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4F11: Speech and Language Processing Lectures 2/3: Speech Analysis

Speech Analysis
These two lectures cover the following topics

Spectral Analysis of Speech

e DFT /Windowing
e Spectral Properties of Speech Sounds
e Spectrogram

Linear Prediction Models

e All-pole model of speech
e Parameter estimation
e Spectral properties

Cepstral Analysis

e Homomorphic filtering
e Filterbank-based cepstral representations
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Spectral Properties of Speech

e Most information in speech is encoded by movement of the articulators (lips,
tongue, jaw, etc) resulting in variations in the short term spectrum.

e Figure shows the waveform and Fourier magnitude spectrum of a fragment of
the vowel iy as computed by the DFT/FFT. The waveform contains 512 points
and it is 32msec in duration (16kHz sampling frequency).
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e A time-domain segment and its spectrum for the fricative s is shown below.

Amplitude
A
LERRA U LA AR b AR ‘\‘I‘H‘\”lw J.‘.‘.\ Il m“\ \lh. Time
’\‘\’ \‘w'w”\"u \UH‘I‘| Hiv \ |"“!" "HHH“ !
dBs Fricative s
200 A
100
Freq
0 2000 4000 6000 8000

The sampling theorem dictates that the highest present in the speech waveform
must not exceed 8kHz to avoid aliasing. The spectra shown cover the full
range from 0 to 8kHz. Both waveforms were sampled at 16kHz with 16 bits
of precision. This is the norm for clean wide bandwidth speech processing. For
telephone speech, 8-bit p-law or A-law sampling at 8kHz is usually used.
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e The vowel time domain waveform is approximately periodic with fundamental
frequency around 130Hz. The periodic excitation is clearly visible in the
spectrum as a high frequency ripple. There are about 7.5 cycles of this ripple
per 1000Hz confirming the pitch frequency estimate from the time domain. In
contrast, the time domain waveform for the fricative shows no periodicity and
the spectrum has only random variations at much higher frequency.

e There is little information above 5kHz in the vowel spectrum. By contrast,
the fricative spectrum has a broad single peak centred at about 5kHz. Thus,
for high quality speech a bandwidth of 8kHz is just adequate. The bandwidth
of telephony channels are limited to the range 300Hz to 3400Hz. This is
just sufficient to avoid seriously impairing intelligibility but it does nevertheless
reduce human ability to make distinctions between certain fricatives and stops.
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Spectral Features of Sounds

Vowel sounds are characterised by the first 3 spectral peaks (formants). In the
above spectrum of the vowel iy, the formant locations are at 250Hz, 2100Hz and
3300Hz. A low F1 and high F2 is typical of a high front vowel. There is a simple
relationship between the tongue and jaw positions, and the values of F1/F2.

Tongue Front Tongue Back

High Jaw || F1 Low - F2 High | F1 Low - F2 Low
Low Jaw || F1 High - F2 High | F1 High - F2 Low

Liquids are characterised by formant position also but in this case the dynamics
are important and the overall energy is lower than for vowels.

Nasals have a strong low 1st formant around 250Hz and weak higher formants.
There is often energy around 2.5kHz.

Fricatives have most energy in higher frequencies. Voiced fricatives also show
weak formant structure.

Stops are characterised by silence optionally followed by a burst of high energy.
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DFT and Windowing

A frequency-discrete representation of the spectrum of a finite length signal
So — Sn—1 is given by the Discrete Fourier Transform (DFT):

2 Nl 2

2mp Tnp

S(e!N) = g Sp € TN
n=0

where the spectrum w = 0 — /T has been divided into N/2 + 1 equally spaced
discrete frequency points (including those at 0 and 7/T') and the

lar £ ooint 27D
angular frequency of point p = —
NT

Since the spectrum computed by the DFT of a finite segment of speech is that of
a periodic wave formed by repeating the segment, discontinuities at the segment
boundaries lead to unwanted artifacts.
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selected segment

T

discontinuities

The commonly used solution is to multiply the speech segment by a tapered
window. This reduces the discontinuities at the segment boundaries but, of
course, it distorts the signal itself. A common choice is the Hamming window

2T
n = 0.54 — 0.46 -
w COS (N — 1)

where the DFT is now applied to the sequence w,,s,, forn =0 — N — 1.
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Block Processing
For a complete waveform, a spectral estimate must be computed about every
10 msecs. Since this is rather a short duration to calculate a spectrum, analysis
windows are allowed to overlap so that typically 25 msec windows are used.
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The above figure illustrates this block processing technique. Note that each
segment of speech is often referred to as a frame.
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Spectrograms
The sequence of spectra derived by block processing continuous speech can be
displayed as a grey-scale image with dimensions of time and frequency and with
the spectral energy represented by the intensity of the image. This representation
is called a spectrogram.

By using different length FFTs, the trade-off between time-resolution and
frequency resolution can be investigated. Short-window (wide-band) and long-
window (narrow-band) spectrograms are shown below.

Time: 0.2148 Freq: 8000.00 Value: 27 D: 1.32781 L: 0.19531 R: 1.52313 (F: 0.75)
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y

A short analysis window gives good time but poor frequency resolution. In the
wide-band spectrogram above, the pitch periods are visible whereas in narrow-
band spectrogram below the harmonics of the fundamental frequency can be
observed.

Time: 0.2209 Freq: 8000.00 Value: 5 D: 1.32781 L: 0.19531 R: 1.52313 (F: 0.75)
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Linear Prediction Analysis

Linear prediction analysis of speech is historically one of the most important
speech analysis techniques. The basis is the source-filter model. It assumes that
a particular speech sample in a frame can be predicted as a weighted-sum of the
previous p samples (typically in range p = 10 to p = 15) i.e.

Sn = A1Sp—1 T A28p_—2 + ...+ ApSn_yp
p
Sn = § AiSn—iq
i=1

The prediction error for a particular sample e,,, is:

p
1=1
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Taking z-transforms of both sizes we obtain

IS

_ S(z)
1 1
Az) 1= 30 a4z

Now in the source filter model we assume that the input to the filter is spectrally
flat (e.g. from a unit impulse train). In that case we can write the transfer
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function of the filter as

A(2)

where G can be estimated to match the overall energy. The spectral shape of
the the speech is given by 1/A(z) which, in fact, models the combined effect of
the excitation source and the vocal tract transfer function.

Note that the linear prediction filter defined above is all-pole, i.e. it uses past
samples of the output to compute the current sample and only the current sample
of the input as shown below

€n

S n-p Sn2 Sn1
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Motivation from lossless tubes

Note that the transfer function of a lossless tube made up of sections of constant
cross-sectional area can be described by an all-pole model. ... But

e Vocal tract is not built of cylinders
of constant cross-sectional area

white noise |y e Vocal tract is not lossless
w
e Joolool e Vocal tract has a side passage (the
LT tossless wbe specch nasal cavity)

impulses @ {0

e fricatives (e.g. /s/) are generated
near the lips

Nevertheless, with sufficient parameters the LP model can make a reasonable
approximation to the spectral envelope for all speech sounds (note that can
approximate any spectral shape with enough poles!)
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Parameter estimation
Given N samples of speech, we would like to compute estimates to a; that result
in the best fit. One reasonable way to define “best fit" is in terms of mean
squared error ! .

The summed squared prediction error Er
ET = 2672,&
p
= D _(sn= D arsn-r)’

n k=1

The minimum of Ep occurs when the derivative is zero with respect to each of the
parameters, a;. Note that we have not yet defined the range of the summation
over n. To minimise Ep find the solution to 0FEr/0ay = 0.

Hence differentiating E7 with respect to a; and setting equal to zero gives the

I These can also be regarded as “most probable” parameters if it is assumed the distribution of errors is Gaussian
and a priori there were no restrictions on the values of a;.
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set of p equations:

p
% -0 = — Z 2(sp — Z Ak Sn—k)Sn—j
a; n k=1
p
= =2 Z SnSn—j + 2 Z Z AkSn—kSn—j
n n k=1

Rearranging gives the set of p simultaneous linear equations (normal equations)for
values of 7 from 1 to p:

p
ansn_j — ZakZSn_ksn_j (1)
k=1 n

n

So far the range of the summations over n was from —oo to +oo, which is
undesirable for speech processing. Different possibilities give rise to variants of
linear prediction analysis. The two most widely used are:
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1. covariance method
the limitsare n=0ton=N —1

2. autocorrelation method
the limits are =00 and hence the speech requires windowing to select the
portion of data to analyse. We will discuss this option further below since it is
widely used.
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Autocorrelation method
In the autocorrelation method the summation is taken over all samples. Thus

oo oo

E Sn—iSn—j = E SnSn4i—j

n=—oo n=—oo

This is the autocorrelation sequence r;_;.

Therefore if we process a windowed version of the data in which
S, =0 if n<0 or n>=N

we also have

N—-1-k

T = E SnSn+k

n=0

Now the normal equations are as shown below (a Toeplitz matrix):

Cambridge University
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1 o 1 T2 T'p—1 a1
2 . 1 To 1 T'p—2 a2
Tp Tp_l Tp_g To CLp

Due to the special structure of the above matrix, efficient solution methods exist,
one of which is Durbin’s algorithm.
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Engineering Department Engineering Part 1IB: Module 4F11 19




4F11: Speech and Language Processing Lectures 2/3: Speech Analysis

Autocorrelation Method: Durbin’s Algorithm

Denoting the values of the LP parameters at iteration ¢ by a,ii) and the sum-

squared predictor error (or residual energy) by Eéf) (Eéo) = 1rg) for i =1, 2,

1—1
ki = |ri— ay U Ti—j /Eéﬂz_l)
71=1
az(.i) = k;
(¢) (i—1) (i—1) . :
a;” = a; ~ —kja;_, 1 <j<u
By = (k)BT
Cambridge University Engineering Part IIB: Module 4F11 20
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Example of Durbin’s Algorithm (1 of 2)

For an example waveform the first auto-correlation coefs are:

ro = 2.4470 108
ri = 2.2466 10°
ro = 1.7823 108

Therefore on the first iteration:

ki = r/EY =0.9181
CLgl) = ]Cl
— 0.9181
By = (1-k)Ey
= (1 —0.9181 % 0.9181)2.4470 10°
— (.38442 10°
Cambridge University Engineering Part IIB: Module 4F11 21
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And on the selsX@mble of Durbin’s Algorithm (2 of 2)

(7“2 — agl)m) /E(Tl)

(1.7823 10° — 0.9181 x 2.2466 10°) /0.38442 10°
—0.72915

ko = —0.72915

agl) — kgagl)

0.9181 — —0.729150.9181

1.58753

(1- k3B

(1 ——0.72915 * —0.72915)0.38442 10°

0.18004 10°
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Properties of Durbin’s Algorithm

The parameters k; are known as the reflection coefficients and are always in the
range £1 (and are used in an acoustic tube model of the vocal tract).

Note that:

e As Durbin’s algorithm proceeds, all intermediate order predictors are calculated

e This method also provides the reflection coefficients and the error energies of
all intermediate order predictors

e The resulting filter is guaranteed to be stable (which is useful for
synthesis/coding!)

e The value of the squared prediction residual, Erf,f) is also computed and is
guaranteed to decrease (or remain constant) on each iteration

e Compared to the covariance method substantially larger windows are required

e Most commonly used
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Spectral Interpretation

The poles of the LP filter are either real (which give a spectral tilt) or occur in
complex-conjugate pairs and model resonances. If all poles are complex, filter can
be viewed as a cascade of p/2 2-pole resonators.

The autocorrelation method also has a spectral interpretation. By Parseval’s
Theorem

1 T

Er = o | BT doT
= L8P AT dwT
2w J_
_ % P AT duT

where P(e/“T) is the speech power spectrum.

Now the LP model approximation of the speech power spectrum can be written

Cambridge University
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as

and hence

Thus minimising E7 minimises this integrated ratio with the constraint that
0 JwT — [T D(pjwT

| _P(e“")dwT = [__P(e?") dwT.

Hence linear prediction can be viewed as power spectrum matching. In fact,

starting from the frequency domain interpretation of the error, the autocorrelation
equations can be derived in the frequency domain.

Cambridge University
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Pre-emphasis

e The LP filter so far presented attempts to fit an all-pole model using a
least-squares measure.

e The lower formants contain more energy and therefore are modelled more
accurately than the higher frequency formants

e A simple pre-emphasis filter,

S, — Sn —Q15p-—1 (2)

is often used to boost the higher frequencies. Typically 0.96 < a; < 0.99, or
the optimal pre-emphasis a; = 71 /7 is used.

e |f reconstructing the speech the inverse of the pre-emphasis filter should be
used:

Sn = S +ai5,-1 (3)

Cambridge University
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_ _ The residual signal
Plotting the error signal e,, for the example waveform

800
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-200

—400

1 1 1 1 1
100 200 300 400 500 600

Finding the error signal or prediction residual is known as inverse filtering.

e Most short term correlations seem to be lost in the error signal
e The residual contains long term correlations due to pitch pulses

e There is a spike at the pitch periods when prediction is poor

Cambridge University
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LP Spectrum

The frequency response of the LP filter is one way to estimate the speech
spectrum. Since the detailed excitation is mainly modelled by the error signal, the
LP filter frequency response is a smoothed all-pole approximation to the speech
spectrum. As such it is of use in calculating e.g. formant frequencies.

Recall that the filter can be represented as

Then the LP filter frequency response is found by setting z = €/“?. The resulting
LP spectrum is smooth and shows formant structure.

e Poles near the unit circle produce peaks
e There are no zeros

e Typically formants are very sharp

Cambridge University
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LP Spectrum Example
An example of the LP spectrum is shown below. It can be seen that relative to
the DFT spectrum the effect of the excitation has been removed and a smooth
representation of the vocal tract frequency response remains.

Formants

200

100 .
Vowel "iy"

Frequency (Hz
0 2000 4000 6000 SOOK . y( )
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Summary of LP Analysis

e All-pole filter model of speech

e Filter associated with vocal tract

e Error signal associated with excitation

e Filter parameters estimated to minimise sum-squared prediction error
e Autocorrelation method uses Durbin’s algorithm for efficient solution

e Typical order of analysis is 10-15 (about 2 poles per formant, plus others for
spectral shape)

e Often LP analysis is performed after pre-emphasis to flatten spectrum

e Autocorrelation analysis yields reflection coefficients with links to lossless
acoustic tube model

e LP filter frequency response is the “LP spectrum”
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Cepstral Analysis
Cepstral analysis which is another way (apart from LP analysis) to separate the
vocal tract frequency response from the excitation and can also obtain a smooth
representation of the vocal tract frequency response.

We will discuss

e Homomorphic filtering

e The cepstrum

e Applications of cepstral analysis
e Mel-scale filterbanks

e Discrete cosine transform

The final part leads to Mel-scale cepstral coefficients which are an important
representation of the speech signal used in speech recognition.
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Aim of Cepstral Analysis

The source-filter model regards the spectrum as the product of the excitation
spectrum and the vocal tract frequency response. We aim to separate these

Time—domain speech signal: the vowel "iy"

Amplitude

Time

Spectrum

/ Ripple due to excitation

.

0 2000 4000 6000 8000  Frequency

Separation of
A Vocal tract

spectrum . .
e excitation

>
A

X Excitation e vocal tract frequency response

spectrum

/v\/vvvvv\mb

e other filtering effects
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Homomorphic Filterin
The excitation gives rise to a qLﬁrﬁy varying ripple m%he spectrum. If the vocal

tract frequency response and excitation were added then the signals could be
separated. However the signals have been multiplied!

The solution is to take logs to convert multiplication to addition:

log(a-b) = loga+logbh
1
e°8Y  — Y
BN E’XCitationandvocal\\l
/" Excitationand . -7 ?Ct_SP ectra %({d,efi -7
| vocal tract spectra Re T \gggacl% tract
. multiplied. - . | Low Pass | = | exp | = %
S - \\’ - - \&
SN >
4
— log —
\W Excitation
TMWW m\ﬁw Hi Pass |— | exp | = spectrum

This approach is called homomorphic filtering. We are filtering the log spectrum
as we would normally filter in the time domain.
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The Cepstrum

Homomorphic filtering usually employs the DFT. Note that for the real cepstrum
the log is applied to the magnitude spectrum.

*, Supress low—time °,
| components [

\ |
\ |

\

signal log signal . v pre cé:? ltlll':ln
spectrum  Spectrum CepstrL}m !
\ \

\ \ HPF |-+ DFT b»] exp > E

\
\ \

\

Speech signal

_ﬁ DFT }l»‘ 1 }:,‘ IDFT‘ A log 2 signal /
e ’ / '] e - \y 1 /4
e and v eand v eandv LPF H DFT H’ eXp \
convolved multiplied added ./ ' Vocal tract
) 4 N transfer fcn
e : excitation signal ," A Ut \\
v : vocal tract impulse response  .” 4 -
7 ! Supress high—time ',
et *\_ components -~
Cepstrum -~~~
A

Pitch period  Pitch period
Peaks due to

1
777777 f
Vocal tract Excitation
impulse response
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In the cepstrum vocal tract impulse response decays rapidly and can be separated
(by windowing) from the excitation.

The cepstrum is computed in quefrency domain and filtering in this domain is
called liftering. Note that taking the IDFT of the cepstrum doesn’t return to the
time domain because of the non-linear log operation.

If have lowest formant at frequency f1 and the fundamental (pitch) at fy then
cepstral coefs:

e ¢y — cj, encodes vocal tract response if h > f%T

e ¢, —> cy_1 include the major pitch peak if p > fOLT

A

Lowest formant

Fundamental
. /

o If fuy <250Hz and f1 > H500Hz, and T' = 62.5us then h = 32, p = 64

Making h smaller increases the smoothing over the whole spectrum.
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Applications of Cepstral Analysis

e Pitch estimation
Find the peak cepstral value in the range ¢, — cny_1.

If the peak is at ¢,, then fundamental frequency is T%T

e Smoothed spectrum
Take a DFT of (zero-padded) ¢; — ¢,. This is an alternative to the LP

spectrum.

e Vocoding
Find fundamental frequency and transmit speech as a sequence of frames

{na Co, C1, " ,Ch}.

e Recognition
Use ¢; — c¢p as a representation of the (smoothed) spectrum in recognition.
In fact (forms of) cepstral parameters are the standard representation used in
current speech recognition systems. These often used a non-linear frequency
scale that roughly corresponds to the frequency resolution of the ear.
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Mel-Scale Filterbanks

Reduce frequency resolution and analysis to model ears spectral resolution.

A
Signal
spectrum
> f
X
1_‘_ 102 oo P
Filter
bank
. > f
m [m,| ... ) — mp, E;lceﬁ%}; 1111:1

The energy in each frequency band is computed from the DFT.

The spacing of the center frequencies is based on the Mel-scale.
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The Mel-scale is defined as

f

Mel(f) = 25951 14+ ——
el(f) 595 log ( + 700)

This frequency scale is shown below:

Mel(f)
A Even spacing
—

Filter centre

/// frequencies
. /

|

|

|

Log spacing

The scale is often regarded as being approximately linear up to 1kHz and
logarithmic thereafter.
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Discr n r
Cepstral coefficients can %C gerlvecczlofrome tI alusr?wlterbank energies using a
simplified version of the DFT known as the discrete cosine transform (DCT). This

uses the fact that the log magnitude spectrum is real-valued, symmetric with
respect to 0 and periodic in frequency.

P . 1
| 2 n(t — 5

where P is the number of filterbank channels.

The representation found in this way is known as Mel-frequency cepstral
coefficients (or MFCCs).

e The DCT decorrelates the spectral coefficients and allows them to be modelled
with diagonal Gaussian distributions

e The number of parameters needed to represent a frame of speech is reduced.
This in turn reduces memory and computation requirements.

e Note that ¢y is a measure of the signal energy
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Other Cepstral Representations

There are a number of alternatives to computing cepstral representations which are
used in speech recognition systems. These include using a cepstral representation
of linear prediction coefficients.

This can be computed using the LP spectrum but there is also a direct and
efficient method to obtain these parameters from the predictor coefficients.

Recall the LP transfer function:

G

T 1 _SP g
1 i1 (2

The p cepstral coefficients can be computed using the recursion:

co = log G*

1n—1.
C":a”+ﬁzljcja”_j O<n<p
j:
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There are also several alternatives of cepstral represntations that use a non-linear
frequency scale. These include using a type of linear prediction analysis termed
perceptual linear prediction or (PLP).

First the power spectrum is computed on a non-linear frequency scale (Bark
scale, similar to Mel scale). This is then generally compressed (e.g. with a
power-law compression) and other compensation for the frequency sensitivity of
human hearing is applied.

The autocorrelation coefficients can be obtained as the inverse DFT of the
power spectrum. Autocorrelation analysis LPC can be computed using Durbin’s
algorithm, and from there cepstral coefficients obtained.
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Cepstral Analysis Summary
e Cepstral analysis is a method to separate

— the excitation
— the vocal tract frequency response
— other filtering effects

e The IDFT of the log spectrum is termed the cepstrum

e Can use the cepstral analysis for

— pitch estimation

— vocal-tract frequency response estimation
— vocoding

— speech recognition

e Most current speech recognition systems use a form of cepstral analysis to
represent speech. Generally compute these use a non-linear filterbank modelled
to roughly match human auditory perception
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