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What is Speech Recognition?
Automatic Speech Recognition (ASR) converts an unknown speech waveform
into the corresponding orthographic transcription: normally a string of words.

Speech recognition is difficult because of

• differences between speakers inter-speaker variability;

• differences in how a speaker utters the same word intra-speaker variability;

• acoustic channel & noise - microphone differences, background noise;

• need to model language in general and of particular domain;

From the word strings other “downstream” applications may be used e.g.

1. machine-human dialogue systems

2. machine translation

3. information retrieval and information extraction
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Example Applications of ASR

• Desktop dictation: “voice typewriter”

• Telephony & Information Access systems:

– banking, account access and management
– brokerage, share quotes and trading
– voice access to web pages/services & voice search

• Transcription Systems

– Often specialised domains: legal, medical, voicemail etc
– Transcription for information retrieval

• Command and control:

– navigation around computer windows system etc.
– control of many home/office/military items
– Voice dialling on mobile phones (hands/eyes busy elsewhere)

Applications has been rapidly growing as technology/compute power improves.
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Task Complexity
There are several styles of speech recognition

input vocab basic grammar
mode size unit

isolated discrete small word none
continuous continuous medium phone FS / N-gram
discrete LV discrete large phone N-gram
cont. LV continuous large phone N-gram

• input mode: discrete (gaps between words) vs. continuous speech

• vocab. size: small (< 200 words) to very large (> 60k words)

• basic unit: acoustic model units used (discussed later)

• grammar: assigns a probability to possible word sequences

– finite state networks only allow paths through an explicit word network;
– N-gram grammars allows all word sequences with non-zero probability,

Also operating condition affects performance and task complexity.
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• Speaker mode: speaker dependent vs speaker independent

• Microphone: close vs far-field; fixed vs variable; bandwidth

• Background noise: clean vs noisy (& noise type)

• Channel: high quality/std telephone/cellular

• Speaking style: prepared/read/careful vs spontaneous/casual

All modern ASR systems are based on statistical pattern recognition.

The next few lectures will

1. explain basic statistical pattern recognition principles in the context of isolated
word recognition.

2. extend these concepts to large vocabulary continuous speech recognition
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Pattern Recognition Framework
A set of features o is derived from a measurement x and a class ω is identified
by finding the most likely class ω given the data o, i.e.

ω̂ = argmax
ω

{P (ω|o)}

P (ω|o) is unknown so Bayes’ rule is used: P (ω|o) = p(o|ω)P (ω)
p(o)

where p(o|ω) is the likelihood of the data given the class (defined by a model),
P (ω) is the prior probability of the class (defined by a model). Since the
maximisation does not depend on p(o), then

ω̂ = argmax
ω

{p(o|ω)P (ω)}

Feature
Extraction Classifier

x o w
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Statistical Speech Recognition
In ASR the task is to find the most likely word sequence Ŵ from an utterance O.

Ŵ = argmax
W

{p(O|W )P (W )}

The essential parts of an ASR system are

• acoustic model giving p(O|W )

• language model yielding P (W )

Hence, the ASR problem depends on finding solutions to two problems

• training - finding a suitable representation for the acoustic and language
models

• recognition - finding the most likely word sequence

The most common form for the acoustic model is a Hidden Markov Model
(HMM).
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Generic Recognition Architecture

Search
for best sentence

Vocabulary

Signal processing

Acoustic model Language model

This is the output
front−end

Adaptation Adaptation

A search is performed for the most likely word or sentence given the acoustic and
language models (recognition,decoding).

A finite set of words is defined in the vocabulary of the ASR system.
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• The acoustic models usually make use of phonetic representation of words
(although models for individual words can also be used and are considered
first).

– Also need to supply the pronunciations for each word

• Words not in the vocabulary (Out-Of-Vocabulary) cause errors.

• In some cases no (a null) language model is appropriate - otherwise normally
an N-gram is used.

• The output of the ASR system may be used to adjust the models (acoustic or
language model adaptation: beyond the scope of this course).

Isolated word recognition simplifies the system by pre-segmentation of the speech
data. However, this segmentation is not straightforward in anything but a
low-noise audio environment.
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Feature Extraction
The aim of the feature extraction is to

• transform raw-data to a form suitable for the classifier;

• reduce the data rate;

• keep only information that discriminates between classes

Since speech signal is not fixed length, use multiple fixed duration feature vectors.

  
o

1   
o

2   
o

3   
o

4   
o

5   
o

6O = 

ADC
Normally in ASR a fixed duration of
speech signal (a frame) is used for
each feature vector and consists of
information describing the short-term
spectrum, which is often encoded as a
cepstral representation such as MFCCs.
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Hidden Markov Models
A classifier is needed that can handles a variable number of feature vectors from
each speech unit. The standard model is the Hidden Markov Model (HMM).

Assumptions:

1. The features (observations) accurately represent the signal. Speech is assumed
to be stationary over the length of the frame. Frames are usually around
25msecs, so for many speech sounds this is not a bad assumption.

2. Observations are independent given the state that generated it. Previous and
following observations do not affect the likelihood. This is not true for speech,
speech has a high degree of continuity.

3. Between state transition probabilities are constant. The probability of from
one state to another is independent of the observations and previously visited
states. This is not a good model for speech.

Despite its limitations HMMs are the most widely used and, to date, successful
acoustic models for speech recognition.
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HMMs (cont)
An HMM is a finite state machine:

1. N states with N − 2 emitting states.

2. it has a non-emitting entry state and a non-emitting exit state (some
formulations don’t explicitly include these).

3. any pair of states i and j can be connected by a transition with probability aij

4. it changes from current state i to new state j with probability aij every input
frame

5. when an emitting state j is entered, acoustic feature vector o is generated
with probability bj(o)

The HMM, λ, may be written as λ = {N, {aij}, {bj(·)}}

Note: the HMM is a generative model of speech. It is used to find the likelihood
that the model generated the observed data.
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Example HMM

o1 o2 o3 o4 o5 o6 o7

1 3 4 52

Let

• O = {o1,o2 . . .oT} be the
observed data

• X = {x(1), x(2), . . . , x(T )} be
the specified state sequence

For speech recognition, normally HMMs are left-to-right.

The joint probability is

p(O,X|λ) = ax(0),x(1)

T
∏

t=1

bx(t)(ot)ax(t),x(t+1)

where

• x(0) is always the entry state 1

• x(T + 1) is always the exit state N .
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Likelihood Calculation
Using the HMM from the previous slide

p(O,X|λ) = a12b2(o1)a22b2(o2)a22b2(o3)a23 . . . b4(o7)a45

We have assumed a state sequence and hence know the state that generated each
observation vector. However for actual speech the state sequence is not known
known! It is hidden!

Therefore to compute the likelihood for an HMM given just the observation
vectors, need to sum over all possible state sequences

p(O|λ) =
∑

X

p(O,X|λ)

Evaluating this expression directly is impractical since there are too many state
sequences. However, as will be shown later, there are recursive algorithms which
allow p(O|λ) to be computed efficiently while effectively summing over all state
sequences.
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Output Distributions
The HMM output distribution should be chosen to:

• closely match the actual distribution of the data associated with a state

• be mathematically and computationally tractable

A common simple choice is the multivariate Gaussian (for feature vectors)

bj(o) = N (o;µj,Σj)

where

N (o;µ,Σ) =
1

√

(2π)n|Σ|
e−

1
2(o−µ)′Σ−1(o−µ)

Model parameters:

λ = {N, {aij}, {µj,Σj}}
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Not ideal for spectral vectors as:

• speech power spectra are not Gaussian

• elements of the feature vector highly correlated, would require a full covariance
matrix.

Cannot directly use short-term power spectrum. Log spectrum is more Gaussian
and if use MFCCs also allow the use of diagonal covariance matrices (far fewer
parameters).

Note that the HMMs used here for speech recognition are Continuous Density
HMMs. An alternative that is used for symbolic data are discrete density HMMs
in which the output probability is from a discrete distribution over the set of
observation symbols i.e. the probability of each possible symbol occurring. We
will use these in some examples for convenience/compactness. They can be used
for speech if a process of vector quantisation is employed.
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Isolated Word Training

one two three

Training Examples

Estimate
Models

1.

2.

3.

Initially use a separate HMM for each vocabulary word. Then

1. select HMM topology i.e. the number of states and the connectivity

2. record a number of spoken examples of that word (or use a database)

3. the parameters of the HMM are chosen to maximise the total likelihood of all
the training examples of that word (maximum likelihood training).

Need a maximum-likelihood estimation scheme to obtain the model parameters.
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Isolated word recognition
If individual words are spoken in isolation, can reduce the complexity of the
search for the best word sequence.

Assume words are separated from each other (in a sentence) by detectable pauses.
The task for the acoustic model is simplified to provide an estimate of likelihood
for each individual word. The front-end produces a stream of feature vectors
(observation vectors)

For isolated word recognition, assume that we have a set of pre-trained HMMs
for each vocabulary word. If no grammar is used then process is

1. parameterise unknown speech to give a sequence O

2. for each HMM word model λi compute the likelihood of generating the
sequence, p(O|λi)

3. Assuming equal prior probabilities, the HMM with the highest likelihood
identifies the word

Note that for both training and recognition need a way to rapidly compute the
likelihood that a model generated a sequence of observed speech vectors.

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 17



Speech and Language Processing Lectures 4/5: Speech Recognition Basics

ASR Introduction Summary

• A particular instance of a speech unit (phone, word, sentence etc) will consist
of a variable length sequence of spectral vectors.

• Each spectral vector has variability due to speaker and environment.

• An HMM is a statistical model which represents variability in duration through
its state transition structure {aij} and variability in spectra through its output
distributions {bj(·)}.

• For isolated word recognition with word-based HMMs, the parameters are
estimated directly from training data consisting of spoken examples of each
word to be recognised.

• For isolated word recognition with equal priors, words are recognised by finding
the word HMM which yields the highest likelihood for the speech data.
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Maximum Likelihood Estimation for HMMs
Initially HMM training will be considered, and standard maximum likelihood
parameter estimation will be described. Here we need to find the HMM model
parameters, λ̂, so that

λ̂ = argmax
λ

{p(O|λ)}

where O is the training data. Initially we will assume that there is just a single
training utterance for the HMM with T frames, i.e. that

O = o1, . . . ,oT

Other forms of training are possible. In state-of-the-art HMM-based speech
recognition systems discriminative training techniques are starting to be commonly
used (beyond the scope of this course).
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Parameter Estimation for 1-state HMM (Gaussian)
Single-emitting state HMM - same, known, state throughout the data.

Gaussian parameters can be estimated as:

• Mean:

µ̂ =
1

T

T
∑

t=1

ot

• Covariance matrix:

Σ̂ =
1

T

T
∑

t=1

[(ot − µ̂)(ot − µ̂)′]

These are the maximum likelihood estimates.

Note: a single training sequence is being assumed. In practice for multiple training
sequences need to sum over all observations of all training sequences.
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Viterbi Parameter Estimation
How to extend to a multi-state HMM?

From previous example, if we had both

• the observed data o1, . . . ,oT

• the most likely segmentation of the data which gives which state generated
each observation vector.

then same formulae as before may be used.

  
o

1   
o

2   
o

3   
o

4   
o

5   
o

6

etc

State 2 State 3 State 4

2 3 4

• state j generates observations starting at time tj.

• training data for state j consists of otj,otj+1 . . .otj+1−1.
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This is the Viterbi Segmentation - given this segmentation, the parameters of
state j can be estimated

µ̂j =
1

tj+1 − tj

tj+1−1
∑

t=tj

ot

Σ̂j =
1

tj+1 − tj

tj+1−1
∑

t=tj

[(ot − µ̂j)(ot − µ̂j)
′]

This form assumes a left-to-right structure i.e. the HMM never returns to a state
once it has left. (Viterbi training can still be used in other cases - the equations
need to be reformulated).
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Iterative Training With the Best State-Sequence
Fortunately an efficient algorithm, the Viterbi Algorithm, exists to find the most
likely state sequence given some model parameters.

Initial Set of HMMs

Training
Data Viterbi Algorithm

Update HMM Parameters

Converged?

No

Yes

Suggests an iterative approach, which
interleaves

• finding best state sequence

• model parameter update

The likelihood is guaranteed to increase
(or stay the same) with each iteration.

Schemes to initialise models:

• Flat start: all model parameters are set to be the same.

• Hand-segment data: an expert hand-segments a subset of the data to
bootstrap the models.

• Previous models: models trained on another data-set are used.
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Baum-Welch Parameter Estimation

Viterbi training requires a hard decision to be made about the location of state
boundaries.

  
o

1   
o

2   
o

3   
o

4   
o

5   
o

6

etc

2 3 4

State j

L (t)j

Alternatively:

• the HMM could be in any state at time t

• the probability of being in state j at time t is Lj(t)
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Parameters can now be estimated by using weighted averages.

µ̂j =

∑T

t=1Lj(t)ot
∑T

t=1Lj(t)

Σ̂j =

∑T

t=1Lj(t)[(ot − µ̂j)(ot − µ̂j)
′]

∑T

t=1Lj(t)

These equations are called the Baum-Welch Re-Estimation Formulae and are
an example of the E-M algorithm (discussed in 4F10).

Note that when the covariance matrix is diagonal only need to estimate the
diagonal elements (the variances of the individual features) and can be done for
each dimension of the observation vectors separately.
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Baum-Welch Training
To estimate the model parameters the a-posteriori state occupation probability,
Lj(t) is required. This is achieved using the forward-backward algorithm.

Like Viterbi training, the Baum-Welch formulae are used in an iterative fashion
as shown below.

Initial Set of HMMs

Training
Data Compute Occupation Probability

Re-Estimate HMM Parameters

Converged?
No

Yes

Forward-
Backward
Algorithm

Baum-Welch
Re-Estimation
Formulae

At each iteration the likelihood is again guaranteed to increase. Models are
initialised in the same fashion as for Viterbi training.
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Forward algorithm
The forward algorithm efficiently computes the total likelihood p(O|λ).

• Define the forward variable

• αj(t) is the likelihood of the HMM
producing all observations up to time
t and occupying state j at time t:

αj(t) = p(o1,o2, . . . ,ot, x(t) = j |λ)

p(o1,o2, . . . ,ot|λ) =
N
∑

j=1

αj(t)

The likelihood of state j at time t can be found
from the likelihood of being in state k at time
t− 1 (i.e. ot−1 is produced by state k):

p(o1, . . . ,ot, x(t− 1) = k, x(t) = j |λ) =

αk(t− 1)akjbj(ot)

A summation over all states at time t − 1 allows
the recursive compututation of αj(t):

αj(t) =
N
∑

k=1

p(o1, . . . ,ot, x(t−1) = k, x(t) = j |λ)

t−1 t

k

j

akj
αk(t − 1)

αj(t)

∑

bj(ot)
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Forward algorithm - Steps
The forward algorithm allows the efficient computation of the total likelihood.
Given an HMM with non-emitting entry and exit states 1 and N .

Initialisation
α1(0) = 1.0 and αj(0) = 0 for 1 < j ≤ N and α1(t) =
0 for 1 < t ≤ T

Recursion
for t = 1, 2, . . . , T
. . . for j = 2, 3, . . . , N − 1

αj(t) = bj(ot)

[

N−1
∑

k=1

αk(t− 1)akj

]

Termination
p(O|λ) =

N−1
∑

k=2

αk(T )akN

The forward algorithm can be used for recognition
(at least for simple tasks):

ŵ = argmax
w

p(O|λw)P (w)
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Example (Forward algorithm)

0.2

0.8
0.2
0.0

0.7
0.1 0.1

0.1
0.8

0.8

0.1

0.2

0.6

0.9 0.4 0.7

0.3

1 2 3 4 5

Given the HMM
with discrete output
distributions and the
observed sequence
O = [1, 1, 2, 3]:

1

2

3

4

5

0.2
0.1

0.6

0.7
0.7

0.1

0.8

0.2

0.6

0.4

0.3

0.8

0.2

0.1

0.9

0.6

0.4

0.3

0.70.7

0.3

0.4

0.9

0.8
0.2

0.8

0.9

0.1

0.1

0.8

0.1

0.1

0.8 0.2

0.7

0.1 0.8

0.2

0.0

31 1 2

5 - - - - - 0.013156
4 0.0 0.0 0.0008 0.002376 0.018795 -
3 0.0 0.02 0.0588 0.056952 0.0070186 -
2 0.0 0.64 0.0512 0.001024 0.0 -
1 1.0 0.0 0.0 0.0 0.0 -

- 1 1 2 3 -
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Calculating Lj(t)
In order to compute Lj(t) it is necessary to also define the backward variable

βj(t) = p(ot+1,ot+2, . . . ,oT |x(t) = j, λ)

The definitions of forward and backward variables are not symmetric! Given
both variables for a certain state j at time t

p(x(t) = j,O |λ) = αj(t)βj(t)

and therefore

Lj(t) = P (x(t) = j |O, λ) =
1

p(O|λ)
αj(t)βj(t)

for re-estimation of the transition probabilities we need

p(x(t) = k, x(t+ 1) = j,O |λ) = αk(t)akjbj(ot+1)βj(t+ 1)

and the desired probability

P (x(t) = i, x(t+ 1) = j|O, λ) =
αi(t)aijbj(ot+1)βj(t+ 1)

p(O|λ)
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Backward algorithm
Similar to the forward algorithm the backward variable can be computed efficiently
using a recursive algorithm:

Initialisation
βj(T ) = ajN 1 < j ≤ N

Recursion
for t = T − 1, T − 2, . . . , 2, 1
. . . for j = N − 1, N − 2, . . . , 1

βj(t) =
N−1
∑

k=2

ajkbk(ot+1)βk(t+ 1)

Termination

p(O|λ) = β1(0) =
∑N−1

k=2 a1kbk(o1)βk(1)
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Baum-Welch re-estimation Formulae (Gaussian output pdfs)
For R training utterances, the update formulae are:

• Transition probabilities

âij =

∑R

r=1
1

p(O(r)|λ)

∑T (r)−1
t=1 α

(r)
i (t)aijbj(o

(r)
t+1)β

(r)
j (t+ 1)

∑R

r=1

∑T (r)

t=1 L
(r)
i (t)

for 1 ≤ i < N

1 ≤ j < N

âjN =

∑R

r=1L
(r)
j (T (r))

∑R

r=1

∑T (r)

t=1 L
(r)
j (t) for 1 ≤ j < N

• Output distribution parameters (Gaussian)

µ̂j =

∑R

r=1

∑T (r)

t=1 L
(r)
j (t)o

(r)
t

∑R

r=1

∑T (r)

t=1 L
(r)
j (t)

Σ̂j =

∑R

r=1

∑T (r)

t=1 L
(r)
j (t)(o

(r)
t − µ̂j)(o

(r)
t − µ̂j)

′

∑R

r=1

∑T (r)

t=1 L
(r)
j (t)

for 1 < j < N
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Normalisation
The magnitude of αi(t) decreases at each time step. This effect is dramatic in
HMMs for ASR since the average values for bi(t) are very small and leads to
computational underflow. Two approaches have been used:

• Scale the αj(t) at each time step so that
∑N−1

j=1 αj(t) = 1. The product of
the scale factors can be used to calculate p(O|λ). Since this underflows, find
log p(O|λ) as the sum of the logs of the scale factors.

• Use a logarithmic representation of αi(t). Many practical HMM systems
(including HTK) use this solution. However, the forward recursion requires
both multiplication and addition of log-represented numbers. Use the following
method to evaluate log(A+ B) when knowing logA and logB:

log (A+B) = logA

(

1 +
B

A

)

= logA+ log

(

1 +
B

A

)

• The formula only needs to be evaluated if B
A

is sufficiently large (then

log
(

1 + B
A

)

sufficiently > 0). Fast implementation: look-up table of

log
(

1 + B
A

)

against log B
A
= logB − logA.
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The Best State Sequence
For recognition, the probability of an unknown word is required for each HMM,
i.e. p(O|λi) is required for each model λi. This could be calculated using the
forward algorithm as above (or equally, the backward algorithm could be used).
However, in practice, an estimate of p(O|λi) based on just the most likely
state sequence is preferred since it is more easily extended to handle continuous
speech. The best state sequence is also useful for a number of other purposes
including

• segmenting words into smaller units (sub-word units).

• segment sentences into words

• use in Viterbi training

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 34



Speech and Language Processing Lectures 4/5: Speech Recognition Basics

The Trellis
The most likely state sequence can be visulaised as a path through the trellis of
possible HMM paths.

Example
A trellis for a 5 state
HMM (initial and final
states non-emitting) and
an observation seq. of
length 4. 1

2

4

3

5

2 3 410 5

time

st
at

es

The likelihood of a complete path through the trellis (e.g. the path depicted
with bold arrows) can be computed by multiplication of the transition probabilities
placed at the arcs and the output probabilities which are placed at the nodes.
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Viterbi algorithm

The Viterbi algorithm is a dynamic programming procedure to obtain the most
likely path for a given model λ and an observation sequence O of length T . It
computes

p̂(O|λi) = max
X

{p(O,X |λi)}

and the associated most likely state sequence X
∗ in the maximisation.

This will involve a simple recursion similar to the computation if αi(t), but rather
than summing over all paths (state-sequences), the Viterbi algorithm only takes
into account the most likely state sequence through the model to any point.

Let (compare with αj(t))

φj(t) = max
X(t−1)

{p(o1 . . .ot, x(t) = j|λi)}

where X(t−1) is the set of all partial paths of length t− 1.
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In words φj(t) represents the probability of the “best” partial path of length t

through the trellis of possible state sequences ending in state j.

The partial path probability φj(t) can be calculated using a recursion in an exactly
analogous way to the forward probability

φj(t) = max
i

{φi(t− 1)aijbj(ot)}

where φj(0) = 1 if j = 1 and 0 otherwise.

Extending this recursion through the utterance leads to the likelihood of the best
complete path. To also find the most-likely state sequence, it is necessary to store
the local decisions made at each point in the Viterbi trellis and then traceback
along the most likely path at the end of the utterance.
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The Viterbi algorithm (2)
The steps to obtain the most likely path X

∗ and the associated likelihood are

Initialisation
φ1(0) = 1.0
φj(0) = 0.0 for 1 < j < N and φ1(t) = 0.0 for 1 ≤ t ≤ T

Recursion
for t = 1, 2, . . . , T
. . . for j = 2, 3, . . . , N − 1
. . . . . . compute φj(t) = max1≤k<N [φk(t− 1)akj] bj(ot)
. . . . . . store the predecessor node: predk(t)

Termination
p(O,X∗|λ) = max

1<k<N
φk(T )akN

The most likely path can be recovered by tracing back using the predecessor
information stored at each node predk(t).
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Viterbi - Example
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Given the HMM
with discrete output
distributions and the
observed sequence
O = [1, 1, 2, 3]:
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31 1 2

5 - - - - - 0.0072253
4 0.0 0.0 0.00080 0.002304 0.0103220 -
3 0.0 0.02 0.05760 0.032256 0.0038707 -
2 0.0 0.64 0.0512 0.001024 0.0 -
1 1.0 0.0 0.0 0.0 0.0 -

- 1 1 2 3 -
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Viterbi algorithm - Efficiency
Important properties of the algorithm are:

• The algorithm is efficient (local decisions)

• Paths merge and divide at roughly the same rate.

• Time for the search is linear in the length of the observed data, T

The direct calculation of the likelihood will (again) cause arithmetic underflow.
Thus in practice, an implementation of the algorithm is based on computation of
log [p(O,X∗|λ)].

log φj(t) = max
1≤k<N

[log (φk(t− 1)) + log (akj)] + log (bj(ot))

Note that the HMM assumptions are key to the efficiency of the Viterbi (and
forward) algorithms.
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Adding Dynamic Information
The formulation of the HMM assumes:

• each feature vector ot is independent of all preceding and following vectors
given the state that generated it.

Since this is not true for speech, this deficiency in HMM modelling can be partly
overcome by modifying the fecture vectors used.

Add delta coefficients to the feature vector as follows (where yt are e.g. MFCCs)

ot =

[

yt

∆yt

]

y0

y1

y2

y-2

y-1
time

Slope = ∆y
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Each delta is a differential computed using the standard regression formula

∆yt =

∑D

τ=1 τ(yt+τ − yt−τ)

2
∑D

τ=1 τ
2

where D determines the size of the delta window and the differential is taken as
the best straight line through this window.

Many recognisers also add delta-delta parameters.

ot =





yt

∆yt

∆
2
yt





where

∆
2
yt =

∑D

τ=1 τ(∆yt+τ −∆yt−τ)

2
∑D

τ=1 τ
2
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Normalised log-energy, along with its delta and delta-delta parameters, is
commonly added to give the final feature vector. Energy is normalised as a
simple gain control. Thus

ot =

















yt

et
∆yt

∆et
∆

2
yt

∆2et

















is a commonly used feature vector. For 12 MFCCs, this leads to a 39-dimensional
feature vector.
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Mixture Output Distributions
Using a single (multivariate) Gaussian to model the output distribution may be
poor and may be better a mixture of Gaussians:

bj(o) =
M
∑

m=1

cjmbjm(o) =
M
∑

m=1

cjmN (o;µjm,Σjm)

cjm is the component weight, or prior. For this to be a pdf it is necessary that
M
∑

m=1

cjm = 1 and cjm ≥ 0
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A two component Gaussian mixture
distribution is shown. Using Gaussian mixtures
it is possible to approximate any distribution
(provided you have enough components).
Mixture distributions allow very flexible
modelling of the acoustic vectors associated
with a state.
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Modelling PDFs

• Asymmetric and Bimodal distributions
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• Correlation Modelling
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Model Parameters for HMMs with GMM Output PDFs
The parameters that need to be stored are

1. the transition matrix (standard HMM);

2. for each state the set of weights, means and variances

{{cj1,µj1,Σj1}, . . . , {cjM ,µjM ,ΣjM}}

Problem with the use of multiple component distributions is that it may result
in a large number of Gaussians, hence system parameters.
Contrast parameters (observation dimensionality d = 39,M = 10):

• Single Full Covariance Gaussian: mean requires d parameters, covariance
matrix d(d+1)

2 - 819 parameters.

• Single Diagonal Covariance Gaussian: mean requires d parameters,
covariance matrix d - 78 parameters.

• Multiple Diagonal Covariance Gaussian Components: M components
require Md parameters for the mean Md parameters for the diagonal variances
and M − 1 for weights - 789 parameters.
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For Baum-Welch re-estimation each of the component Gaussians may be
considered as a separate state thus

ij

aij

aijcj2

aijcj1

cjm

a
ii j

j1

j2

jm

The alignment for a frame is to a particular Gaussian component of a particular
state. Thus

Ljm(t) = P (x(t) = jm|O,M)

=
1

p(O|M)

N−1
∑

i=2

αi(t− 1)aijcjmbjm(ot)βj(t)

The estimates of the mean and variance will be the similar to the single Gaussian
case

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 47



Speech and Language Processing Lectures 4/5: Speech Recognition Basics

µ̂jm =

T
∑

t=1
Ljm(t)ot

T
∑

t=1
Ljm(t)

In addition, it is necessary to estimate the mixture weights. In a similar way to
the transition probabilities

ĉjm =
Estimated Number of vectors from comp. m state j

Estimated number of vectors from state j

In terms of the posterior probability of state occupation this becomes

ĉjm =

T
∑

t=1
Ljm(t)

T
∑

t=1
Lj(t)
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Summary

• Described Viterbi training of continuous density HMMs (from most-likely
state-sequence).

• Described Baum-Welch re-estimation of continuous density HMMs and efficient
recursions for generating the forward and backward probabilities.

• The Viterbi algorithm can be used to find the optimal path through an HMM.

• Described the addition of dynamic parameters to the feature vector and how
they are calculated.

• Extended the output distribution modelling from single Gaussian distributions
to Gaussian mixtures. The extensions to the Baum-Welch re-estimation
formulae were also given.

• While most speech recognition systems use Gaussian Mixtures, recently there
has been much interest in using Multi-Layer Perceptrons (esp Deep Networks
with many hidden layers) to compute HMM output probabilities.
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