
Engineering Part IIB: Module 4F11

Speech and Language Processing

Lectures 9 & 10: Weighted Finite State

Transducers for Speech and Language Processing

Bill Byrne

Lent 2014

Cambridge University Engineering Department

Engineering Part IIB: Module 4F11

Speech and Language Processing Lectures 9&10: Weighted Finite State Transducers for Speech and Language Processing

Introduction
Weighted finite state machines are machines which accept strings of symbols.
They are limited in their power, e.g. they can accept regular expressions such as
anbm but not anbn. Despite their limitations, they can be very powerful tools
for speech and language processing. In particular, they are very well-suited for
carrying out search procedures involving Markov processes and hidden Markov
models. If it is possible to cast a problem in a WFSA framework, standard
algorithms can be applied directly to the problem.

Topic outline for Lectures 9 and 10
1. Examples of Finite State Automata
2. Weighted Finite State Acceptors
3. Example 1: hypothesis testing
4. Example 2: WFSAs and N-Gram LMs
5. Operations on WFSAs
6. Weighted Finite State Transducers
7. WFSTs as ASR components
8. Operations on WFSTs

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 1

Speech and Language Processing Lectures 9&10: Weighted Finite State Transducers for Speech and Language Processing

Uses for Finite State Automata - Simple Grammars

Unweighted acceptors can be used to define simple grammars. In these grammars
- no differentiation between strings which are accepted
- strings which are not accepted are not recognized in the application

0

1
to

from

2

Cambridge

London

Manchester

ǫ

In this example
- ‘to Cambridge from London’ and ‘from London to Cambridge’ are accepted
- ‘to Paris’ is rejected
- ‘to Cambridge to London’ is also accepted

Natural for many simple speech recognition applications, e.g. digit dialing

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 2

Speech and Language Processing Lectures 9&10: Weighted Finite State Transducers for Speech and Language Processing

Uses for Finite State Automata - Weighted Acceptors
Weighted acceptors can assign costs to strings
- weights (or costs) are accumulated over paths through the automata
- a path is a sequence of edges (or arcs)
- strings are associated with paths

A weighted automaton which accepts only the strings ‘a b c d’ and ‘a b b d’ :

0 1
a/0.1

2
b/0.3

3
c/0.7

b/0.2
4

d

w(‘a b c d’) = 0.1 + 0.3 + 0.7 + 0.0 = 1.1

w(‘a b b d’) = 0.1 + 0.3 + 0.2 + 0.0 = 0.6

To define the acceptor, we specify a set of states Q and a set of arcs : q
x/k
→ q′

- q is the start state, q′ is the end state, x is the input symbol, k is the arc weight

- e.g. for the second arc, q = 1, q′ = 2, x = b, k = 0.3 : 1
b/0.3
→ 2

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 3

Speech and Language Processing Lectures 9&10: Weighted Finite State Transducers for Speech and Language Processing

Uses for Finite State Automata - Weighted Transducers
An acceptor and a weighted transducer:

0 1
the

2
cat

0

the:le/0.3
the:la/0.3
the:les/0.4

cat:chat
cats:chats

Their composition (more on this later):

0 1

the:le/0.3

the:la/0.3

the:les/0.4
2

cat:chat

the cat : le chat / 0.3
the cat : la chat / 0.3
the cat : les chat / 0.4

To describe the transducer, we specify a set of states and a set of arcs : q
x:y/k
→ q′

- x is the input symbol, y is the output symbol, k is the arc weight

Assigning weights to paths is useful to describe ambiguity and uncertainty

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 4

Speech and Language Processing Lectures 9&10: Weighted Finite State Transducers for Speech and Language Processing

Strings and Automata
Suppose we have an alphabet Σ . Σ∗ is the set of sequences drawn from Σ .
- e.g. Σ = {a, b}. Σ∗ = { ‘a’, ‘b’, ‘aa’, ‘ab’, ‘ba’, ‘bb’, ‘aaa’, ‘aab’, ... }

An automata can be thought of as either an acceptor or a generator

0 1
a

b
2

a - acceptor: only ‘a a’ or ‘b a’ lead to the final state
- generator: valid paths generate either ‘a a’ or ‘b a’

‘epsilon’ arcs allow transitions which do not consume any input symbols

0 1
a

2

3
a

bǫ
- this machine is equivalent to the one above;
it accepts either ‘a a’ or ‘b a’
- useful for ‘glueing’ automata together

- because of epsilons, paths which accept a sequence may differ in length

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 5

Speech and Language Processing Lectures 9&10: Weighted Finite State Transducers for Speech and Language Processing

Strings and Automata [2]
Sequences can be ‘accepted’ by more than one path through the acceptor
For unweighted acceptors this does not pose any problems.
- since the only question is whether or not an unweighted transducer accepts a
sequence, the presence of alternative paths does not introduce any ambiguity
- e.g. the following is a valid acceptor: there are two paths which accept ‘a a’

0 1
a

2

3
a

aǫ

The following weighted acceptor is also valid

0 1
a/0.2

2

3
a

a/0.4ǫ

- there are two paths, one with weight 0.2 and the second with weight 0.4

Problem: What weight should be assigned to ‘a a’ ?
Solution: ‘Sum’ the weights of all paths which accept ‘a a’ .

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 6

Speech and Language Processing Lectures 9&10: Weighted Finite State Transducers for Speech and Language Processing

Weighted Finite State Acceptors - Definition

A weighted acceptor over a finite input alphabet Σ is a finite directed graph with
a set of nodes Q (states) and a set of arcs E (edges).
- Each arc (or edge) e has an initial (or start) state s(e) and a final state f(e).
- Each arc e is labeled with an input symbol i(e) and a weight w(e) .
- The weights take values in K

A complete path through an acceptor can be written as p = e1 · · · enp , where :
- the path p consists of np edges
- the path starts at state ip = s(e1) where ip is an initial state
- the path ends at state fp = f(enp) where fp is a final state

The arc weights and initial and final weights combine to form the path weight

w(p) = λ(ip) ⊗ w(e1) ⊗ · · · ⊗ w(enp) ⊗ ρ(fp)

- Initial weights and final weights : λ(ip) and ρ(fp)
- ⊗ is the product of two weights (to be defined shortly)

Notation: ⊗
np
j=1w(ej) = w(e1)⊗· · ·⊗w(enp) so thatw(p) = λ(ip)⊗(⊗

np
j=1w(ej))⊗ρ(fp)

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 7

Speech and Language Processing Lectures 9&10: Weighted Finite State Transducers for Speech and Language Processing

Weights Assigned to Strings by Acceptors

Since each arc in the WFSA has an input symbol, it is straightforward to associate
paths through the acceptor with input sequences.
- A path p = e1 · · · enp produces the string x = i(e1) · · · i(enp)

If every string was generated by a unique path through an acceptor, assigning
weights to strings would be easy: the weight of a string would be its path weight.
However, since strings can be generated by multiple paths, the acceptor combines
the weights of all paths which might have generated a string, as follows:

- Let x be a string constructed from symbols in the input alphabet Σ : x ∈ Σ∗

- Let P (x) be the set of complete paths which generate x, i.e. x = i(e1) · · · i(enp)
- Let ⊕ be the sum of two weight values
- Define [[A]](x) as the cost assigned to the string x by the transducer

[[A]](x) =
⊕

p∈P (x)

λ(ip)⊗ (⊗
np

j=1w(ej))⊗ ρ(fp)
︸ ︷︷ ︸

w(p)

[[A]](x) is the ‘Sum’ of the weights of the complete paths which can generate x

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 8

Speech and Language Processing Lectures 9&10: Weighted Finite State Transducers for Speech and Language Processing

Weights and Operations on Weights
The product operation ⊗ is used to compute the weight of a single path from the
weights of its edges

The sum operation ⊕ is used to compute the weight of a sequence by summing
over all the distinct paths which could have generated that sequence

Semirings : sum ⊕ and product ⊗ with identity elements 0̄ and 1̄
- For a weight k ∈ K : 0̄⊕ k = k ; 1̄⊗ k = k ; 0̄⊗ k = 0̄
- ⊕ and ⊗ distribute and commute in the familiar way

Three useful semirings:

Semiring K ⊕ ⊗ 0̄ 1̄

Probability R+ + × 0 1
Log R ∪ {−∞,∞} ⊕log + ∞ 0

Tropical R ∪ {−∞,∞} min + ∞ 0
⊕log : k1 ⊕log k2 = − log(e−k1 + e−k2)

Unless otherwise stated, the tropical semiring is used by default

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 9

Speech and Language Processing Lectures 9&10: Weighted Finite State Transducers for Speech and Language Processing

Example 1: Generating ‘a b’ Under Two Hypotheses

Suppose we have two probability distributions over the string ‘a b’

Hypothesis 1 : P (‘a b’, h1) = p1(‘a b’) p1

Hypothesis 2 : P (‘a b’, h2) = p2(‘a b’) p2

We may be interested in the marginal probability :

P (‘a b’) = p1(‘a b’) p1 + p2(‘a b’) p2

- probability of generating ‘a b’ under either hypothesis

Alternatively, we may be interested in the hypothesis which assigns the highest
likelihood to the sequence, sometimes called the Viterbi score :

max
i=1,2

pi(‘a b’) pi

By setting the weights appropriately and choosing the right semiring, these
quantities can be computed by WFST operations

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 10

Speech and Language Processing Lectures 9&10: Weighted Finite State Transducers for Speech and Language Processing

Example 1: Weights Under the Probability Semiring

Find the weight assigned to the string ‘a b’ by the following acceptor:

0

1

3

2

a/p1(a)p1 b/p1(b|a)

a/p2(a)p2 b/p2(b|a)

- Operations on weights via ‘usual’ multiplication and addition: (⊕,⊗) = (+,×)

[[A]](‘a b’) = w(e1)⊗ w(e2)
︸ ︷︷ ︸

top path

⊕ w(e3)⊗ w(e4)
︸ ︷︷ ︸

bottom path

= p1(a)p1 × p1(b|a) + p2(a)p2 × p2(b|a)

= p1(‘a b’) p1 + p2(‘a b’) p2 ⇐ marginal probability

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 11

Speech and Language Processing Lectures 9&10: Weighted Finite State Transducers for Speech and Language Processing

Example 1: Weights Under the Log Semiring

Find the weight assigned to the string ‘a b’ by the following acceptor:
- weights are negative log likelihoods

0

1

3

2

a/− log p1(a)p1 b/− log p1(b|a)

a/− log p2(a)p2 b/− log p2(b|a)

- Weight operations: (⊕,⊗) = (⊕log,+) where ⊕log : k1⊕logk2 = − log(e−k1+e−k2)

[[A]](‘a b’) = w(e1)⊗ w(e2) ⊕ w(e3)⊗ w(e4)

= [− log p1(a)p1 − log p1(b|a)]⊕log [− log p2(a)p2 − log p2(b|a)]

= [− log p1(‘a b’)p1]⊕log [− log p2(‘a b’)p2]

= − log[exp(log p1(‘a b’)p1) + exp(log p2(‘a b’)p2)]

= − log[p1(‘a b’) p1 + p2(‘a b’)p2] ⇐ negative log marginal prob

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 12

Speech and Language Processing Lectures 9&10: Weighted Finite State Transducers for Speech and Language Processing

Example 1: Weights Under the Tropical Semiring

Find the weight assigned to the string ‘a b’ by the following acceptor:

0

1

3

2

a/− log p1(a)p1 b/− log p1(b|a)

a/− log p2(a)p2 b/− log p2(b|a)

- Weight operations: (⊕,⊗) = (min,+) where min : k1min k2 = min(k1, k2)

[[A]](‘a b’) = w(e1)⊗ w(e2) ⊕ w(e3)⊗ w(e4)

= min[− log p1(‘a b’) p1 , − log p2(‘a b’) p2]

= −max [log p1(‘a b’) p1 , log p2(‘a b’) p2]
︸ ︷︷ ︸

negative log Viterbi likelihood

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 13

Speech and Language Processing Lectures 9&10: Weighted Finite State Transducers for Speech and Language Processing

Example 2: WFSAs and N-Gram Language Models
WFSAs can be used to implement N-Gram language models, but the ‘back-off’
is problematic. Recall the back-off bigram language model:

P̂ (wj|wi) =

{
p(wi, wj) f(wi, wj) > C

α(wi)P̂ (wj) otherwise

where p(wi, wj) = d(f(wi, wj))
f(wi,wj)

f(wi)
. As described so far, WFSAs do not have

the ability to implement an ‘otherwise’ and therefore it is difficult to implement
a back-off n-gram directly.

‘Failure transitions’ are introduced to
deal with such problems. A failure
transition is labelled by φ and is taken if
and only if no other arc can be taken.
- e.g. at right, ‘to paris’ is accepted with
weight w(‘to paris’) = 0.1.

0

1
to

from

2

Cambridge/0.3

London/0.3

Manchester/0.3

ǫ

φ/0.1

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 14

Speech and Language Processing Lectures 9&10: Weighted Finite State Transducers for Speech and Language Processing

Example 2: WFSAs and N-Gram Language Models
Back-off N-Gram language models can be encoded using failure transitions.
The following describes a bigram implementation.

- There is one state for every word, plus a unigram back-off state ǫ :

Q = {(w1), . . . , (wV), ǫ}
- There is an arc for each pair of words w and w′ for which f(w,w′) > C

(w)
w′/ p(w′|w)
−→ (w′)

- There is a back-off arc from every word state (w) to the backoff state ǫ

(w)
φ/α(w)
−→ ǫ

- There is a unigram arc from the back-off state ǫ to every word state (w′)

ǫ
w′/P̂ (w′)
−→ (w′)

w′/p(w′, w)

φ/α(w) w′/P̂ (w′)(w) (w′)

ǫ

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 15

Speech and Language Processing Lectures 9&10: Weighted Finite State Transducers for Speech and Language Processing

Example 2: A Small Back-off Bigram Language Model

Language model vocabulary : Σ = {a, b} . WFST states : Q = {(a), (b), ǫ}
Cutoff statistics : f(a, b) > C but f(b, a) < C
Bigram probabilities:

P (b|a) = p(a, b) ← discounting, but no back-off
P (a|b) = α(b)P̂ (a) ← back-off

(a)

(b)

ǫ
b/p(a, b) b/P̂ (b)

φ/α(b)

a/P̂ (a)
φ/α(a)

Exact Implementation

(a)

(b)

ǫ
b/p(a, b) b/P̂ (b)

ǫ/α(b)

a/P̂ (a)
ǫ/α(a)

Approximate Implementation

Implementing the failure transition can be complicated, so an approximate
implementation is sometimes used which substitutes epsilons for the failure
arcs. The flaw is that the back-off path can always be taken, even when a
non-back-off path is present.

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 16

Speech and Language Processing Lectures 9&10: Weighted Finite State Transducers for Speech and Language Processing

WFSA Operations

Basic operations can be performed over WFSAs

Some operations correspond to operations on the languages defined by WFSAs :
- Intersection
- Union
- Concatenation (or Product)
- ...

Other operations correspond to operations on the WFSA itself :
- Determinization
- Shortest distance calculations
- ...

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 17

Speech and Language Processing Lectures 9&10: Weighted Finite State Transducers for Speech and Language Processing

WFSA Operations - Intersection
A string x is accepted by C = A ∩B if x is accepted by A and by B

[[C]](x) = [[A]](x)⊗ [[B]](x)

A

0

red/0.5

1
green/0.3

2
blue

yellow/0.6

B

0 1
red/0.2

2
red/0.3

3
green/1

4
blue/0.5

0 1
red/0.7

2
red/0.8

3
green/1.3

4
blue/0.5

C = A ∩B

In this example x = ‘red red green blue’ and (⊕,⊗) = (min,+).
Verify that [[A ∩B]](x) = [[C]](x) :
[[A]](x) = 0.5 + 0.5 + 0.3 + 0.0 = 1.3
[[B]](x) = 0.2 + 0.3 + 1 + 0.5 = 2.0
[[C]](x) = 0.7 + 0.8 + 1.3 + 0.5 = 3.3
[[A ∩B]](x) = [[A]](x)⊗ [[B]](x) = [[A]](x) + [[B]](x) = 1.3 + 2.0 = 3.3

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 18

Speech and Language Processing Lectures 9&10: Weighted Finite State Transducers for Speech and Language Processing

WFSA Operations - Union
A string x is accepted by C = A ∪B if x is accepted by A or by B

[[C]](x) = [[A]](x)⊕ [[B]](x)

A

0

red/0.5

1
green/0.3

2
blue

yellow/0.6

B

0

1green/0.4

2

blue/1.2

6

0

3

red/0.5

1green/0.3

4
green/0.4

5

blue/1.2

2
blue

yellow/0.6

C = A ∪B

ǫ

ǫ

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 19

Speech and Language Processing Lectures 9&10: Weighted Finite State Transducers for Speech and Language Processing

WFSA Operations - Concatenation (or Product)
A string x is accepted by C = A ⊗ B if x can be split into x = x1x2 such that
x1 is accepted by A and x is accepted by B

[[C]](x) =
⊕

x1,x2:x=x1x2

[[A]](x1)⊗ [[B]](x2)

A

0

red/0.5

1
green/0.3

2
blue

yellow/0.6

B

0

1green/0.4

2

blue/1.2

0

red/0.5

1
green/0.3

2
blue

yellow/0.6
3

4green/0.4

5

blue/1.2
ǫ

C = A⊗ B

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 20

Speech and Language Processing Lectures 9&10: Weighted Finite State Transducers for Speech and Language Processing

WFSA Operations - Determinization
Some WFSAs (in some semirings) can be determinized. After determinization:
- there is a unique starting state
- no two transitions leaving a state share the same input label
- arc weights may change, but weights assigned to strings are unchanged
- there may be many new epsilon arcs

0

1

a/0.4

b/0.5

2

a/0.5

b/0.4

3

c/1

c/2

Before Determinization

0

1a/0.4

2

b/0.4 3

c/1

c/1.09961

After Determinization

- determinization can be followed by minimization which finds an equivalent
machine with a minimal number of states and arcs

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 21

Speech and Language Processing Lectures 9&10: Weighted Finite State Transducers for Speech and Language Processing

WFSA Operations - Single Shortest Distance Algorithms
Let F be the set of final states (in case there’s more than one)
Let P (q, F) be the set of paths from any state q to any final state in F
- d[q] is the sum of the weights of all paths from q to any final state in F

d[q] =
⊕

p∈P (q,F)w(p)

- the costs d[q] can be computed efficiently (e.g. recursively), and trace-back can
be added to reconstruct shortest-distance paths

6

0

3

red/0.5

1green/0.3

4
green/0.4

5

blue/1.2

2
blue

yellow/0.6

ǫ
ǫ

C = A ∪B

> fstshortestdistance --reverse C.fst

0 0.30

1 0

2 0

3 0.40

4 0

5 0

6 0.30

Leads easily to a least cost calculation procedure
- e.g. the weight of the shortest complete path is 0.30 .

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 22

Speech and Language Processing Lectures 9&10: Weighted Finite State Transducers for Speech and Language Processing

Weighted Finite State Transducers
WFSTs can be used to transform one string to another string
- this is done via symbol-to-symbol mappings
- arcs are modified to have an ‘output’ symbol
- the interpretation is ‘read a symbol x , write a symbol y’
- weights are applied analogously to weighted acceptors

T

0

1a:b/0.1

3

b:a/0.2

c:a/0.3

2

a:a/0.4

b:b/0.5

Input String Output String Cost
x y [[T]](x, y)

‘b b’ ‘a b’ 0.7
‘a a’ ‘b a’ 0.5
‘a c a’ ‘b a a’ 0.8
‘a c c a’ ‘b a a a’ 1.1
‘a c c c a’ ‘b a a a a’ 1.4

... ...

In a weighted transducer, arcs have the form: q
x:y/k
→ q′

- e.g. the WFST T has an arc with q = 0, q′ = 3, x = b, y = a, k = 0.2

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 23

Speech and Language Processing Lectures 9&10: Weighted Finite State Transducers for Speech and Language Processing

Weighted Finite State Transducer – Definition

The definition of the acceptor is extended to support output operations:
- Two alphabets: Input alphabet: Σ , Output alphabet: ∆
- Each arc (edge) e has an output symbol o(e) ∈ ∆
- Each arc e has an input symbol i(e) ∈ Σ
- For strings x ∈ Σ∗ and y ∈ ∆∗, define P (x, y) to be the set of all complete
paths p = e1 · · · enp which have x as an input sequence and y as an output
sequence

p ∈ P (x, y) : x = i(e1) · · · i(enp) , y = o(e1) · · · o(enp)

- Path weights are computed as in acceptors: w(p) = ⊗
np

j=1w(ej)

The transducer T implements a weighted mapping of string x to string y :
- the weight is the sum of all path weights along which x is mapped to y

[[T]](x, y) =
⊕

p∈P (x,y)

w(p)

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 24

Speech and Language Processing Lectures 9&10: Weighted Finite State Transducers for Speech and Language Processing

Example 3: WFST Pronunciation Lexicon
Suppose we have a pronunciation lexicon with the following entries:

Word Pronunciation

data d ey t ax d ey d ax
d ae t ax d ae d ax

show sh ow
me m iy

The following transducer maps phone sequences to word sequences

L

0

1

5

6

2

4

3
d:ǫ

d:ǫ

t:ǫ

ax:data

ae:ǫ

ey:ǫ

sh:ǫ ow:show
m:ǫ iy:me

ǫ : ǫ

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 25

Speech and Language Processing Lectures 9&10: Weighted Finite State Transducers for Speech and Language Processing

Example 4: WFST Context-Dependent Triphone Transducers

A CI-to-CD transducer maps monophone sequences to triphone sequences.
- e.g. the transducer should map ‘... d ae t ax ...’ to ‘... d-ae+t ae-t+ax ...’

States are added to keep track of the phonetic context, as follows:
For every three monophones, p1, p2, p3 :
- add the states (p1, p2) and (p2, p3) to the transducer
- for the triphone t = p1-p2+p3 , add the following arc between the two states:

(p1, p2)
p3:t→ (p2, p3)

- Silence models, monophones, etc must be handled differently

Fragment from a CI-to-CD transducer:

(d,ae)

(ae,t)

(ae,d)

(d,ax)

(d,iy)

t:d-ae+t

d:d-ae+d ax:ae-d+ax

iy:ae-d+iy

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 26

Speech and Language Processing Lectures 9&10: Weighted Finite State Transducers for Speech and Language Processing

WFST Operations – Composition

Suppose A and B are two WFSTs: A maps x to y ; B maps y to z.

A ◦B is the composition of A with B which maps x to z

[[A ◦B]](x, z) =
⊕

y[[A]](x, y)⊗ [[B]](y, z)

0

1a:b/0.1

3

b:a/0.2

c:a/0.3

2

a:a/0.4

b:b/0.5

A

0 1
b:c/0.4

2
a:c/0.5

a:b/0.6

B

0 1
a:c/0.5

2c:c/0.8

3a:c/0.9

c:b/0.9

a:b/1

A ◦B

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 27

Speech and Language Processing Lectures 9&10: Weighted Finite State Transducers for Speech and Language Processing

WFST Operations – Projection
Transforms a transducer to an acceptor by projecting either onto the input arcs
or the output arcs.

0

1a:b/0.1

3

b:a/0.2

c:a/0.3

2

a:a/0.4

b:b/0.5

A

0

1a/0.1

3

b/0.2

c/0.3

2

a/0.4

b/0.5

A1

0

1b/0.1

3

a/0.2

a/0.3

2

a/0.4

b/0.5

A2

Create A1 by input projection of A : [[A1]](x) =
⊕

y[[A]](x, y)

Create A2 by output projection of A : [[A2]](y) =
⊕

x[[A]](x, y)

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 28

Speech and Language Processing Lectures 9&10: Weighted Finite State Transducers for Speech and Language Processing

Example 5: Monophone Network for a Constrained Task

L

0

1
d:eps

5sh:eps

6

m:eps

2ae:eps

ey:eps

4
ow:show

iy:me

3

t:eps

d:eps
ax:data

eps:eps

Word Recognition Task

0 1
show

2
eps

me
3

data

Monophone Recognition Network

0 1
sh:show

2
ow:eps

3d:data

4

m:me

5

6
iy:data

7

9

10

11

8d:ǫ

d:ǫ

d:ǫ

t:ǫ

t:ǫ
ax:ǫ

ax:ǫ

ae:ǫ

ae:ǫ

ey:ǫ

ey:ǫ

Monophone recognition network created by composition of the pronunciation
transducer and the word recognition task acceptor.

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 29

Speech and Language Processing Lectures 9&10: Weighted Finite State Transducers for Speech and Language Processing

Example 6: ASR Recognition Networks
Suppose we wish to build an ASR system based on a set of acoustic triphone
HMMs, a pronunciation lexicon, and an n-gram language model. A ‘recognition
network’ can be constructed by composing the transducers for these entities.

Notation: M - monophone sequences , and T - triphone sequences

argmax
W

P (O,W) = argmax
W

∑

T,M

P (O|T,M,W)P (T |M,W)P (M |W)P (W)

≈ argmax
W

max
T,M

P (O|T)P (T |M)P (M |W)P (W)

= argmax
W

max
T

P (O|T) max
M

P (T |M)P (M |W)P (W)

= argmax
W

max
T
−P (O|T) [[N]](T,W)

The transducer N maps triphone sequences T to word sequences W . N is the
composition of the CD-to-CI transducer, the pronunciation lexicon transducer,
and the language model acceptor, with composition under the tropical semiring.

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 30

Speech and Language Processing Lectures 9&10: Weighted Finite State Transducers for Speech and Language Processing

Pushing
Arc weights and labels can be moved if weights assigned to strings are preserved.

Pushing moves weights and/or labels towards the start or the end state
- pushing towards the start state can improve pruning
- pushing towards the end states can help accumulating costs over paths

Pushing weights towards final states:
- for each state, the sum of the weights of incoming arcs must equal 1̄
- recall that final states can also have weights

0 1
red/0.7

2
red/0.8

3
green/1.3

4
blue/0.5

C = A ∩B

Weight pushing -- Tropical Semiring

0 1
red

2
red

3
green

4/3.3
blue

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 31

Speech and Language Processing Lectures 9&10: Weighted Finite State Transducers for Speech and Language Processing

Pushing (2)

0 1
green/1

2
yellow/0.200

green/0.300
3/1

blue/1

Weights are probabilities

Weight Pushing -- Real Semiring

0 1
green/1

2
yellow/0.400

green/0.600
3/0.5

blue/1

ǫ

- Final state has sum of all path weights

- Arc weights have posterior probabilities

Q: What is the posterior probability that any

path contains ’yellow’ ?

A: 0.4

Weights are negative log probabilities

log 0.3 = −1.203 log 0.2 = −1.609

Negative Log Weights

0 1
green/0

2
yellow/1.609

green/1.203
3/0

blue/0

Weight Pushing -- Log Semiring

0 1
green/0

2
yellow/0.916

green/0.510
3/0.693

blue/0

log 0.6 = −0.511 log 0.4 = −0.9163 log 0.5 = −0.69314

- Costs are negative log probabilities

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 32

Speech and Language Processing Lectures 9&10: Weighted Finite State Transducers for Speech and Language Processing

Recursive Transition Networks
An RTN is a family of FSAs. Formally, R = (N,Σ, (Tν)ν∈N, S), where
– N is a set of non-terminals; these serve as pointers to other FSAs
– (Tν)ν∈N – a family of FSAs with input alphabet Σ ∪ N

– S is the root symbol, S ∈ N, and TS is the root FSA

A string x ∈ Σ∗ is accepted by R if there is an accepting path in TS such that
recursively replacing every transition with the label ν ∈ N by a path from Tν leads
to a path π∗ such that x = i[π∗].

RTN R : N = {S,X1, X2}, Σ = {a, b}

TS
1 2 3 4

a X1 b

TX1

5 6

a

X2 TX2
7 8

b

Equivalent FSA: 1 2 3 4
a b b

a

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F11 33

