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Speech and Language Processing Lecture 7: Language Models

Statistical Speech Recognition
The aim of speech recognition is to find the word string, W, such that it maximises
P (W|O) where O is the observed acoustic data.

P (W|O) =
p(O|W)P (W)

p(O)

p(O|W) obtained from the acoustic model
P (W) obtained from the language model (LM)
p(O) normalising factor

p(O) is independent of the word sequence, so does not affect the choice of most
probable word sequence.

The LM should model:

• syntactic structure;

• semantic information;

of natural language. Language models are also used for optical character
recognition, and machine translation (see later in course), ...
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Speech and Language Processing Lecture 7: Language Models

Language Modelling: General Principles
For the sequence of words:

W = w(1), w(2), . . . , w(k − 1)
thewheremeTell . . . .

w[4]w[3]w[2]w[1]

Terminology:

w(k) will refer to the kth word in a sequence of words.

wi will refer to the ith word in the vocabulary.

The LM computes probability of this word sequence, P (W), (however unlikely).
It should make speech recognition simpler by reducing the probability of highly
unlikely word sequences.

The language model also gives a measure of task complexity. For example

• telephone numbers: a digit may be followed by any other digit (10);

• English: equivalent to on average followed by about 32 words.

This is related to entropy. Language models are more normally described by their
perplexity (or average branching factor).
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Speech and Language Processing Lecture 7: Language Models

Perplexity
The perplexity (PP ) is related to the entropy (H) of the language model

PP = 2H or H = log2PP

The probability of a word sequence is often decomposed into the product of
word-prediction conditional probabilities:

P (w(1)w(2) . . . w(M)) =
M
∏

k=1

P (w(k)|w(1) . . . w(k − 1))

The entropy of this sequence is (letting M → ∞ to obtain a good estimate)

H = lim
M→∞

−
1

M

M
∑

k=1

log2 P (w(k)|w(1) . . . w(k − 1))
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Speech and Language Processing Lecture 7: Language Models

The perplexity is given by

PP = lim
M→∞

(

P (w(1)w(2) . . . w(M))−
1
M

)

= lim
M→∞

(

M
∏

k=1

P (w(k)|w(1) . . . w(k − 1))

)−
1
M

In practice, will only have S sequences of words on which to estimate the entropy
of the language model. The entropy is

H = −
1

∑

s∈S Ms

(

∑

s∈S

Ms
∑

k=1

log2 P (w(k)|w(1) . . . w(k − 1))

)

When we compute the perplexity using this over a corpus of test sentences, we
get the Test Set Perplexity which is the value normally quoted.
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Speech and Language Processing Lecture 7: Language Models

Simple Example
If the probability of a word occurring is independent of all previous words then

P (w(k)|w(1) . . . w(k − 1)) = P (w(k))

In this case, compute the perplexity directly from the LM (vocab size V ) as

H = −
V
∑

i=1

P (wi) log2P (wi)

Note the limiting cases:

• all words equally likely: H = −
∑

i
1
V
log2

1
V
= log2 V PP = 2log2 V = V

• only one word possible: P (wi) =

{

1, i = i′

0, i 6= i′

}

H = 0, hence PP= 1
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Speech and Language Processing Lecture 7: Language Models

Word Start/End Symbols
Two special symbols are usually added to the vocabulary

• sentence start symbol <s>

• sentence end symbol </s>

These model the fact that sentences are of finite length, and that the position in
a sentence is relevant for computing word probabilities.

The language model is thus trained on sequences of the form

<s>,w(1), w(2), . . . , w(M), </s>

• P (<s>) = 0 except at the start of each sentence, i.e. w(0), when it is = 1

• P (</s>) can be used to compute the average sentence length, this is w(M+1)

average sentence length =
1

P (</s>)
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Speech and Language Processing Lecture 7: Language Models

N -Gram Language Models
The probability of a word sequence may be expressed as

P (w(1) . . . w(M + 1)) =
M+1
∏

k=1

P (w(k)|w(1) . . . w(k − 1))

The LM is required to estimate P (w(k)|w(1) . . . w(k − 1)) for any word sequence.
For any reasonable size of vocabulary this is impractical to model directly.

It is usual to restrict the size of the history to the previous N − 1 words. This is
the N-gram language model. Thus

P (w(k)|w(1) . . . w(k − 1)) ≈ P (w(k)|w(k −N + 1) . . . w(k − 1))

Most frequently used are the unigram (N = 1), bigram (N = 2) and trigram
(N = 3), and 4-gram LMs. We need to make N as large as possible consistent
with the ability to estimate the parameters from available training data.
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Speech and Language Processing Lecture 7: Language Models

N -Grams (cont)
For the trigram, N = 3.

P (w(k)|w(1) . . . w(k − 1)) ≈ P (w(k)|w(k − 2)w(k − 1))

As with the acoustic model training the LM parameters are estimated using
techniques based on maximum likelihood training.

The basic estimation is to use relative frequencies to estimate probabilities.
Therefore to estimate the probability of a particular trigram it is necessary to find
the “count” (frequency of occurrence) of triple wiwjwk in the training data and
then

P̂ (wk|wi, wj) =
f(wi, wj, wk)

∑V

k=1 f(wi, wj, wk)
=

f(wi, wj, wk)

f(wi, wj)

where f(a, b, c, . . .) = number of times that the word sequence (event) “a b c
. . . ” occurs in the training data. This relative frequency approach is the ML
estimate of the N -gram parameters.

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 8



Speech and Language Processing Lecture 7: Language Models

N -Gram Advantages
N -grams are popular as

• they can be computed from real data

• they guarantee full coverage of all word sequences

• they simultaneously encode syntax, semantics and pragmatics

• they concentrate on very local dependencies

• they are very simple to compute during recognition - essentially a single table
lookup

• they work!
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Speech and Language Processing Lecture 7: Language Models

Example N -Gram Generation
The longer the context of an N -gram, then at least in principle (subject to
problems of parameter estimation), the more accurate is the model. This can
be illustrated by generating example sentences from N -gram models (viewed as
a Markov source). Jurafsky & Martin give some examples from N -Gram LMs
trained on the complete works of Shakespeare (867k word tokens with punctuation
treated as separate words):

Unigram :

Will rash been and by I the me loves gentle me not slavish page, the and hour;
ill let

Bigram What means, sir. I confess she? then all sorts, he is trim, captain.

Trigram Sweet prince, Fallstaff shall die. Harry of Monmouth’s grave.

4-gram Enter Leonato’s brother Antonio, and the rest, but seek the weary beds
of people sick.
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Speech and Language Processing Lecture 7: Language Models

Issues with N -Grams
The major issue is how to obtain robust estimates of the probabilities. For a
vocabulary of V , there are V N parameters to estimate. If V = 640000

• Trigram: 640003 = 2.62144× 1014 4-gram: 640004 = 1.67772× 1019

The ML estimate is found from counts. Considering the trigram case:

• f(wi, wj, wk) will be zero for many word triples (& word-pairs). According to
the language model this word sequence could never occur!

• if f(wi, wj) is small, the ML estimate of P̂ (wi|wj, wk) will be unreliable.

There are two (linked) aspects to current solutions:

a) find ways of estimating each N -gram probability using discounting to allow for
events not seen in training.

b) use a more general distribution for unobserved N -grams interpolation or
backing-off

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 11



Speech and Language Processing Lecture 7: Language Models

Discounting

Assign some probability “mass” to
unseen events. Probability estimates
have sum-to-one constraints i.e.
∑V

k=1 P̂ (wk|wi, wj) = 1. We can use
relative-frequency based estimates if we
discount (reduce) the counts of the
seen events.
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Therefore the N -gram estimate is modified to be

P̂ (wk|wi, wj) = d(f(wi, wj, wk))
f(wi, wj, wk)

f(wi, wj)

where d(r) is a discount coefficient. The amount by which the maximum
likelihood estimate is altered depends on the frequency of the N -gram.
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Speech and Language Processing Lecture 7: Language Models

Example Discounting Schemes
• Good Turing: a popular form of discounting. This estimate assumes that
the total probability (mass) for all events that did not occur in the training
set is the same as the total observed probability (mass) for all events that
occurred once. Hence d(r) reduces the counts of the events that did occur
so that a suitable amount of extra probability mass is available to distribute
to the events that didn’t occur in training. The overall effect is to employ a
discounting formula

d(r) =
(r + 1)nr+1

r nr

where nr is the number of N -grams occurring r times.

• Absolute discounting: here

d(r) = (r − b)/r

Typically b = n1/(n1+2n2). The discounting is applied to all counts. This is,
of course, equivalent to simply subtracting the constant b from each count.
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Speech and Language Processing Lecture 7: Language Models

Backing Off
When N -grams cannot be estimated reliably because the count f(wi, wj, . . .) is
too small, a more general distribution, normally based on an (N − 1)-gram is
used instead. E.g.

P̂ (wj|wi) =

{

d(f(wi, wj))
f(wi,wj)

f(wi)
if f(wi, wj) > C

α(wi)P̂ (wj) otherwise

α(wi) is the back-off weight, it is chosen to ensure that

V
∑

j=1

P̂ (wj|wi) = 1

and C is the N -gram cut-off point (i.e. only N -grams that occur more frequently
than this are retained in the final model). The value of C also controls the size
of the resulting language model. For trigrams this results in the following form:
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Speech and Language Processing Lecture 7: Language Models

Output
P(C | B) x    (A,B)α

α (A,B) is the back-off weight
Required to ensure that 
    P(   | A B) =1.Σ .

Backing off - Seeking P(C | A B)

Seen bigram
B C

Seen trigram
A B C

YesYes

No No Output
P(C) x    (A,B) x    (B)α α

Output
P(C | A B)

Here “Seen” means that the counts of the trigram, or bigram, exceed the cut-off
point. This value may be set separately for the bigrams and trigrams.
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Speech and Language Processing Lecture 7: Language Models

Performance with varying N
Experiments on a broadcast news (BN) transcription task with a LM trained
on 230MW (million words) of broadcast news transcriptions, newswire texts and
acoustic transcriptions. Test on a BN data sets: BNeval97.

Recogniser uses an HTK state-clustered triphone HMM system (with unsupervised
test-set adaptation) and a 65k word language model of various N . (HMMs trained
with ML estimation with 140hrs data).

Lang Model Perplexity % WER
Type BNeval97 BNeval97
bigram 240 21.3
trigram 159 18.0
4-gram 147 17.3

• Most gain is from bigram to trigram

• Different test sets have different word
error rates independent of perplexity

• PP change is a reasonable predictor
of WER change e.g. a reduction of
39% in PP leads 19% in WER.

The results quoted above were generated in 1997. The best BN systems now
have a WER less than 10% by using more advanced acoustic model parameter
estimation and modelling techniques; more acoustic training data; and also well
over a billion words of language model training data.
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Speech and Language Processing Lecture 7: Language Models

Interpolation
In backing off, the longest history that is felt to be reliable is used. Alternatively
all N -grams can be smoothed together with appropriate weights.

Estimate the trigram by linear combination of trigram, bigram and unigram
counts:

P̂ (wk|wi, wj) = λ3
f(wi, wj, wk)

f(wi, wj)
+ λ2

f(wj, wk)

f(wj)
+ λ1

f(wk)
∑V

i=1 f(wi)

where λ1 + λ2 + λ3 = 1 to ensure a valid distribution.

• if trigram is rare, mainly use bigram and unigram frequencies i.e. λ1 > λ2 > λ3

• if trigram is common, mainly use trigram frequencies i.e. λ3 > λ2 > λ1

The λ values will normally be shared for example over e.g. all trigrams with
particular count ranges.

If ML estimation is used to get the λ’s the most complex N -gram would always
be chosen (think about it). Instead deleted interpolation is commonly used.
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Speech and Language Processing Lecture 7: Language Models

Deleted Interpolation
Divide the data into blocks and choose λ values to maximise the likelihood of
deleted (or held-out) blocks of data. E.g. if the training data is divided into just
2 parts

1. (a) Data 1 −→ P̂ (wk|wi, wj) in terms of unknown λ’s

2. (b) Data 2 −→ P (Data 2) =
∏

i P̂ (w(i)|w(i− 2), w(i− 1))

3. (c) Choose λ’s to maximise log P(Data 2)

The key idea is that the λ values are chosen to maximise ability to predict unseen
data. However, above method wastes data - so divide data into several blocks
and rotate a the deleted block.

Now maximise
∑M

i=1 logP (Data i)
It can be shown that logP (Data i) is
convex with respect to the unknown
parameters λ.

"Training" data

"Test" data (cross-validation set)
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Speech and Language Processing Lecture 7: Language Models

Summary

• Language Models are a key component in large vocabulary speech recognition
systems

• Reduce the equivalent average number of word choices by several orders of
magnitude

• Normally simple models based on N-grams are used

• Base prediction on previous N -1 words. Typically N = 1 . . . 4.

• Need to deal with data sparseness: most N -grams don’t occur in training
data

• Two methods discussed:

1. Use a combination of discounting and backoff
2. Interpolation between different N -gram orders

• Can control N -gram size with the amount of back-off used.
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