
Engineering Tripos Part IIB FOURTH YEAR

MODULE 4F11: SPEECH PROCESSING

Solutions to Examples Paper 1

1. From the diagram, there are about 338 samples for five oscillations, so the funda-
mental frequency is:

16000
5

338
= 236Hz

There are three cycles of the response within the fundamental period. The most
prominent formant is about three times the fundamental frequency, or about 700 Hz.

2. Major Points:
The linear prediction spectrum is the frequency response of the LP all-pole filter. It
therefore reflects the inbuilt assumptions of LP analysis i.e. all-pole model (lossless,
no side-branch acoustic tube), that model parameters are suitably estimated, and
model order selected correctly, excitation has a flat spectrum. LP analysis always
provides a smooth spectral representation which will be accurate if the assumptions
are satisfied. For autocorrelation LP analysis approximately the same number of
speech samples and windowing need to be used as for DFT.
The DFT estimate measures the spectrum directly. Since the the vocal tract exci-
tation causes noise in the spectrum, we can try and estimate vocal tract frequency
response by using either direct smoothing of the DFT itself or by using a cepstral
smoothing process (take low order cepstral coefficients and then take DFT of those).
Note that these smoothing operations (e.g. the number of cepstral coefs to retain)
implicitly will have assumptions about the allowed underlying spectral variations.

3. The table shows the working of the HMM. The first lines show the observation
sequence and the output probability density from each emitting state.
The forward probability computation is then shown. The probability at the entry
state at time 0 is 1.0 and the exit state probability is a34 times α3(7). Note that this
is p(O|λ).
The backward probabilities are given. Each of the main entries including the entry
state is computed using the backward recursion.
The value of Lj(t) is then given as the αj(t)βj(t)/p(O|λ). It can be seen that this
sums to one over the emitting states for each observation time.
The Viterbi probabilities are shown. The calculation is identical to the forward
probabilities except that the sums are replaced by max operations. The most likely
path probability is given in the end state at the final time.
The traceback. Each entry records the best previous state i.e. the state which gave
the max in calculating the Viterbi probabilities. The most likely state sequence is
obtained by tracing back from the final state.

1



ti
m

e
t

0
1

2
3

4
5

6
7

o t
0.

2
0.

1
0.

1
0.

5
0.

6
0.

8
0.

7
b 2

(o
t)

0.
54

21
0.

55
86

0.
55

86
0.

43
94

0.
39

36
0.

29
75

0.
34

56
b 3

(o
t)

0.
29

75
0.

25
1

0.
25

1
0.

43
94

0.
40

80
8

0.
54

21
0.

51
56

α
j
(t

)
st

at
e

1
1.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
st

at
e

2
0.

0
3.

79
4E

-0
1

1.
27

2E
-0

1
4.

26
2E

-0
2

1.
12

4E
-0

2
2.

65
4E

-0
3

4.
73

7E
-0

4
0.

0
st

at
e

3
0.

0
8.

92
5E

-0
2

5.
60

1E
-0

2
2.

40
1E

-0
2

1.
59

3E
-0

2
8.

28
9E

-0
3

4.
17

E
-0

3
1.

81
8E

-0
3

st
at

e
4

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

3.
65

35
E

-0
4

β
j
(t

)
st

at
e

1
3.

65
35

E
-0

4
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
st

at
e

2
0.

0
9.

12
2E

-0
4

2.
43

1E
-0

3
5.

80
5E

-0
3

1.
28

4E
-0

2
2.

52
5E

-0
2

4.
12

5E
-0

2
0.

0
st

at
e

3
0.

0
1.

95
E

-0
4

9.
71

2E
-0

4
4.

83
7E

-0
3

1.
37

6E
-0

2
3.

57
8E

-0
2

8.
25

E
-0

2
0.

2
st

at
e

4
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
1.

0
L
j
(t

)
st

at
e

2
0.

95
21

0.
85

04
0.

68
05

0.
39

70
0.

18
43

0.
05

37
0.

0
st

at
e

3
0.

04
79

0.
14

96
0.

31
95

0.
60

30
0.

81
57

0.
94

63
1.

0
V

it
er

b
i

st
at

e
1

1.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

st
at

e
2

0.
0

3.
79

4E
-0

1
1.

27
2E

-0
1

4.
26

2E
-0

2
1.

12
4E

-0
2

2.
65

4E
-0

3
4.

73
7E

-0
4

0.
0

st
at

e
3

0.
0

8.
92

5E
-0

2
3.

80
9E

-0
2

1.
27

7E
-0

2
7.

41
9E

-0
3

2.
88

1E
-0

3
1.

24
9E

-0
3

5.
51

4E
-0

4
st

at
e

4
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
1.

03
1E

-0
4

T
ra

ce
b
ac

k
(s

ta
te

at
t
−

1)
st

at
e

2
1

2
2

2
2

2
2

st
at

e
3

1
2

2
2

3
3

3

2



4. By definition
Lj(t) = p(x(t) = j|O, λ)

The required equation follows directly from the definition of conditional probability.

The calculation of Lj(t) for the example was given above in the solution for Q3. Note
that Lj(t) is heavily biased towards state 2 initially and state 3 finally but in the
centre of the sequence the probabilities of being in state 2 or 3 are similar. This is
in contrast to the Viterbi case where it flips from state 2 to state 3 at time 4.

The mean estimates for the first iteration follow directly as (b) µ2 = 0.133 and
µ3 = 0.65 and (b) µ2 = 0.223 and µ3 = 0.594 (c.f. the original values of 0 and 1).

5. P (τ) is just the probability of taking the self transition τ − 1 times followed by a
single transition out of the state, i.e.

P (τ) = aτ−1(1− a)

Taking the expectation

E [τ ] =
∞∑
τ=1

P (τ)τ

=
∞∑
τ=1

aτ−1(1− a)τ

= (1− a)(1 + 2a+ 3a2 + . . .

= 1 + a+ a2 + a3 + . . .

=
1

1− a

Since a < 1, P (τ) is a decaying exponential function. This is clearly not a a good
model of speech duration and this is regarded as a major weakness of HMMs.

6.

(a) Viterbi algorithm:

The initialisation condition specifies that only the first state is valid at the start:

φi(0) =

{
1 i = 1
0 otherwise

for t = 1 to T
for j = 2 to N-1

φj(t) = maxi (φi(t− 1)aij) bj(o(t))

where
φj(t) is the likelihood to state j at time t while following the most likely path
aij is the transition probability from state i to state j
bj(o(t)) is the output probability density of observation o(t) in state j

3



(b) Aim is to find the most likely path through the HMM. For connected word
recognition the HMM is a sentence HMM. The Viterbi algorithm is applied to
the complete HMM, storing suitable path information. This path information
can be stored at the word level (assuming that time points between HMM-
internal state transitions are not required). Hence at each time as the path is
extended a pointer is preserved as to where that path entered the current model.

The algorithm can be conveniently thought of as operating in two phases. Ini-
tially the equations in part (a) are applied internally within each word HMM
(assuming for a moment there is no further internal structure) and the values
of φj(t) found for all the HMM final states. Then, the values of φj(t) need to
be updated for each between word transition and path information stored that
contains the value of φj(t), the identity of the emitting word (network node),
and a pointer to the path information for the previous words.

At the end of the utterance a particular (best) path has been extended to a
network exit node, and can recover the actual sequence of words for that path
in reverse order.

(c) (i) SIL between words allows optional silences.

SIL SILSIL SIL

ZERO

ONE

NINE

ZERO

ONE

NINE

ZERO

ONE

NINE

(ii) with no beam search the main components are:
output probabilities O
word internal path extension I
word external path extension E

For loop model, total isO+I+E, for the linear model the total isO+3I+3E.
However, O may dominate the computation, in which case all are similar.

With beam search, probably similar gains for each model but with a larger
beam for the linear version.

7. (a) recognition units must be:

• small in number so they can be estimated

• naturally part of a word

• account for speech variability

• well defined and easily identifiable

• extendible to unseen words

Phones are good candidates except that there acoustic realisation is highly con-
text dependent on especially neighbouring phones. Context dependent phone

4



units are a way to address this problem. However, too many triphones are
possible - hence the need to have tied parameters.

(b) • backing off: Define some count for which the model is reasonably well esti-
mated - if not enough instances in training data then use a left context or
right context biphone model - if still not enough then use monophone.

• parameter tying: Cluster data into groups which are expected to be from
the same/similar distribution and make each group large enough to get
a good parameter estimate (for the number of parameters that are to be
estimated from the pooled set of contexts). A common way to perform tying
is to use decision-tree state clustering in which phonetic contexts are put
into equivalence classes by automatically growing a tree structure which
divides all e.g. triphones into different groups. The tree is grown by at
each step choosing a question (which divides the contexts) to maximise an
approximate meansure of the increase in training set likelihood (using single
Gaussian assumptions for all distributions). The set of questions are pre-
defined to conisder sets of contexts which would be expected to vary in the
same way based on lingustic knowledge, and so can generalise to unseen
contexts.

8. (a) A bigram grammar estimates the probability of the next word given a history
of one word Pr(w(n)|w(n−1)) while the trigram grammar uses a history of two
words, Pr(w(n)|w(n− 2), w(n− 1)).

Provided the parameters are reasonably well estimated, a trigram grammar has
lower perplexity, and therefore generally results in lower word error rates.

(b) Estimate by counting

However need to deal with case of zero counts/unreliable counts. Use discount-
ing to free up some of the probability mass of high counts for zero counts. Use
backoff to decide how to distribute this mass over the count zero cases.

(c) Have a unigram table that points to non-backed off bigrams that in turn points
to non-backed off trigrams. Can’t use a big 3D table as it is too big and hence
have to a small amount of effort at run-time to determine if e.g. a particular
trigram exists or need to go down the back-off chain.

9. (a) • non-linear spacing: weight according to information content/resolution of
human ear

• cepstral transform: better match feature distribution to diagonal covariance
assumption

Neither require extra training data needed - simple and effective, don’t really
change training time or run time computation (but note that better performance
makes things run faster - fewer models active in beam search).

(b) • Use context dependent models with Gaussian mixture output distribu-
tions to model context for co-articulation - and a much more training data

5



even with back-off/parameter tying. In practice use parameter tying (and
decision-tree state tying is now very widely used) to match the number of
parameters estimated to the training data available. Note that context-
depdendent models will increase the complexity of the search (especially
using cross-word context-dependent models). However there is a complex
relationship (due to beam-pruning) between actual run-time and complex-
ity here. Normally we need to have contenxt-dependent models to improve
accuracy.

• Mixture models: Works in practice because densities are not Gaussian with
independent elements. typically 2-32 mixture components per state.

(c) • 1000 words: Fine if the user knows which 1000 words are in use and doesn’t
go outside this - otherwise prefer a much larger vocabulary e.g. 60,000
words for general English. Increasing vocabulary slows down recognition,
not maximum-likleihood training.

• single pronunciation: Fine for most words, perhaps add a few variants for
common words - need to accommodate this into training/recognition but
no major changes in training data/computational requirements.

(d) • Viterbi decoder: Add beam search since this is always useful and use e.g. a
tree-structured arrangement of the lexicon to share computation.

• Language model: Huge improvement expected if language model constraints
can be used - perhaps perplexity 1000 (or 60k) is reduced to 100 or so.
Trigram language models increase search space - relies on effective pruning
in the decoder. Need data to estimate the language model for which a large
pool of text data is required - acoustic training does not change.

P.C. Woodland, February 2014

6


