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Abstract—Model-based approaches to handling additive back- were extended in a number of ways. Model-based approaches
ground noise and channel distortion, such as Vector Taylor &ies have also been extended to deal with the reverberant noise,
(VTS), have been intensively studied and extended in a numbe . ; :
of ways. In previous work, VTS ha}S be.en .extended to handle Iil\%lcmlr[:[]l([)g];] gg?/e[?t])’e?;r?f \iﬁcsr?;?/?;)aﬁazogsgsgsjfﬁzre
both reverberant and background noise, yielding the Reverbrant : ’ - ’

VTS (RVTS) scheme. In this work, rather than assuming the Model-based VTS compensation was extended to handle the

observation vector is generated by the reverberation of a sgience reverberant noise, as well as the background noise. RVTS al-

of background noise corrupted speech vectors, as in RVTS, & |ows the compensation formula for all the model parameters t

observation vector is modelled as a superposition of the b€ g yefined, and the parameters of the reverberant noise model

ground noise and the reverberation of clean speech. This s . . . S o

a new compensation scheme RVTS Joint (RVTSJ), which allows &1 be estimated using maximum likelihood (ML)_ criterion.

an easy formulation for joint estimation of both additive and TO handle background noise in a reverberant environment, a

reverberation noise parameters. These two compensationtsemes series of approximations were made such that the obsemnvatio

\é\/;rre i\é?jm:besoaggf?gﬁarsgt r?n %ISQU:Z:eg rea\l{ﬁ;biff::t \f;%‘ vector can be described as the reverberation of a sequence of
u . | H

baseIFi)ne system, with RVTSJ out}p:erforminggthegplreviOl\J/s RVB background noise f:orrupted Speech vector_s. The back_ground

scheme. and reverberant noise were then estimated in a sequentjal wa

In this work, an alternative assumption about the relatigms

of the additive and reverberant noise is explored, where the

observation vector is assumed to be a combination of the

Hands-free speech recognition using distant microphaneseverberation of the clean speech and additive noise. Baised
useful for many applications, e.g., voice control of consumthis assumption, an extension of RVTS, RVTS Joint (RVTSJ)
electronics, automatic meeting transcription and speéah dcompensation scheme is proposed. Compared with the RVTS
logue systems. Distant-talking automatic speech reciognit scheme, the noise parameters for RVTSJ, including the addi-
(ASR) systems need to handle both the background notsge and reverberant noise parameters, are estimatedyjoint
and the reverberant noise. The background noise is causatther than sequentially.
by other interfering sources and is usually additive in the The rest of the paper is organised as follows. The next
linear spectrum domain, while the reverberation is usualyection will discuss the mismatch functions that can be used
caused by multiple acoustic paths of sound waves from the describe the impact of environment, as well as the extra
source to the microphone. The reverberation effect can §@tistics needed to model the dependency caused by reverbe
described as a convolution of clean speech with Room Impulsgon. Section Ill describes the RVTS and its extension RVTS
Response(RIR). The RIR is usually characterised by the smdel compensation schemes. Noise estimation is presented
called reverberant timels,, which is the time needed forin section IV. Experiments and results are discussed inasect
reflections of a direct sound to decay by 60dB to the level &f with conclusion and future work in section VI.
the direct sound. In a reverberant environment, The value
is significant longer than the analysis window used for fesatu II. MISMATCH FUNCTIONS
extraction in ASR. Thus the observed feature vector becomges aqgitive Noise and Convolutional Distortion

a superposition of multiple delayed and attenuated copfies o ) i .
previous clean speech. In the time domain, the standard form used to describe the

There are several approaches in the literature to han&%d't've_ noisen(r) and short-te_rm convolutional noise(7)
reverberant noise. Signal processing methods like beamforCOTTUPting the clean speeal(r) is
ing [1] and inverse fiI.tering [2] can be used to clean the y(7) = h(r) * 2(r) + n(r) 1)
reverberant speech signals, or speech feature vectors can
be enhanced [3], [4]. Recently, model-based approacheswtere the length ofi(7) is less than the length of analysis
robust speech recognition, e.g., Parallel Model Combamatiwindow in feature extraction. After a series of approxiroas,
(PMC) [5] and Vector Taylor Series (VTS) [6], have beethe mismatch function in the cepstral domain, relating the
investigated to handle the additive and convolutional@aisd corrupted speech MFCGg, to the clean speech vectat,, is

I. INTRODUCTION



written as: In previous work [10], the following approximations were

made to simplify the overall expressions:
y, =Clog (exp(C~ (@, + p1y)) + exp(C~'ny)) P P

= (@0, iy, 100) @) ho(7) ~ ho(7) % h(7); ma(r) = ho(7) xn(r)  (11)

wheren, is the noise coefficienty, the convolutional noise, It is then possible to write

and C the (truncated) D_CT matrix. Note that. this msmgtch A7) = (1+ ha (7)) * y(7) (12)
function assumes the noise and speech are linearly adiitive

the magnitude domain. Combining noise and speech in otheBy ignoring the cross-term correlation, the effect of rever
domains is possible, which only requires a simple change: therant distortion in the cepstral domain can be approxictate
DCT matrix C is replaced byyC, wherevy = 1 represents as a combination ofn + 1 frame-level distortion terms,

the magnitude domain, angd = 2 the power domain. Given ji, = [0, -, ' ,])T, acting on a set of preceding noise-
this mismatch function, VTS can be used to yield a lineaorrupted MFCC featuresy,,--- ,y,_,,, i.€.,
approximation. For a clean speech vecigr generated from n
componentn, its noise-corrupted observatiq) is 2, = Clog (Z exp (071(%_5 iy 5))>
Yol (LG By ) + I (@) + 30 (Rpe) (3) =
=&Y Yyons ) (13)

where subscrips indicates the static parameters, and ) o )
The Mismatch function in Eq. (13) allows reverberant noise

J}((m) = %y - , Jl(lm) =I-— J}((m) (4) compensation to be built on top of the VTS-compensated mod-
ok APPSR els. In this work, rather than using the approximation in Eg.
Using this approximation, the static model parameters @n (1), the mismatch function in Eq. (9) is used, which dingctl
compensated via links the clean speech, additive noise and noise corrupted
observation. Again, by ignoring the cross-term corretatihe
pl = (), s 1) (5) g mi ion | in i
sy sx by P corresponding mismatch function in the cepstral domain is

gg;n) = diag (J}({m)gg;n)J}({m)T + Jl(lm)ganI(lm)T) (6) written as

For delta model parameters, the continuous time approxima- Clog Zexp (Cfl(fctﬂs + ) + exp (C'ny)
tion assumption[11] is used, yielding: 5—0

oy = 30 @ T 8@e @) a4
2&?) = diag(I( =M IMT 4 3w, 30Ty (g) This mismatch function assumes the corrupted observa-
tion vector is a combination of additive noise and several
whereA in the subscripts denotes static and delta parametefg|ayed-and-attenuated copies of previous clean speezh ve
The delta-delta parameters are also compensated in a Simiggs x., - ,xs_n, While the mismatch function in Eq. (13)
form. It is necessary to estimate the noise model parametgisumes the observation is generated by the reverberdtion o
Peens M, 3n, Xpn @nd Xy, These can be done via ML esti-aqditive noise corrupted speech vectgrs. ...y, ..
mates, e.g., [12], [13]. Similar to the VTS case, the mismatch functions in Egs.
(13-14) assume the linear combination in the magnitude do-
i ) ) ) main. Power domain combination is also possible by setting
In a reve.rberant_n0|se enwronment, if only a single multly — 2. The above mismatch functions describe the impact
path term is considered, the signalr), corrupted by the o reverberant and additive noise on the static featurets It
reverberant and background additive noise, may be extesgRi, possible to derive the mismatch functions for delta and

as delta-delta features using continuous time approximation
2(7) = he(7) * 2(7) + 1 (7) ) . Model statistics

where n,.(r) and h.(r) are the additive and reverberant For the above mismatch functions, the reverberant and
noise term, including intra-frame distortion and intearfre additive noise corrupted static speech frame is a functfon o
reverberation, i.e., a window of n + 1 clean speech frames,, ..., z;_, and
) o additive noisen; (or ng,...,n;_, to yield y,,...,y,_.).

hr(r) = (1) + a(7); - ne(r) = n(r) +ma(r)  (10) Therefore, additioE]aI model statistics ayre needed to ﬁntt;d)iel
ha(7) is usually caused by late-reflection of indirect acoustidependency.
path from the speaker to the microphone, whose length ysuall Figure 1 shows the generating process of the reverberant
ranges from 200ms to 1s or more. Since this is much longaservations (ignoring the dynamic parameters) accortting
than the length of analysis window used for feature extoacti the mismatch function in Eq. (14). Inference on this dynamic
(typically 25ms), the effect of reverberant noise cannot ligayesian network (DBN) is not practical as the number
described as a simple bias term in the cepstral domain. of states and components affecting the current state grows

B. Reverberant Noise



exponentially. Approximations to this form are possibler F original model, the following form is used:
example, in [9] the Viterbi decoding algorithm is modified

where model parameters are adapted based on the current Tt Lo

best partial path. The model adaptation is done at each frameg, — A;ct - W o ~ N(ﬁf{m,ff{m)) (15)
which results in a large amount of computation. Alterndyive A~ LTt Tinw

the model parameters can be adapted prior to recognition, L

based on the estimated preceding states, either the INYerew is the window size to calculate the dynamic parame-

p_honeme preceQing states or inferred from. the _cgntext t%frs,cict can be any vector, providéd is square and invertible,
biphone [8] or triphone [7] models. However, it is difficutt t (m) i o diagonal matrix. Using this representation, it is

infer a long preceding state sequence in this way, espgcia x . S
ong p 9 >€d Y, espg simple to derive the clean speech statistics. For exampde, t
when tied-state cross word triphone models are used. . . :
mean and covariance of spliced framegranging fromt¢ to

t —n), pi” and (™ can be derived by

pl =PEm; s =PEVPT  (16)
T whereP is the matrix that map%; to z.. Since the deltas
of ., Ax,, are also linear combination af;, the mean and
covariance ohx,, ,ug;’;) andzm) can be obtained in a similar
way.

The above expressions describe the derivation of the “Elean
statistics required by the mismatch function in Eq. (14)e@i
the noise model parameteus, , p,,, Xy, it is possible to derive
Fig. 1. Reverberant dynamic Bayesian netwarkandm; denote the state the “noisy” statistics required by the mismatch functiorkig.
and component at timgn = 1. (13). To avoid computing a large number of Jacobian matrices

linear approximation is used: for example, the meany of;,

Alternatively, another form of approximation was proposeg(gm, is given by
in [10] and is also used in this work. The DBN is shown in
Figure 2. In this approximation, rgther than an explicit @ep _ Nf,}n) = £(pl™, py, pg,) + I (Hf{?) — pl™) (17)
dence on the previous observation or states, the obsamnvatio
vector z; is as_sumed to depend on an e>_<tende_d observathereH}((gn) is the mean ofz,_;, conditioning on the com-
vectormt..ln this way, 'Fhe standqrd \(lterbl algor!thm can %onentm. Once u(?)(d — _w,...n + w) are known, the
used for inference. This approximation results in two forms -y (m) ) )
of smoothing. First statistics are smoothed over all pdasif'0isy delta statisticsu,,.’, can be obtained in the same way
previous states. This effect is moderated for the conte}@ NAZZ)-
dependent models as the left context automatically linfies t
range of possible states. The second impact is the smoothing I1l. REVERBERANTVTS COMPENSATION
over components for the previous state. It is worth notirag th
this is exactly the same form of approximation that is used {

deriving the standard dynamic parameters.
% J}(fe):[JéO)a a']g(fn)] ) J3(15 - (m) ~ (19)

Given the mismatch functions in Eq. (13) and Eq. (14) and
e statistics described in the previous section, it is iptes$o

extend the use of VTS to handle reverberant noise. In previou
work [10], the mismatch function in Eq. (13) is expanded

. qal - . ! .
G ./ Q. about model parameters and current noise parameters, i.e.,
t+
59 ™ z2ilm = (Y, i) = E(nye, ) + I3 (ye — nie”) (18)

3

wherey, is the stacked noisy framas,...,y,_, and

@ Byt_i Hye 5Hy

@ @ @ With this expansion, as well as the continuous time approxi-
mation, the mean is compensated using

Fig. 2. Approximate reverberant environment dynamic Beyesetwork.

pe) = & i) (20)
It is also important to decide which form of the probability pa = ngl)uggg (21)

distribution, p(Z:|m: = m), to use. To ensure that if there
is no reverberant noise, the compensated model becomesThis form of compensation is referred to as RVTS.



A similar approximation can be carried out for the mismatcR (4, f1,) is a regularisation term to improve the stability
function in Eq. (14). Performing an expansion of the funttioof noise estimation. In this work, the following form of
g() around,u,(!"), u, and p, yields regularisation was used:

— (m) R(i&’ 7ﬂn) =« (ﬂ —K )T(i&’ —H )+ (ﬂn_iu’n)T(i&’n_iu’n)
zilm ~ g(ple? oy, pa) + (3500, I8 [m He ] (22) ' (B ) (i = s )

e Ha Performing a first-order expansionpﬁm) using the current
where estimatesy,, w.,,, yields:
I = I I =1-3 8 @) R T N I
5—o My — oy
and where
J(gn) = a—g (24) Jge ) = [Jgo )7 T aJ:(Ln)] J§5 ) = 9 (m)
* 0Ty —5 | " o s, M5 sl

Differentiating the auxiliary function and equating to aer

Thus the model parameters are compensated b
! P P 4 gives the following update:

nl) = (i, py, ) (25) ) 1
pir) =30 pir (26) [ o } = <ZW§W>J<’”>T2§?“J<M> +a1> X (29)
n t,m
The delta-delta parameters are compensated in a similar way
as the delta parameters. This compensation form is refésred th(m)J(m)ngzw)—l (ugT) _Jm) [ ! D
as RVTS Joint (RVTSJ). Py Hn

It is possible to compensate the variances as well. However, (m) (m) <(m) _ . o
in this initial investigation, it was found that variancengpen- Where J = [J;;"Jz."]. Note in noise estimation for
sation is quite sensitive and a good compensation is hardRYTS, similar expression were used, except that gjlyvere
obtain. Thus, in this work the variance compensation is doHgdated whileu,, were fixed at the value estimated in VTS.
using standard VTS, i.eEim) - 23(,’”) (cf.Eq.5-Eq.8), The above updating formula only consider the static pa-

wherep_,, i, and =, are estimated via standard VTS noisédMeters in the auxiliary function. To yield best performen
estimation. all the compensated parameters should be included in the

auxiliary function. The updating formula is slightly modifi
IV. NOISEESTIMATION to reflect that compensated delta and delta-delta parasneter

In the previous section, two model compensation formal€ also functions ofi, and fi,. Moreover, due to the linear
RVTS and RVTSJ, are described. The noise parameters n@g@roximation in Eq. (28), the auxiliary function needs ® b
to be determined. Though there exists a simple method @3ecked after every updating iteration to ensure the ayili
determine the frame-level distortion terms [7] based on t#@non-decreasing. More details of the noise estimationbean
known reverberation timélgg, it is preferable to use ML found in [14].
estimate of noise parameters, as it yields consistent ftt wit Since the auxiliary function is highly nonlinear, it is crailc
the reverberant data. In [10], a sequential ML estimation & have a good initialisation. The initialisation schemetirs
noise parameters for RVTS was presented, where the additv@'k uses an initial (rough) estimate @k, value, similar
and convolutional noise parameters,, i, andX,,, were first to the one used in [7]. The initialisation scheme is slightly
estimated using standard VTS noise estimation, then treynomodified so that the initial compensated mean vectors are
statistics {2 were obtained, followed by reverberant nois@PProximately the same as the VTS compensated means. For
meanjz, estimation. Though it is possible to jointly estimatd?VTS, the initial frame-level distortion terms are given by
ft1; p, @ndp, for RVTS, additional assumptions (e.g,({.”) is fs; =Clon+pB ... on+8]" (30)
invariant of i, , pt,,) are needed. In this work, joint estimation
of the reverberant and additive noise mean is presentetidor Yhere
RVTSJ compensation. A 1 —elntn

The estimation of reverberant and additive noise mean "~ —310g(10)T—60; B =—log <W) (31)
is done |n the .EM framewo.rk, ;imilar_to the ConVOIUtionaflmdA is the shift of analysis window (10ms in this work).
and additive noise mean estimation using EM. The foIIowmlqote that here the cepstral coefficients are extracted ftam t

auxiliary function is maximised: magnitude spectrum rather than power spectrum, therefipre E
Ofuy, i1,)=> ™ log p(ze; pi™, B+ R(fuy, 1) (27) (31) is slightly different from the one in [7]. For RVTSj,

' Z ! ' ' is initialised as the additive noise mean estimated by stahd
VTS noise estimation, while fog, s

t,m

whereyt(m) is the posterior of component at timet, given

.
the current hypothesis and current noise estimatesu,, pas = b+ CLON+ 5 ... 0n+ ] (32)



Schemes| Est. t est Avg.
01 04 08

estimation. [ VIS | ML [ 438 480 557 495 |
It || 29.7 487 43.4] 406

and p, is the convolutional noise estimated in VTS noise

V. EXPERIMENTS AND RESULTS RVTS | vl Il 567 439 404 370

The above RVTS and RVTSJ were evaluated and contrasted RVTS] | Imit || 29.4 469 419 394

on a reverberant version of the AURORA4 task [15]. The ML || 241 404 352] 33.2
original AURORA4 task is derived from Wall Street Journal TABLE I

WER%OFRVTSAND RVTSJUSING INITIALAND ML ESTIMATED

(WSJO0) 5k-word closed vocabulary task, with 330 utterances NOISE.

from 8 speakers in the test set. Test settfAegt 01) was

recorded with a close-talking microphone; set B¢t 02- 07)  reverberant AURORAA4 task. Results are shown in the first line
had 6 different types of noise added, with randomly selectegd Table 1. Due to the reverberation effect, the perforneanc
SNRs, ranging from 15dB to 5dB; Set Q gst 08) was were seriously degraded: the average WERs were 49.5% while
recorded with secondary microphones; noise was also added WERs on the original three sets were only 12.74, (

to set C to form set D(est 09- 14). Three of these 14 6.9%,04 19.5%,08 11.8%). This demonstrates the challenge
sets, 01, 04 and 08 were selected and passed through @&f this task.

simulation tool [16] to simulate the effect of reverberaoise, RVTS and RVTSJ model Compensation experiments were
with the reverberation timé@s, set to 400ms. These additiveryn using both initial and ML estimates of noise parameters.
and reverberant noise corrupted sets form the reverberggt initialisation, theTy, value was set as 400ms, matched
AURORAA4 task. with the simulator’s setting. Results were shown in the sdco

The HTK frontend was used to derive a 39-dimensionahd fourth rows of Table Il. It is observed that the model
feature vector, consisting of 12 MFCCs, extracted from magompensation using initial noise parameters already géld
nitude spectrum, appended with zeroth cepstrum, delta dagye gains, especially o1 and 08, with RVTSJ slightly
delta-delta coefficients. Cross-word triphone models @#th0 petter. As a comparison, reference [7] reports a WER of 39.8%
distinct states and 16 component per state were trainedeon g the sam@1 set, using the compensation scheme therein.
“clean” data (7138 utterances/83 speakers). For the e&tend As demonstrated in Table I, using ML estimated noise yields
model statistics, the feature vector was appended with-highrge gains over simple initial estimates of noise. Therfo
order DCT elements of an appropriate window width~= it is also preferable to use ML estimated noise for RVTS
10,w = 4 were used as the length of history frames and thg¢\d RVTSJ compensation. The VTS hypothesis was taken
window length used for calculating the dynamic parametergs the initial supervision, noise parameters were re-agtith
respectively. The standard bi-gram LM for the AURORAA4 tasighile the model variance was locked as the VTS compensated
was used in decoding. variance. 4 EM iterations were used. The supervision hypoth

Adaptation in the experiments were performed in an ugsis was also updated (1 in the experiments) to yield better
supervised mode. All noise parameters were estimated at fifise estimation before final decoding. Results are shown
utterance level. Initially, acoustic models were comp&sa in the third and fifth rows of Table Il. As expected, ML
based on an initial estimation of the additive noise, ushig testimation of noise yields consistent gains over initiaisao
first and last 20 frames of each utterance. These compensaiégmation. RVTSJ outperforms RVTS in all three sets. This
models were used to generate an initial hypothesis. With thé due to the sequential approach to noise estimation in RVTS
initial hypothesis, the noise models were re-estimatedv Nevhere the additive noise was estimated using the VTS-style
hypotheses were then generated. This process was opfiongllsmatch function, then the frame-level distortion termesev
repeated several times. Table | shows the how the VTS systeggsimated given the additive noise. Because of this seient
performed on theriginal AURORA4 task. Compared with the approach, the additive noise was used to model some agsibut
unadapted system, VTS adaptation greatly reduces the egprreverberation, yielding inaccurate noise estimatesntJo
rates on this additive and convolutional noise corruptegu®. estimation of both additive and reverberant noise allegiat
this issue by taking the effect of both reverberant and adit
noise into account.

[ Est. [ set A setB setC setD Avg. |

it ;:(1) gi:g ﬂ:‘l‘ 4713:; gg:g Experiments in Table Il assumed the reverberation time,

ML | 69 151 11.8 23.3| 17.8 Ts0, was known. In practice, it is only possible to know the

TABLE | reverberation time to some extent. Another set of experisnen

ESTIMATION OF ADDITIVE AND CONVOLUTIONAL NOISE ON THE were run with differentTy, values ranging from 200ms to
ORIGINAL AURORAATASK. 800ms. Though using initial estimated noise based on mis-

matchedTs, value do have an impact on performance, the
L estimate was relatively insensitive to the initialigati For
mple, using the initial noise estimate, RVTSJ perforrean
1To keep the experiments repeatable, the reverberant roiadded after varied from 27.5% to 31.7%, while the performance of ML

background noise distortion, which matches the assumplic®vTS. Exper- e€stimated noise only varied from 24.3% to 25.0%. This again
iments on the real data are on-going and will be reportedviisee.

The same VTS compensation scheme was also run on



TABLE Il
VTS AND RVTSJADAPTATION USING MISMATCH FUNCTIONS IN POWER
AND MAGNITUDE DOMAIN .

Schemes|  domain 0T tgit 08 Avg. and reverberant noise jointly. These two model compensatio
power | 46.7 611 6L7] 565 schemes were evaluated on the Reverberant AURORA4 task.
VIS magnitude | 43.8 48.9 55.7| 49.5 Both RVTS and RVTSJ yielded large gains over VTS baseline
RVTSJ power | 30.5 531 46.9] 435 system, with RVTSJ being consistently better.
magnitude | 24.1 404 35.2| 33.2
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0T 04 08
vis ML 738 489 55.7] 495

+CMLLR | 320 452 446| 406

ML 273 440 408 374
RVIS  ,CMLLR | 228 41.0 3238| 322

ML 241 404 352 332 [
RVTSJ  [CMLLR | 202 365 290| 2856

TABLE IV

(2]

VTS, RVTSAND RVTSJAND THEIR COMBINATION WITH CMLLR ON
REVERBERANTAURORAA4 TASK.

(3]
demonstrates the advantage of the ML noise estimation.

The above experiments assume the noise and speech are

additive in the magnitude domain, as it was empirically foun (4
magnitude domain combination yielded better results [b7] f
additive noise corrupted data. It is also interesting toka
this conclusion for reverberant noise corrupted data. Viié a [5)
RVTSJ adaptation experiments were re-run using the power
domain mismatch functionsy(= 2) with the same setup. (6]
Results are shown in Table Ill. Consistent with the finding
in [17], magnitude domain combination performs better. [71
To further improve the performance, a linear transform,
CMLLR transform [18], was combined with previous model[g
compensation schemes. A global CMLLR transform was es-
timated for each speaker. Results are shown in Table IV. A@]
expected, adding linear transforms to further reduce ttge mi
match yielded large gains. The best performance was achielé]
by RVTSJ combined with CMLLR adaptation, which was a
42.2% relative error reduction, compared with VTS adapiati [11]
alone. The combination of RVTSJ and CMLLR transform
also outperforms the Direct CMLLR approach proposed in
[10], in which a linear transform was employed to projegtz
several neighbouring frames. This demonstrates that the us
of nonlinear mismatch functions is helpful for the reveer

X . . [13]
noise distortion.

VI. CONCLUSION [14]

This paper investigates Reverberant VTS model compensa-
tion for hands-free speech recognition. In [10], the VTS elod[15]
compensation was extended to handle reverberant noisegwhe
it was assumed that the observation vector is generated [Rgf
the reverberation of a sequence of additive noise corrupte
noisy speech vectors. An alternative form of RVTS modé}’]
compensation, RVTSJ, was examined, where another form of
mismatch is explored, in which the corrupted observation [iss]
generated by the combination of additive and the reverlheran
of previous clean speech vectors. This form of mismatch
function allows an easy formulation of estimating backgmbu

Schemes test Avg. RATS program. The paper does not necessarily reflect the
position or the policy of US Government and no official
endorsement should be inferred.
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