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4F11: Speech and Language Processing Lectures 2/3: Speech Analysis

Speech Analysis
These two lectures cover the following topics

Spectral Analysis of Speech

• DFT/Windowing
• Spectral Properties of Speech Sounds
• Spectrogram

Linear Prediction Models

• All-pole model of speech
• Parameter estimation
• Spectral properties

Cepstral Analysis

• Homomorphic filtering
• Filterbank-based cepstral representations
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Spectral Properties of Speech

• Most information in speech is encoded by movement of the articulators (lips,
tongue, jaw, etc) resulting in variations in the short term spectrum.

• Figure shows the waveform and Fourier magnitude spectrum of a fragment of
the vowel iy as computed by the DFT/FFT. The waveform contains 512 points
and it is 32msec in duration (16kHz sampling frequency).
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• A time-domain segment and its spectrum for the fricative s is shown below.

The sampling theorem dictates that the highest present in the speech waveform
must not exceed 8kHz to avoid aliasing. The spectra shown cover the full
range from 0 to 8kHz. Both waveforms were sampled at 16kHz with 16 bits
of precision. This is the norm for clean wide bandwidth speech processing. For
telephone speech, 8-bit µ-law or A-law sampling at 8kHz is usually used.
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• The vowel time domain waveform is approximately periodic with fundamental
frequency around 130Hz. The periodic excitation is clearly visible in the
spectrum as a high frequency ripple. There are about 7.5 cycles of this ripple
per 1000Hz confirming the pitch frequency estimate from the time domain. In
contrast, the time domain waveform for the fricative shows no periodicity and
the spectrum has only random variations at much higher frequency.

• There is little information above 5kHz in the vowel spectrum. By contrast,
the fricative spectrum has a broad single peak centred at about 5kHz. Thus,
for high quality speech a bandwidth of 8kHz is just adequate. The bandwidth
of telephony channels are limited to the range 300Hz to 3400Hz. This is
just sufficient to avoid seriously impairing intelligibility but it does nevertheless
reduce human ability to make distinctions between certain fricatives and stops.
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Spectral Features of Sounds
Vowel sounds are characterised by the first 3 spectral peaks (formants). In the
above spectrum of the vowel iy, the formant locations are at 250Hz, 2100Hz and
3300Hz. A low F1 and high F2 is typical of a high front vowel. There is a simple
relationship between the tongue and jaw positions, and the values of F1/F2.

Tongue Front Tongue Back

High Jaw F1 Low - F2 High F1 Low - F2 Low
Low Jaw F1 High - F2 High F1 High - F2 Low

Liquids are characterised by formant position also but in this case the dynamics
are important and the overall energy is lower than for vowels.

Nasals have a strong low 1st formant around 250Hz and weak higher formants.
There is often energy around 2.5kHz.

Fricatives have most energy in higher frequencies. Voiced fricatives also show
weak formant structure.

Stops are characterised by silence optionally followed by a burst of high energy.

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 5



4F11: Speech and Language Processing Lectures 2/3: Speech Analysis

DFT and Windowing

A frequency-discrete representation of the spectrum of a finite length signal
s0 → sN−1 is given by the Discrete Fourier Transform (DFT):

S(ej
2πp
N ) =

N−1
∑

n=0

sn e−j 2πnpN

where the spectrum ω = 0 → π/T has been divided into N/2 + 1 equally spaced
discrete frequency points (including those at 0 and π/T ) and the

angular frequency of point p =
2πp

NT

Since the spectrum computed by the DFT of a finite segment of speech is that of
a periodic wave formed by repeating the segment, discontinuities at the segment
boundaries lead to unwanted artifacts.
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The commonly used solution is to multiply the speech segment by a tapered
window. This reduces the discontinuities at the segment boundaries but, of
course, it distorts the signal itself. A common choice is the Hamming window

wn = 0.54− 0.46 cos

(

2πn

N − 1

)

where the DFT is now applied to the sequence wnsn for n = 0 → N − 1.
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Block Processing
For a complete waveform, a spectral estimate must be computed about every
10 msecs. Since this is rather a short duration to calculate a spectrum, analysis
windows are allowed to overlap so that typically 25 msec windows are used.

The above figure illustrates this block processing technique. Note that each
segment of speech is often referred to as a frame.
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Spectrograms
The sequence of spectra derived by block processing continuous speech can be
displayed as a grey-scale image with dimensions of time and frequency and with
the spectral energy represented by the intensity of the image. This representation
is called a spectrogram.

By using different length FFTs, the trade-off between time-resolution and
frequency resolution can be investigated. Short-window (wide-band) and long-
window (narrow-band) spectrograms are shown below.
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A short analysis window gives good time but poor frequency resolution. In the
wide-band spectrogram above, the pitch periods are visible whereas in narrow-
band spectrogram below the harmonics of the fundamental frequency can be
observed.
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Linear Prediction Analysis
Linear prediction analysis of speech is historically one of the most important
speech analysis techniques. The basis is the source-filter model. It assumes that
a particular speech sample in a frame can be predicted as a weighted-sum of the
previous p samples (typically in range p = 10 to p = 15) i.e.

ŝn = a1sn−1 + a2sn−2 + . . .+ apsn−p

ŝn =
p
∑

i=1

aisn−i

The prediction error for a particular sample en, is:

en = sn − ŝn

= sn −
p
∑

i=1

aisn−i
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Taking z-transforms of both sizes we obtain

E(z) =

[

1−
p
∑

i=1

aiz
−i

]

S(z)

Then the filter transfer function from the prediction error sequence to the speech
is

=
S(z)

E(z)

1

A(z)
=

1

1−
∑p

i=1 aiz
−i

Now in the source filter model we assume that the input to the filter is spectrally
flat (e.g. from a unit impulse train). In that case we can write the transfer
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function of the filter as

H(z) =
G

1−
∑p

i=1 aiz
−i

=
G

A(z)

where G can be estimated to match the overall energy. The spectral shape of
the the speech is given by 1/A(z) which, in fact, models the combined effect of
the excitation source and the vocal tract transfer function.

Note that the linear prediction filter defined above is all-pole, i.e. it uses past
samples of the output to compute the current sample and only the current sample
of the input as shown below
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Motivation from lossless tubes
Note that the transfer function of a lossless tube made up of sections of constant
cross-sectional area can be described by an all-pole model. ... But

• Vocal tract is not built of cylinders
of constant cross-sectional area

• Vocal tract is not lossless

• Vocal tract has a side passage (the
nasal cavity)

• fricatives (e.g. /s/) are generated
near the lips

Nevertheless, with sufficient parameters the LP model can make a reasonable
approximation to the spectral envelope for all speech sounds (note that can
approximate any spectral shape with enough poles!)
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Parameter estimation
Given N samples of speech, we would like to compute estimates to ai that result
in the best fit. One reasonable way to define “best fit” is in terms of mean
squared error 1 .

The summed squared prediction error ET

ET =
∑

n

e2n

=
∑

n

(sn −
p
∑

k=1

aksn−k)
2

The minimum of ET occurs when the derivative is zero with respect to each of the
parameters, ak. Note that we have not yet defined the range of the summation
over n. To minimise ET find the solution to ∂ET/∂ak = 0.

Hence differentiating ET with respect to aj and setting equal to zero gives the
1These can also be regarded as “most probable” parameters if it is assumed the distribution of errors is Gaussian

and a priori there were no restrictions on the values of ai.
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set of p equations:

∂E

∂aj
= 0 = −

∑

n

(

2(sn −
p
∑

k=1

aksn−k)sn−j

)

= −2
∑

n

snsn−j + 2
∑

n

p
∑

k=1

aksn−ksn−j

Rearranging gives the set of p simultaneous linear equations ( normal equations)for
values of j from 1 to p:

∑

n

snsn−j =
p
∑

k=1

ak
∑

n

sn−ksn−j (1)

So far the range of the summations over n was from −∞ to +∞, which is
undesirable for speech processing. Different possibilities give rise to variants of
linear prediction analysis. The two most widely used are:
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1. covariance method
the limits are n = 0 to n = N − 1

2. autocorrelation method
the limits are ±∞ and hence the speech requires windowing to select the
portion of data to analyse. We will discuss this option further below since it is
widely used.
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Autocorrelation method
In the autocorrelation method the summation is taken over all samples. Thus

∞
∑

n=−∞

sn−isn−j =
∞
∑

n=−∞

snsn+i−j

This is the autocorrelation sequence ri−j.

Therefore if we process a windowed version of the data in which

sn = 0 if n < 0 or n >= N

we also have

rk =
N−1−k
∑

n=0

snsn+k

Now the normal equations are as shown below (a Toeplitz matrix):
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⎛

⎜

⎜

⎝

r1
r2
· · ·
rp

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

r0 r1 r2 · · · rp−1

r1 r0 r1 · · · rp−2

· · · · · · · · · · · · · · ·
rp−1 rp−2 · · · · · · r0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

a1
a2
· · ·
ap

⎞

⎟

⎟

⎠

Due to the special structure of the above matrix, efficient solution methods exist,
one of which is Durbin’s algorithm.
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Autocorrelation Method: Durbin’s Algorithm
Denoting the values of the LP parameters at iteration i by a(i)k and the sum-

squared predictor error (or residual energy) by E(i)
T (E(0)

T = r0) for i = 1, 2,
...

ki =

⎛

⎝ri −
i−1
∑

j=1

a(i−1)
j ri−j

⎞

⎠ /E(i−1)
T

a(i)i = ki

a(i)j = a(i−1)
j − kia

(i−1)
i−j 1 ≤ j < i

E(i)
T = (1− k2i )E

(i−1)
T
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Example of Durbin’s Algorithm (1 of 2)
For an example waveform the first auto-correlation coefs are:

r0 = 2.4470 108

r1 = 2.2466 108

r2 = 1.7823 108

Therefore on the first iteration:

k1 = r1/E
(0)
T = 0.9181

a(1)1 = k1

= 0.9181

E(1)
T = (1− k21)E

(0)
T

= (1− 0.9181 ∗ 0.9181)2.4470 108

= 0.38442 108

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 21



4F11: Speech and Language Processing Lectures 2/3: Speech Analysis

Example of Durbin’s Algorithm (2 of 2)And on the second iteration:

k2 =
(

r2 − a(1)1 r1
)

/E(1)
T

=
(

1.7823 108 − 0.9181 ∗ 2.2466 108
)

/0.38442 108

= −0.72915

a(2)2 = k2 = −0.72915

a(2)1 = a(1)1 − k2a
(1)
1

= 0.9181−−0.729150.9181

= 1.58753

E(2)
T = (1− k22)E

(1)
T

= (1−−0.72915 ∗ −0.72915)0.38442 108

= 0.18004 108
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Properties of Durbin’s Algorithm
The parameters ki are known as the reflection coefficients and are always in the
range ±1 (and are used in an acoustic tube model of the vocal tract).

Note that:

• As Durbin’s algorithm proceeds, all intermediate order predictors are calculated

• This method also provides the reflection coefficients and the error energies of
all intermediate order predictors

• The resulting filter is guaranteed to be stable (which is useful for
synthesis/coding!)

• The value of the squared prediction residual, E(i)
T is also computed and is

guaranteed to decrease (or remain constant) on each iteration

• Compared to the covariance method substantially larger windows are required

• Most commonly used
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Spectral Interpretation
The poles of the LP filter are either real (which give a spectral tilt) or occur in
complex-conjugate pairs and model resonances. If all poles are complex, filter can
be viewed as a cascade of p/2 2-pole resonators.

The autocorrelation method also has a spectral interpretation. By Parseval’s
Theorem

ET =
1

2π

∫ π

−π

∣

∣E(ejωT )
∣

∣

2
dωT

=
1

2π

∫ π

−π

∣

∣S(ejωT )
∣

∣

2 ∣
∣A(ejωT )

∣

∣

2
dωT

=
1

2π

∫ π

−π

P (ejωT )
∣

∣A(ejωT )
∣

∣

2
dωT

where P (ejωT ) is the speech power spectrum.

Now the LP model approximation of the speech power spectrum can be written

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 24



4F11: Speech and Language Processing Lectures 2/3: Speech Analysis

as

P̂ (ejωT ) =

∣

∣

∣

∣

G

A(ejωT )

∣

∣

∣

∣

2

and hence

ET =
G2

2π

∫ π

−π

P (ejωT )

P̂ (ejωT )
dωT

Thus minimising ET minimises this integrated ratio with the constraint that
∫ π

−π
P (ejωT ) dωT =

∫ π

−π
P̂ (ejωT ) dωT .

Hence linear prediction can be viewed as power spectrum matching. In fact,
starting from the frequency domain interpretation of the error, the autocorrelation
equations can be derived in the frequency domain.
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Pre-emphasis

• The LP filter so far presented attempts to fit an all-pole model using a
least-squares measure.

• The lower formants contain more energy and therefore are modelled more
accurately than the higher frequency formants

• A simple pre-emphasis filter,

s′n = sn − a1sn−1 (2)

is often used to boost the higher frequencies. Typically 0.96 ≤ a1 ≤ 0.99, or
the optimal pre-emphasis a1 = r1/r0 is used.

• If reconstructing the speech the inverse of the pre-emphasis filter should be
used:

sn = s′n + a1sn−1 (3)
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The residual signal
Plotting the error signal en for the example waveform

Finding the error signal or prediction residual is known as inverse filtering.

• Most short term correlations seem to be lost in the error signal

• The residual contains long term correlations due to pitch pulses

• There is a spike at the pitch periods when prediction is poor
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LP Spectrum
The frequency response of the LP filter is one way to estimate the speech
spectrum. Since the detailed excitation is mainly modelled by the error signal, the
LP filter frequency response is a smoothed all-pole approximation to the speech
spectrum. As such it is of use in calculating e.g. formant frequencies.

Recall that the filter can be represented as

H(z) =
G

A(z)

Then the LP filter frequency response is found by setting z = ejωT . The resulting
LP spectrum is smooth and shows formant structure.

• Poles near the unit circle produce peaks

• There are no zeros

• Typically formants are very sharp

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 28



4F11: Speech and Language Processing Lectures 2/3: Speech Analysis

LP Spectrum Example
An example of the LP spectrum is shown below. It can be seen that relative to
the DFT spectrum the effect of the excitation has been removed and a smooth
representation of the vocal tract frequency response remains.
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Summary of LP Analysis

• All-pole filter model of speech

• Filter associated with vocal tract

• Error signal associated with excitation

• Filter parameters estimated to minimise sum-squared prediction error

• Autocorrelation method uses Durbin’s algorithm for efficient solution

• Typical order of analysis is 10-15 (about 2 poles per formant, plus others for
spectral shape)

• Often LP analysis is performed after pre-emphasis to flatten spectrum

• Autocorrelation analysis yields reflection coefficients with links to lossless
acoustic tube model

• LP filter frequency response is the“LP spectrum”
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Cepstral Analysis
Cepstral analysis which is another way (apart from LP analysis) to separate the
vocal tract frequency response from the excitation and can also obtain a smooth
representation of the vocal tract frequency response.

We will discuss

• Homomorphic filtering

• The cepstrum

• Applications of cepstral analysis

• Mel-scale filterbanks

• Discrete cosine transform

The final part leads to Mel-scale cepstral coefficients which are an important
representation of the speech signal used in speech recognition.
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Aim of Cepstral Analysis
The source-filter model regards the spectrum as the product of the excitation
spectrum and the vocal tract frequency response. We aim to separate these

Spectrum

Time−domain speech signal: the vowel "iy"
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• excitation

• vocal tract frequency response

• other filtering effects

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 32



4F11: Speech and Language Processing Lectures 2/3: Speech Analysis

Homomorphic Filtering
The excitation gives rise to a quickly varying ripple in the spectrum. If the vocal
tract frequency response and excitation were added then the signals could be
separated. However the signals have been multiplied!

The solution is to take logs to convert multiplication to addition:

log(a · b) = log a+ log b

elog y = y

Low Pass

Hi Pass

log

exp

exp
Vocal tract
spectrum

Excitation
spectrum

Excitation and
vocal tract spectra

multiplied.

Excitation and vocal
tract spectra added.

This approach is called homomorphic filtering. We are filtering the log spectrum
as we would normally filter in the time domain.
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The Cepstrum
Homomorphic filtering usually employs the DFT. Note that for the real cepstrum
the log is applied to the magnitude spectrum.
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In the cepstrum vocal tract impulse response decays rapidly and can be separated
(by windowing) from the excitation.

The cepstrum is computed in quefrency domain and filtering in this domain is
called liftering. Note that taking the IDFT of the cepstrum doesn’t return to the
time domain because of the non-linear log operation.

If have lowest formant at frequency f1 and the fundamental (pitch) at f0 then
cepstral coefs:

• c0 → ch encodes vocal tract response if h ≥ 1
f1T

• cp → cN−1 include the major pitch peak if p ≥ 1
f0T

1
1 1

Fundamental

Lowest formant

f
f1 f0

• If f0 < 250Hz and f1 > 500Hz, and T = 62.5µs then h = 32, p = 64

Making h smaller increases the smoothing over the whole spectrum.
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Applications of Cepstral Analysis

• Pitch estimation
Find the peak cepstral value in the range cp → cN−1.
If the peak is at cn then fundamental frequency is 1

nT

• Smoothed spectrum
Take a DFT of (zero-padded) c1 → ch. This is an alternative to the LP
spectrum.

• Vocoding
Find fundamental frequency and transmit speech as a sequence of frames
{n, c0, c1, · · · , ch}.

• Recognition
Use c1 → ch as a representation of the (smoothed) spectrum in recognition.
In fact (forms of) cepstral parameters are the standard representation used in
current speech recognition systems. These often used a non-linear frequency
scale that roughly corresponds to the frequency resolution of the ear.
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Mel-Scale Filterbanks
Reduce frequency resolution and analysis to model ears spectral resolution.

m m1 2 mP

1
1 2 j P

mj
Energy in
each band

f

f

x

Signal
spectrum

Filter
bank

The energy in each frequency band is computed from the DFT.

The spacing of the center frequencies is based on the Mel-scale.
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The Mel-scale is defined as

Mel(f) = 2595 log10

(

1 +
f

700

)

This frequency scale is shown below:

Even spacing

Log spacing

frequencies
Filter centre

Mel(f)

f

The scale is often regarded as being approximately linear up to 1kHz and
logarithmic thereafter.
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Discrete Cosine Transform
Cepstral coefficients can be derived from the Mel filterbank energies using a
simplified version of the DFT known as the discrete cosine transform (DCT). This
uses the fact that the log magnitude spectrum is real-valued, symmetric with
respect to 0 and periodic in frequency.

cn =

√

2

P

P
∑

i=1

mi cos

[

n(i− 1
2)π

P

]

where P is the number of filterbank channels.

The representation found in this way is known as Mel-frequency cepstral
coefficients (or MFCCs).

• The DCT decorrelates the spectral coefficients and allows them to be modelled
with diagonal Gaussian distributions

• The number of parameters needed to represent a frame of speech is reduced.
This in turn reduces memory and computation requirements.

• Note that c0 is a measure of the signal energy
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Other Cepstral Representations
There are a number of alternatives to computing cepstral representations which are
used in speech recognition systems. These include using a cepstral representation
of linear prediction coefficients.

This can be computed using the LP spectrum but there is also a direct and
efficient method to obtain these parameters from the predictor coefficients.

Recall the LP transfer function:

H(z) =
G

1−
∑p

i=1 aiz
−i

The p cepstral coefficients can be computed using the recursion:

c0 = logG2

cn = an +
1

n

n−1
∑

j=1

jcjan−j 0 < n ≤ p
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There are also several alternatives of cepstral represntations that use a non-linear
frequency scale. These include using a type of linear prediction analysis termed
perceptual linear prediction or (PLP).

First the power spectrum is computed on a non-linear frequency scale (Bark
scale, similar to Mel scale). This is then generally compressed (e.g. with a
power-law compression) and other compensation for the frequency sensitivity of
human hearing is applied.

The autocorrelation coefficients can be obtained as the inverse DFT of the
power spectrum. Autocorrelation analysis LPC can be computed using Durbin’s
algorithm, and from there cepstral coefficients obtained.
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Cepstral Analysis Summary
• Cepstral analysis is a method to separate

– the excitation
– the vocal tract frequency response
– other filtering effects

• The IDFT of the log spectrum is termed the cepstrum

• Can use the cepstral analysis for

– pitch estimation
– vocal-tract frequency response estimation
– vocoding
– speech recognition

• Most current speech recognition systems use a form of cepstral analysis to
represent speech. Generally compute these use a non-linear filterbank modelled
to roughly match human auditory perception
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