

Lc
(k + 0.5)

]
(A.6)

where c = 0, · · · , Lc− 1 and Lc is the number of cepstral coefficients. Usually, Lc is less

than the number of filters Lf .

As a summary, Table A.1 lists the meaning of symbols used in the above procedure, and

some commonly used parameters in MFCC feature extraction.
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Symbol Meaning Typical value/Note

m frame index —

x̃(m, t) framed and window weighted time signals
t = 0, . . . , Lw − 1

w(t) window function
Lw length of window function Lw = 0.025f
B frame shift B = 0.01f
f signal sampling frequency f=16/11/8kHz

X̃(m, b) STFT of input signals b = 1 · · · , Lb
Lb number of frequency bins Lb = 256 or 512

X(m, k) Mel power/magnitude spectral coefficients k = 1 · · · , Lf
Lf number of Mel filters Lf = 24

x
(l)
m,k logarithmic mel-spectral features k = 1 · · · , Lf
xm,c MFCC c = 1 · · · , Lc
Lc number of cepstral coefficients Lc = 13

Table A.1: Meanings of symbols and typical values used in MFCC feature extraction.

A.2 Mismatch function for additive noise and
convolutional distortion

In the case of additive noise n(t) and short-term convolutional distortion h(t) presented in

the environments, the relationship of the corrupted time signal y(t) between n(t) and h(t)

can be expressed by:

y(t) = h(t) ∗ x(t) + n(t) =

Lh−1∑
τ=0

h(τ)x(t− τ) + n(t) . (A.7)

Note that it is assumed that the convolutional distortion is stationary, i.e., the convolutional

characteristics h(τ) does not vary with respect to t. It is also assumed h(τ) is a short-term

signal compared with the length of analysis window, i.e., Lh � Lw.

Hence, the m-th windowed time signal segment ỹ(m, t) become

ỹ(m, t) = w(t)n(t+mB) + w(t)

Lh−1∑
τ=0

h(τ)x(t+mB − τ)

≈ ñ(m, t) + h(t) ∗ x̃(m, t) (A.8)

The approximation is possible due to the fact Lh � Lw.

Due to the relationship in the time domain as it is shown in Eq. (A.8), the STFT

representation of y(t) can be written as:

Ỹ (m, b) = Ñ(m, b) + H̃(b)X̃(m, b) (A.9)

where N(m, b) and H(b) are the STFT representation of ñ(m, t) and ñ(m, t) respectively.
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In the mel-spectral filter bank domain, depending on the which spectrum (power vs.

magnitude) is used for the Mel filter bank, different assumptions can be made to link the

noisy speech mel-spectral coefficients with the ones of noise:

• If the power spectrum is used,

Y (m, k) =

Lb−1∑
b=0

Λk(b)|H̃(b)X̃(m, b) + Ñ(m, b)|2

=

Lb−1∑
b=0

Λk(b)
[
|Ñ(m, b)|2 + |X̃(m, b)H̃(b)|2 + 2 cos(θb)|Ñ(m, b)||X̃(m, b)H̃(b)|

]
= N(m, k) +X(m, k)H(k) + 2αk

√
N(m, k)X(m, k)H(k) (A.10)

where N(m, k), X(m, k) and H(k) are the k-th Mel filter output of signals n(t), x(t)

and h(t) at frame m respectively, θb is a (random) angle between two complex signals

H̃(b)X̃(m, b) and Ñ(m, b) and

αk =

∑Lb−1
b=0 Λk(b) cos(θb)|Ñ(m, b)H̃(b)X̃(m, b)|√

N(m, k)H(k)X(m, k)

• Similarly, if the magnitude spectrum is used,

Y 2(m, k) =

(
Lb−1∑
b=0

Λk(b)|H̃(b)X̃(m, b) + Ñ(m, b)|

)2

≈
Lb−1∑
b=1

Λk(b)|H̃(b)X̃(m, b) + Ñ(m, b)|2 (A.11)

=

Lb−1∑
b=0

Λk(b)
[
|Ñ(m, b)|2 + |X̃(m, b)H̃(b)|2 + 2 cos(θb)|Ñ(m, b)||X̃(m, b)H̃(b)|

]
=N2(m, k) +X2(m, k)H2(k) + 2αkN(m, k)X(m, k)H(k) (A.12)

and

αk =

∑Lb−1
b=0 Λk(b) cos(θb)|Ñ(m, b)H̃(b)X̃(m, b)|

N(m, k)H(k)X(m, k)

The approximation in Eq. (A.11) is possible due to
∑∑∑Lb−1

b=0 Λk(b) = 1 and the assumption

that the variation of Ỹ (m, b) within each of the mel filter k is small[62].

With the above the mismatch functions in the mel-spectral domain, it is easy to verify

that in the MFCC domain:
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• If the Mel filter bank is operated on the power spectrum:

exp
(
C−1ym

)
= exp

(
C−1(xm + µh)

)
+ exp

(
C−1nm

)
+ 2α · exp

(
1

2
C−1(xm + µh + nm)

)
(A.13)

where log and exp are element-wise operations, xm, µh and nm are the MFCC rep-

resentations of noisy speech, convolutional distortion and noise at frame m, α =

(α0, · · · , αLf−1)T, C is the DCT matrix with (C)ij = cos( iπLc (j + 0.5)), C−1 is the

inverse matrix of C. In case that C is a non-square matrix, C−1 is the Moore-Penrose

inverse of C.

• If the Mel filter bank is operated on the magnitude spectrum:

exp
(
2C−1ym

)
= exp

(
2C−1(xm + µh)

)
+ exp

(
2C−1nm

)
+ 2α · exp

(
C−1(xm + µh + nm)

)
(A.14)

In the above equations (A.13,A.14), the “phase factor” α ([44, 47, 154, 155]) is included.

However, it is hard to accurately estimate. In the standard approach, this phase factor is

either assumed to be 1.0 (the noise and the filtered speech always has the same phase) or 0.0

(the noise and the filtered speech are orthogonal). This gives three mismatch functions:

• If the filter bank is operated on the power spectrum and α = 0 or if the filter bank is

operated on the magnitude spectrum and α = 1:

ym = C log
(
exp(C−1(xm + µh)) + exp(C−1nt)

)
(A.15)

• If the filter bank is operated on the magnitude spectrum and α = 0 :

ym =
1

2
C log

(
exp(2C−1(xm + µh)) + exp(2C−1nt)

)
(A.16)

• If the filter bank is operated on the power spectrum and α = 1 :

ym = 2C log

(
exp(

1

2
C−1(xm + µh)) + exp(

1

2
C−1nt)

)
(A.17)

Alternatively, [62] proposed another form of mismatch function:

ym =
1

γ
C log

(
exp(γC−1(xm + µh)) + exp(γC−1nt)

)
(A.18)

Clearly, the above three mismatch functions are the special forms of Eq. (A.18). The Mis-

match function in Eq. (A.18) allows combining the energy of speech and noise in various

domains (power, magnitude or others).
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Eq. (A.15) is the standard mismatch function that has been widely used. Despite the

mismatch function has the same form for filter bank operated in power and magnitude spec-

trum, it is worthwhile to point out different assumptions and approximations have been made

to achieve the same form of mismatch function.

A.3 Mismatch function for reverberation and
additive noise

As discussed in section 3.3.1.1, when both the reverberation and additive noise are presented

in the environments, the relationship between the room impulse response (RIR) hr(t) additive

noise n(t) clean speech signal x(t) and corrupted signal z(t) can be written as:

z(t) =

Lr−1∑
τ=0

hr(τ)x(t− τ) + n(t) (A.19)

Note the length of RIR Lr = LH · B is much longer than the length of analysis window Lw,

therefore the approximation in Eq. (A.8) cannot be used anymore.

Instead, hr(t) can be decomposed into a series of delayed impulse responses, i.e.,

hr(t) =

LH−1∑
l=0

h′l(t+ lB) (A.20)

where h′l(τ) = 0 if τ 6∈ [0, Lw). Using this decomposition, it can be shown that

z̃(m, t) = w(t)

Lr−1∑
τ=0

hr(τ)x(t+mB − τ) + w(t)n(t+mB)

= w(t)

LH−1∑
l=0

Lw−1∑
τ=0

h′l(τ + lB)x(t− τ +mB) + w(t)n(t+mB)

≈
LH−1∑
l=0

h′l(τ) ∗ x̃(m− l, t) + ñ(m, t) (A.21)

Therefore in the STFT domain:

Z̃(m, b) =

LH−1∑
l=0

H̃l(b)X̃(m− l, b) + Ñ(m, b) (A.22)

where Z̃, H̃l, X̃, Ñ are the STFT representation of time signal z̃(m, t), h̃′l(τ), x̃(m, t) and

ñ(m, t) respectively.
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Furthermore,

|Z̃(m, b)|2 =

LH−1∑
l=0

LH−1∑
l′=0

αx(l, l
′, b)|H̃l(b)H̃l′(b)X̃(m− l, b)X̃(m− l, b′)|

+ 2

LH−1∑
l=0

αxn(l, b)|H̃l(b)X̃(m− l, b)Ñ(m, b)|+ |Ñ(m, b)|2

≈
LH−1∑
l=0

|H̃l(b)X̃(m− l, b)|2 + 2

LH−1∑
l=0

αxn(l, b)|H̃l(b)X̃(m− l, b)Ñ(m, b)|+ |Ñ(m, b)|2

(A.23)

where αxn(l, b) the phase factor between H̃l(b)X̃(m − l, b) and Ñ(m, b), αx(l, l
′, b) the phase

factor between H̃l(b)X̃(m− l, b) and H̃l′(b)X̃(m− l′, b). The approximation was made based

on the assumption that the cross frame phase factor is zero, i.e., αx(l, l
′, b) ≈ 0,∀l 6= l′

Assuming that the Mel filter bank is operating on the magnitude spectrum, using the

same approximation in the previous section, it can be shown that

Z2(m, k) =

(
Lb−1∑
b=0

Λk(b)|Z̃(m, b)|

)2

≈
Lb−1∑
b=0

Λk(b)|Z̃(m, b)|2

=

LH−1∑
l=0

(Hl(k)X(m− l, k))2 +N2(m, k) + 2α

(
LH−1∑
l=0

Hl(k)X(m− l, k)

)
N(m, k)

=

(
LH−1∑
l=0

Hl(k)X(m− l, k)

)2

+N2(m, k) + 2α

(
LH−1∑
l=0

Hl(k)X(m− l, k)

)
N(m, k)

(A.24)

where

Hl(k) =

∑Lb−1
b=0 Λk(b)|H̃l(b)X̃(m− l, b)|2∑Lb−1

b=0 Λk(b)|X̃(m− l, b)|2

α =

∑Lb−1
b=0 Λk(b)

∑LH−1
l=0 αxn(l, b)|H̃l(b)X̃(m− l, b)Ñ(m, b)(∑LH−1

l=0 Hl(k)X(m− l, k)
)
N(m, k)

Depending on the assumption of phase factor α, different approximations can be made:

• If α is assumed to be 1,

Z(m, k) =

LH−1∑
l=0

Hl(k)X(m− l, k) +N(m, k) (A.25)

• If α is assumed to be 0,

Z(m, k)2 = (

LH−1∑
l=0

Hl(k)X(m− l, k))2 +N2(m, k) (A.26)



APPENDIX A. DERIVATION OF MISMATCH FUNCTIONS 184

This leads to two mismatch functions for reverberation and additive noise case used in

this thesis:

zm = C log

(
LH−1∑
l=0

exp(C−1(xm−l + hl)) + exp(C−1nm)

)
(A.27)

or

zm =
1

2
C log

(
LH−1∑
l=0

exp(2C−1(xm−l + hl)) + exp(2C−1nm)

)
(A.28)



APPENDIX B
Implications of MAX

Assumption

In section 6.2.3, a toy problem is examined to illustrate the speaker and noise factorisation

can be achieved using the transform constrained approach. The MAX assumption proposed

in [178] was used to illustrate the independence between speaker and noise estimates. In this

appendix, a proof is provide for the implications of MAX assumption used in section 6.2.3.

Let the speech vector x and the noise vector n follow Gaussian distributions N (µx,Σx)

and N (µn,Σn) respectively, and the corrupted speech vector y is given by:

y = f(x,n) = C log
(
exp(C−1x) + exp(C−1n)

)
(B.1)

where x ∈ Rd, C is the (truncated) DCT matrix with the size d× dL, and dL is the number

of filter banks; C−1 is the Moore-Penrose pseudo inverse matrix of C, i.e., CT.

Using the VTS approximation, it can be shown that

µy = E{y} = f(µx,µn) (B.2)

Σy = E{yyT} − µyµ
T
y = JxΣxJ

T
x + JnΣnJ

T
n (B.3)

where Jx and Jn are the Jacobian matrix calculated by

Jx = C · diag(u)C−1 Jn = I− Jx (B.4)

185
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and u is a dL-dimensional vector with its q-th element given by

uq =
ex,q

ex,q + en,q
(B.5)

and

ex,q = exp(cTq µx) en,q = exp(cTq µn) (B.6)

The MAX approximation assumes that for each filter bank, either the speech energy or

the noise energy dominates, i.e.,

ey,q = ex,q + en,q ≈ max(ex,q, en,q) (B.7)

The following will demonstrate that this leads the following approximations:

Zbn = −(JT
x Σ−1

y Jx)
−1JT

x Σ−1
y Jn ≈ 0 (B.8)

Znb = −(JT
n Σ−1

y Jn)
−1JT

n Σ−1
y Jx ≈ 0 (B.9)

Following the MAX approximation, it is obvious that uq = 0 or uq = 1. Therefore, there

exists a rotation matrix R ∈ RdL×dL such that:

diag(u) = R

[
I1 0
0 0

]
RT (B.10)

where I1 is an identity matrix with the size d1, and d1 is the number of speech-dominated

filter banks. Note since R is a rotation matrix, RRT = I. Therefore, it can be shown that

Jx = CR

[
I1 0
0 0

]
(CR)T , Jn = CR

[
0 0
0 I2

]
(CR)T (B.11)

where I2 is also an identity matrix, whose size is dL − d1.

In this way, the covariance matrix of y becomes

Σy = JxΣxJ
T
x + JnΣnJ

T
n

= CR

([
I1 0
0 0

]
(CR)TΣxCR

[
I1 0
0 0

])
(CR)T

+ CR

([
0 0
0 I2

]
(CR)TΣnCR

[
0 0
0 I2

])
(CR)T

= CR

[
Σ̃x,11 0

0 Σ̃n,22

]
(CR)T (B.12)

where

Σ̃x = (CR)TΣxCR (B.13)

Σ̃n = (CR)TΣnCR (B.14)
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and Σ̃x,11 and Σ̃n,22 are the corresponding sub-matrices of Σ̃x and Σ̃n respectively. It is then

possible to show that

JT
x Σ−1

y Jn = CR

[
I1 0
0 0

]
(CR)T·(

CR

[
Σ̃x,11 0

0 Σ̃n,22

]
(CR)T

)−1

·CR

[
0 0
0 I2

]
(CR)T

≈ CR

[
I1 0
0 0

]
·
[

Σ−1
x,11 0

0 Σ−1
n,11

]
·
[

0 0
0 I2

]
(CR)T

= 0 (B.15)

Note the second equation uses the approximation

(CΣCT)−1 ≈ CΣ−1CT , (B.16)

in which Σ is a dL-by-dL invertible matrix, and C is a truncated DCT matrix with the size

d× dL.

Therefore,

Zbn = −(JT
x Σ−1

y Jx)
−1JT

x Σ−1
y Jn ≈ 0 (B.17)

Znb = −(JT
n Σ−1

y Jn)
−1JT

n Σ−1
y Jx ≈ 0 (B.18)



APPENDIX C
Maximum Likelihood

Estimation for fCAT

In section 6.3, the factor CAT (fCAT) model is used as an application of the explicitly

constrained approach to speaker and noise factorisation. In this chapter, details of maximum

likelihood estimation for fCAT, including the estimation of both canonical model parameters

and the transform parameters, are presented.

Given R utterances in the training data, {O(r)|r = 1, · · · , R}, the log-likelihood function

of the canonical model Mc and a set of speaker/noise transforms (T s = {T (i)
s |i = 1, · · · , I}

and T n = {T (j)
n |j = 1, · · · , J}) can be expressed by:

L(Mc,T s,T n) =
∑
r

∑
θ(r)

p(θ(r)|Mc, T (nr)
n , T (sr)

s )
∏
t

p(o
(r)
t ; θ

(r)
t ,Mc, T (sr)

s , T (nr)
n ) (C.1)

where sr and nr are the indices of the speaker and noise conditions of the r-th utterance,

θ(r) = [θ
(r)
1 , · · · , θ(r)

T ] denotes the r-th sequence of underlying Gaussian components, and the

m-th Gaussian distribution in the sr-th speaker and nr-th noise condition is given by:

p(ot|θt = m,Mc, T (sr)
s , T (nr)

n ) = N (ot,µ
(mr),Σ(m)

c ) (C.2)

with

µ(mr) = µ(m)
c + M(m)

s λ(sr,qm)
s + M(m)

n λ(nr,pm)
n . (C.3)
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Here, qm ∈ {1, . . . , Q} (pm ∈ {1, . . . , P}) maps the component index m to the speaker (noise)

regression class index; λ
(i,q)
s is the speaker cluster weight vector associated with q-th speaker

base class for i-th speaker; λ
(j,p)
n is the noise cluster weight vector associated with r-th noise

base class for j-th noise condition. M
(m)
s ∈ Rd×ds , M

(m)
n ∈ Rd×dn are the component m’s

speaker and noise cluster or subspace parameters, ds and dn are the number of speaker and

noise clusters respectively. Among these parameters, {µ(m)
c ,Σ

(m)
c ,M

(m)
s ,M

(m)
n } form the

canonical model parameters Mc, while {λ(i,q)
s |q = 1 . . . Q} and {λ(j,p)

n |p = 1 . . . P} are the

parameters of i-th speaker transform T (i)
s and j-th noise transform T (j)

n respectively. The

explicit independence constraint also requires the speaker and noise subspace are orthogonal

to each other:

M(m)T
s Σ(m)−1

c M(m)
n = 0 (C.4)

The canonical model parameters and the transform parameters are adaptively estimated

on the multi-conditional data via maximising the following auxiliary function:

Q =
∑
r,t,m

γ
(mr)
t logN (o

(r)
t ;µ(mr),Σ(m)

c ) . (C.5)

Five sets of parameters are iteratively maximised with respect to this auxiliary function.

These are 1) speaker subspace {M(m)
s } ; 2) noise subspace {M(m)

n }; 3) speaker transforms

T s; 4) noise transforms T n ; 5) canonical means and variances {µ(m)
c ,Σ

(m)
c }. The following

sections will give detailed estimation formula for each of these sets of parameters.

C.1 Estimation of Cluster Parameters

Fixing all the other parameters, maximising the speaker cluster parameters M
(m)
s amounts

to the following constrained optimisation:

maxM −
1

2
tr
(
MTΣ(m)−1

c MG(m)
s

)
+ tr

(
Σ(m)−1

c MK(m)
s

)
s. t. MTΣ(m)−1

c M(m)
n = 0 (C.6)

where

G(m)
s =

∑
t,r

γ
(mr)
t λ(sr,qm)

s λ(sr,qm)T
s

K(m)
s =

∑
t,r

γ
(mr)
t λ(sr,qm)

s (o
(r)
t − µ(m)

c −M(m)
n λ(nr,pm)

n )T
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and γ
(mr)
t is the posterior probability of Gaussian component m at time t for the r-th ut-

terance, calculated using the current parameters. Since these optimisation problem can be

individually done for each m, the superscript m will be dropped in this section for notation

convenience.

Using the method of Lagrange multipliers [29], a Lagrange dual function for this optimi-

sation problem can be defined as follows:

D(M,Γ) = −1

2
tr
(
MTΣ−1

c MGs

)
+ tr

(
Σ−1

c MKs

)
+ tr

(
ΓTMTΣ−1

c Mn

)
(C.7)

where Γ ∈ Rds×dn is the dual variable of M. Since the concerned constrained optimisation

problem is convex with only the equality constraints, the strong duality holds, and the optimal

M can be obtained by maximising the dual function. Since the dual function is a convex

function of M, there is a unique optimal M∗, which maximises D(M,Γ). Differentiating D
with respect to M and equating to zero gives the following equation:

Σ−1(KT + MnΓ
T) =

1

2
Σ−1M∗(G + GT) = Σ−1M∗G . (C.8)

The second equation follows the fact that G is a symmetric matrix. The optimiser is thus

given:

M∗ = (KT + MnΓ
T)G−1 . (C.9)

On the other hand M∗ needs to satisfy the constraint M∗TΣ−1Mn = 0, therefore

Γ = −G−1KΣ−1Mn

(
MnΣ

−1Mn

)−1
(C.10)

and

M∗ =

[
I−Mn

(
MT

n Σ−1
c Mn

)−1
MT

n Σ−1
c

]
KT

s G−1
s (C.11)

Similar formula can be used to estimate the noise cluster parameters.

C.2 Estimation of Cluster Weights

Fixing all the other parameters, maximising the speaker cluster weights λ
(i,q)
s amounts to

maximising the following function:

Q(λ(i,q)
s ) = −1

2

∑
r:sr=i

∑
m∈q

∑
t

γ
(mr)
t (o

(r)
t − µ(mr))TΣ(m)−1

c (o
(r)
t − µ(mr))

= −1

2
tr
(
G

(i,q)
w,s λ

(i,q)
s λ(i,q)T

s

)
+ k

(i,q)T
w,s λ(i,q)

s (C.12)
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where the sufficient statistics, k
(i,q)
w,s and G

(i,q)
w,s , are given by

G
(i,q)
w,s =

∑
r:sr=i

∑
m∈q

∑
t

γ
(mr)
t M(m)T

s Σ(m)−1
c M(m)

s (C.13)

k
(i,q)
w,s =

∑
r:sr=i

∑
m∈q

∑
t

γ
(mr)
t M(m)T

s Σ(m)−1
c (o

(r)
t − µ(m)

c −M(m)
n λ(nr,pm)

n ) (C.14)

Therefore, the optimal λ
(i,q)
s is given by:

λ(i,q)
s = G

(i,q)−1
w,s k

(i,q)
w,s (C.15)

Similar formula can be used to estimate the noise cluster weights.

C.3 Estimation of Canonical Mean and Variance

Fixing all the other parameters fixed, maximising the canonical mean and variance, µ
(m)
c and

Σ
(m)
c , amounts to the following optimisation problem:

Q(µ(m)
c ,Σ(m)

c ) = −1

2
γ(m)

(
log |Σ(m)

c |+ µ(m)T
c Σ(m)−1

c µ(m)
c

)
− tr(Γ(m)TΣ(m)−1

c ) + µ(m)T
c Σ(m)−1

c η(m)

(C.16)

where the sufficient statistics, γ(m) and η(m), are given by

γ(m) =
∑
t,r

γ
(mr)
t (C.17)

η(m) =
∑
t,r

γ
(mr)
t (o

(r)
t −M(m)

s λ(sr,qm)
s −M(m)

n λ(nr,pm)
n ) (C.18)

Γ(m) =
∑
t,r

γ
(mr)
t (o

(r)
t −M(m)

s λ(sr,qm)
s −M(m)

n λ(nr,pm)
n )(o

(r)
t −M(m)

s λ(sr,qm)
s −M(m)

n λ(nr,pm)
n )T

(C.19)

Therefore, the optimal solution is given by:

µ(m)
c =

η(m)

γ(m)
(C.20)

Σ(m)
c =

Γ(m)

γ(m)
− µ(m)

c µ(m)T
c (C.21)
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