Confidence Scores for Speech Processing

b

Qiujia Li
Supervisor: Prof. Mark Gales

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of

Master of Engineering

Peterhouse May 2018

Declaration

I hereby declare that except where specific reference is made to the work of others, the contents
of this dissertation are original and have not been submitted in whole or in part for consideration
for any other degree or qualification in this, or any other university. This dissertation is my own
work and contains nothing which is the outcome of work done in collaboration with others,
except as specified in the text and Acknowledgements. This dissertation contains fewer than
12,000 words including footnotes, figures, tables and equations.

Qiujia Li
May 2018

Acknowledgements

First, I would like to thank my supervisor, Prof. Mark Gales, for his guidance and patience
throughout my fourth-year project. The weekly meetings never failed to enlighten me. Not
only did I learn knowledge about the subject matter, but also the approaches to addressing
challenging problems. During the entire project, Dr Anton Ragni has also provided valuable
insights and great hands-on support. I also would like to thank Dr Yu Wang and Prof. Phil
Woodland for useful discussions on multiple encounters.

I really appreciate the help from my friends Chengkai Zhang, and Xinyu Wang on several
implementation issues and proofreading of this report. Finally, I would like to thank my parents
and my friends at Cambridge, who made every moment of my undergraduate life memorable
and enjoyable.

Abstract

In many applications involving speech recognition technology, it is a common case that apart
from the transcription itself, an indication of reliability associated with the transcription is
needed for making downstream decisions. The confidence score provides such a measure and
it is estimated by using intermediate information available during the recognition process. In
this report, the fundamentals of speech recognition are firstly reviewed, especially the decoding
stage where lattices and confusion networks that encode a rich amount of meta information
are produced. Based on the understanding of information sources, current approaches for
confidence score estimation are briefly introduced, including the features and models that
combine these features.

Despite the effectiveness of some of these approaches, few of them are ideal. In automatic
speech recognition, the recogniser could produce results in the form of one-best sequences,
confusion networks and lattices with an increasing amount of information and complexity. The
system could also operate at the sub-word level, the word level or the utterance level. Therefore,
a model that functions like a classifier on inputs with various structures and levels of complexity,
that could incorporate an arbitrary number and type of input features, that could be applied at
different levels of granularities, and that could extract useful information from the structured
data would be perfect. Drawing from the recent advancement in deep learning methods, such
as the bidirectional long short-term memory network and the attention mechanism, a variant
of the recurrent neural network — LATTICERNN - is introduced. LATTICERNN integrates
recurrent neural network with the idea of the forward-backward algorithm that runs on lattices.
The major benefit of the LATTICERNN model is the generality and flexibility it offers as a
framework.

Building upon knowledge about speech recogniser and deep learning models, the theory of
the LATTICERNN model is formulated. Implementation details are also described on account
of the special architecture of the model, which also include the approaches to labelling all arcs
on the lattices or the confusion networks for training. It is widely acknowledged that achieving
efficient training of neural networks on non-uniform inputs such as sequences is challenging, let
alone the more complex structures such as graphs for LATTICERNN . By carefully distributing

the training task on multiple cores of a machine, the learning is greatly accelerated. Subsequent

experiments are conducted in a bottom-up fashion where the complexity of the network
progressively increases. Experimental results show that LATTICERNN works well for one-best
sequences, but its performance on confusion networks is under expectation. The degradation of
performance is closely examined and experiments suggest that the arc tagging approach could
be the bottleneck for further improvements using LATTICERNN .

LATTICERNN shows attractive properties for confidence score estimation. This project
could be continued by detailed investigation on the arc tagging approach, and further experi-
mentations on lattices with different datasets. Integrating the LATTICERNN model into other
in-system applications relying on confidence scores would be a long-term objective. Neverthe-
less, this work demonstrates the working concepts of LATTICERNN and its potential to yield
better performance in confidence score estimation.

Table of Contents

List of Figures

List of Tables

Notation

1 Introduction

1.1
1.2
1.3

Motivation
Approach
Report Outline

2 Automatic Speech Recognition

2.1
22
2.3

Acoustic Modelling
Language Modelling
Decoding
2.3.1 Lattices
2.3.2 Confusion Networks

3 Confidence Scores in ASR

3.1

32

Posterior Probabilities
3.1.1 Lattice Arc Posteriors

3.1.2 Confusion Network Arc Posteriors

Standard Approaches
32.1 Features.
322 Models
3.2.3 Comparison of Approaches

4 Deep Learning Models for Confidence Scores

4.1

Recurrent Neural Networks

viii

ix

W W NN

0 N 3 N L A

10
10
11
12
13
13
14
15

17

Table of Contents vii
4.1.1 LSTM e 18

4.1.2 Bidirectional LSTM 19

4.2 LATTICERNN 20
421 Model 21

42.2 ArcMerging Functions 23

423 Training 25

5 Implementation 26
5.1 DataPreprocessing 26
5.1.1 DataStructure 27

5.1.2 Word Embeddings 27

5.1.3 DataNormalisation 28

5.1.4 ArcTagging e 28

5.2 Training Procedure 30
5.2.1 Training Criterion e 30

5.22 Parallelism 30

6 Experiments 32
6.1 Experimental Setup L 32
6.1.1 Data. e 32

6.1.2 Evaluation Metrics L 33

6.1.3 Decision Tree Baseline 34

6.2 Experiments e 35
6.2.1 One-bestSequences, 35

6.2.2 From One-best Sequences to Confusion Networks 38

6.2.3 Confusion Networks 40

6.3 DiscussSion e e e e e e e 42

7 Conclusions and Future Work 43
References 45

List of Figures

2.1
22
23

3.1
32

4.1
4.2
4.3
4.4
4.5

5.1

6.1
6.2
6.3
6.4

The hidden Markovmodel.
An example of a word lattices. oL 8

An example of a confusion network. Lo

Anarcinalattice. Lo 11
The linearchain CRFE. 15
The unrolled RNNmodel. 18
The LSTM cell structure. 19
The unrolled BLSTM model. 20
The LATTICERNN model. 21
The attention mechanism. L Lo 24
An example of overlapping of two time intervals. 29
Mapping function between arc posteriors and confidence scores. 35
Training plot of the BLSTM model. 36
ROC curve of confidence scores by the BLSTM model. 37
Training plot of the LATTICERNN model on confusion networks. 41

List of Tables

4.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Comparison between forward-backward algorithm and LATTICERNN 23
Georgian dataset statistics. 33
Georgian ASR system performance. 33
Decision tree mapping of posterior probabilities. 35
BLSTM model improves confidence score estimation on one-best sequences. 36
An ablation study of BLSTM input features. 37
Arc tagging confusion matrix. 38
Experimental results on one-best sequences. 39
Experimental results on confusion networks.o 40

Notation

Confidence Scores

Forward log probability in the forward-backward algorithm
The acoustic model score of an arc e

Backward log probability in the forward-backward algorithm
The destination/child node of an arc e

An arc in a graph

A set of edges in a graph

An incoming edge of the node S,

An outgoing edge of the node D,

A general graph

The language model score of an arc e

A node in a graph

A set of nodes in a graph

A set of paths in a graph that contains the edge e

The source/parent node of an arc e

End time of a word

Decision tree-mapped arc posterior probability of a confusion network

Start time of a word
Input feature vector
Estimated confidence score

Deep Learning

b
—

c
At

Bias vector
Backward state vector
Cell state in LSTMs
Word duration

Forget gate in LSTM
A non-linear function

Forward state vector

Notation

xi

=

, O~)

-
2]
—
<

()

~—

g gc2o o

Hidden state in RNNs

Input gate in LSTM

Key vector of the attention mechanism
The key vector of attention mechanism
The loss function

The training target

LSTM recurrent unit operation

Output gate in LSTM

An activation function

Sigmoid activation function

Input weight matrix

Recurrent weight matrix

Word embedding

Indices and Sizes

Number of dimensionalities

Index of incoming arcs of a node

Index of outgoing arcs of a node

Total number of data sample

Total number of outgoing arcs of a node
Total number of incoming arcs of a node
Length of an sequence

Time index

Probabilities and Distributions

H
P()
(")
Z(-)

Entropy
The probability mass function of a discrete random variable
The probability density function of a continuous random variable

Normalisation or partition function

Speech Recognition

aij

i ()

$2 2 0 °R s

The HMM transition probability from state ¢ to state j
The HMM output distribution for state j

A state sequence

All parameters associated with HMMs

All possible state sequences

The grammar scale factor

The most likely state sequence

The most likely word sequence

Notation

xii

@) An observation sequence

q The hidden state variable at time ¢

P The insertion penalty

s A hidden state in HMMs

\)\% An ASR hypothesis consisting of a sequence of words
w A word in a word sequence

Acronyms / Abbreviations

AM Acoustic Model
ANN Artificial Neural Network
ASR Automatic Speech Recognition

AUC Area under Curve

BLSTM Bidirectional Long Short-Term Momery
BPTS Backpropagation Through Structure
BPTT Backpropagation Through Time

CRF Conditional Random Field

DAG Directed Acyclic Graph

EM Expectaion Maximisation
FPR False Positive Rate

GMM Gaussian Mixture Model
GSF Grammar Scale Factor
HMM Hidden Markov Model
LM Language Model

LSTM Long Short-Term Memory
MAP Maximum a Posteriori

NCE Normalised Cross Entropy

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic
SGD Stochastic Gradient Descent

TPR True Positive Rate

UAPS Unique Arcs per Second
WER Word Error Rate

Chapter 1

Introduction

1.1 Motivation

Speech processing technology, specifically automatic speech recognition (ASR), enables us to
communicate with machines more naturally comparing with traditional interfaces. Recently,
personal voice assistants powered by ASR technology, such as Google Home, Amazon Alexa
and Apple Siri, have gained significant popularity. Besides the consumer-based applications,
large-scale transcription of speech is also highly demanded by some industries including televi-
sion broadcasting and telephony. Strongly motivated by practical applications, the performance
of automatic speech recognition (ASR) systems is consistently improving owing to the advance-
ment of artificial neural networks (ANNs) [9]. Despite the state-of-the-art recognition accuracy,
ASR systems sometimes produce erroneous transcriptions, especially for low-resource lan-
guages and speech signals under more realistic settings where channel distortions, speaker
variations and ambient noise are significant. Generally, the transcriptions produced are always
the best guess made by the recogniser. However, the transcriptions may not be equally good.
In other words, the result is more likely to be correct if the mismatch between the testing and
training conditions is minimal, which normally means that the speaker is native and talks in a
quite open space. On the contrary, when the system is sub-optimal or the mismatch of acoustic
conditions is prominent, the result would be much less reliable. To this end, confidence scores,
as a measure of the reliability of the transcription, are highly demanded [32].

Confidence scores play a significant role in many downstream applications [25]. For
example, it is sensible for the voice assistant to understand how confident it is about the
transcription before executing the corresponding command asked by the user. If the confidence
scores are relatively low, the assistant could offer better user experience if it confirms the
message with the user to avoid misunderstanding.

1.2 Approach 3

In short, confidence scores are a highly desirable feature associated with the speech recog-
niser and could provide crucial information for decision making at some later stages in many
systems that involve speech recognition technology. Improving the methodology for estimating
confidence measures has been an open research problem in the field of speech processing.
In this project, focus has been devoted to employing deep learning models and to creating a

general framework for confidence scores.

1.2 Approach

Broadly speaking, this project aims to use intermediate information produced during the
recognition process, to create appropriate models that could capture this information, and to
efficiently train the models to infer the confidence scores.

First, standard approaches to generating confidence scores are reviewed. Secondly, a simple
linear deep learning model is introduced for this task to verify that neural networks are capable
of modelling the transform from input features to confidence scores and yielding state-of-the-art
results. Thirdly, the more advanced yet more complex model is built upon the previous model
and is expected to further improve the performance in confidence score estimation. This
progressive approach allows the new techniques or models to be applied in an interpretable

fashion, i.e. any factor that varies in each step is tractable.

1.3 Report Outline

This report contains 7 chapters and is structured as follows:

* Chapter 2 briefly covers the fundamentals of ASR systems, particularly the decoding

process, which will be referred to throughout the report.

* Chapter 3 provides some technical concepts and details on how confidence scores are

estimated in previous research work.

e Chapter 4, building upon Chapter 3, introduces the deep learning model named LAT-
TICERNN as an attractive approach for confidence estimation.

* Chapter 5 addresses the computational challenges when implementing LATTICERNN.

* Chapter 6 presents the experiments carried out to verify the concept of LATTICERNN

with some analysis of experimental results.

* Chapter 7 draws high-level conclusions based on both theory and practice accounted in

the report. It also suggests future directions where this work could be useful.

Chapter 2
Automatic Speech Recognition

ASR is the process of converting the acoustic speech signal into its corresponding textual
representation. It is considered to be a challenging task for real-life applications due to both
inter-speaker variability (including physiological differences and pronunciation differences of
accents or dialects) and intra-speaker variability (including different styles of speech). Other
hardware and environmental factors such as channel distortion, reverberation and background
noise pose more difficulties for achieving effective speech to text conversion.

Nevertheless, statistical sequence-to-sequence models have been developed to map the
observation utterance O to word sequence W. The majority of current systems take a generative
approach to obtain the optimal classifier that maximises the posterior probability of the word
sequence P(W|0O).

W = arg max P(W|O) 2.1
w
This form of the classifier is also referred to as a maximum a posteriori (MAP) classifier

and can be further expanded to yield the equivalent decision rule

W = arg max p(O[W)P(W) = arg max p(O|W) P(W) (2.2)
v o L T

The denominator p(O) is omitted as it is constant for any given utterance, which is irrelevant
for decision making. p(O|W) is the likelihood of an observation given a word sequence, which
is computed by the acoustic model (AM). p(W) is the prior distribution of a word sequence
represented by a language model (LM). These two distributions on the right-hand side of
Equation 2.2 are generally unknown and estimated from the training data described in the
following sections.

2.1 Acoustic Modelling 5

2.1 Acoustic Modelling

The acoustic model is trained to model the conditional likelihood p(O|W) with a large corpus
of utterances and the associated transcriptions. In ASR, hidden Markov models (HMMs) are

widely used as illustrated in Fig. 2.1.

BB88e —@—0-
, ¢
01 02 03 04 05 ‘

(a) Finite state machine representation. The (b) Graphical model representation. Shaded
initial and final states are non-emitting states. nodes are observed.

Fig. 2.1 The hidden Markov model.

In HMMs, @ is a collection of state transition probabilities as, s; and emission probabilities
bs,(0;). HMMs follow first-order Markov assumption (Equation 2.3) and state conditional

independence assumption (Equation 2.4).

P(Qt+1|QO7 qi,- - - 7Qt> = P(Qt+1|(h) = Qgy,q141 (2.3)
p(ot’q(]? qi,--- 7Qt) = p(ot’%f) = b(It <0t> (24)

Therefore, the observation likelihood can be obtained by marginalising the likelihood over

all possible hidden sequences

T-1
Ole Zp O q’0 Z H afhﬂtﬂb%(ot) 2.5)

qeQ qeQ t=0

In practice, HMMs are typically trained on sub-word units, e.g. phones and context-
dependent phones, due to the large size of vocabulary and insufficiency of data to build the
acoustic model at word-level. A composite HMM for the entire word sequence can be formed
by concatenating the phone-level HMMs. More advanced discriminative training criteria have

been developed over the past decade to yield the state-of-the-art performance.

2.2 Language Modelling 6

2.2 Language Modelling

The language model describes the prior probability of a particular word sequence W of length
T.
P(W) = P(wl,wz, Ce ,wT) - P(wl)P(w2|w1) N P(wT|wT_1, ce ,U)l) (26)

As shown in Equation 2.6, the size of the distribution table grows exponentially w.r.t. the
length of the sequence and become nearly impossible to have a good estimate even for short
sequences due to the size of the vocabulary. With a limited amount of training data, conditional
independence must be imposed for p(W) to be computationally feasible.

The simplest form of a language model is the uni-gram model, where the probability of a
word in a sequence is independent of its context and is estimated by its frequency count in the
training set. However, the order of words in a sequence becomes irrelevant due to the strong
independence assumption. By incorporating history information of a word, n-gram LM could
be obtained by considering the conditional distribution of a word given previous n words, i.e.

Plwilwi-1,...,w1) = P(wi|wi1, ..., wip) (2.7)

There is a trade-off between the computational complexity and the quality of estimation
w.r.t. the order of the n-gram model. However, as the length of context becomes the longer, the
statistics become less accurate for a limited amount of data since the number of examples for a
particular sequence is exponentially less frequent. Advanced techniques including statistical
smoothing, interpolation and back-off are used to improve the generalisation of the LM.

Recently, neural language models have gained significant popularity as it circumvents
the curse of dimensionality by encoding each word as a feature vector and expressing the
joint probability of the sequence in terms of these feature vectors via a neural network. The
neural network is trained as a probabilistic classifier to predict the probability distribution
P(w;|context), where the context can be the history and/or future words. The word feature
vectors are also known as word embeddings that map from a sparse space with one dimension

per word to a continuous vector space in much lower dimensions.

2.3 Decoding 7

2.3 Decoding

By having the acoustic and language models, the remaining task of ASR is to maximise the
word sequence posterior probability w.r.t. all possible word sequences according to the MAP
rule, as indicated in Equation 2.2. Because of the large vocabulary size and potentially lengthy
sequences, the naive approach of enumerating all possible word sequences is computationally
infeasible. Viterbi approximation is used to retrieve the one-best sequence in the search space.
In the acoustic model, the probability densities of the likelihood are assumed to be indepen-
dent across different HMMs, resulting in the acoustic model likelihoods being underestimated.
To compensate for this effect on MAP decision rule in Equation 2.2, the decoding function
includes an exponentially scaled language model probability and an insertion penalty.

F(W) =p(0,q/W)P(W)7p™WI (2.8)

where q is the best state sequence in the HMM search network, v is the grammar scale factor
(GSF) and p is the insertion penalty, the values of which are task-specific and could be fine-tuned

to yield optimal decoding results.

2.3.1 Lattices

Lattices are compact representations of all the hypotheses made by the speech recogniser. One
lattice is most likely to contain all the competing hypotheses of an observed utterance at the
word level [20]. Topologically, a lattice is a directed acyclic graph (DAG) G with nodes/vertices
N and edges/arcs €. Each arc e corresponds to a word hypothesis proposed by the ASR system
and contains information including the acoustic model score p(O|w), the language model score
p(w|context), the pronunciation variant, and the identity of the source (or parent) node and
the destination (or child) node. Each node N encodes the timestamp information and it may
be connected to an arbitrary number of incoming arcs and outgoing arcs, which imposes the
structure of the lattice. A path in the lattice represents a hypothesised word sequence and all
paths are uni-directional with no loops. Visualisation of a word lattice from a short utterance is
shown in Fig. 2.2.

Lattice Pruning

A lattice could be potentially very large, with thousands of nodes and edges. In order to reduce
the size of the lattice and restrict the search space, lattice pruning procedures are normally used.

Two major techniques for lattice pruning are briefly discussed as follows.

2.3 Decoding 8

a=-1198.98
1=-3.769

a=-354.68

=-1191.97
1=-3.566

a=-1178.12
1=-1.722

a=-11133.28
1=0.000

a=-354.68
1=-1.273
a=-354.68
1=-2.538

a=-11640.99
1=0.000

t=0.00
W=!NULL

a=-354.68
1=-0.376

Fig. 2.2 An example of a word lattices. The path shown in red is the one-best path produced by
Viterbi search.

* Beam pruning. At each time instant, the decoder discards all arcs whose likelihoods fall
below a certain threshold or limit the number of arcs to a certain number, i.e. beam width,
according to their likelihoods.

* Unique arcs per second (UAPS) pruning. At each time instant, there might be a large
number of arcs with identical words but slightly different start and/or end timestamps with
similar likelihood. This pruning technique merges similar arcs with similar timestamp
information and tries to maintain a limited number of unique arcs within a certain time

interval.

At each particular time instant, arcs in the beam-pruned lattices may have similar likelihoods
whereas arcs in the USPS-pruned lattices may have more distinct likelihoods over a wide range
of values. In other words, if a cross section is cut through the lattice and the likelihoods across
arcs are viewed as a distribution, the UAPS-pruned lattices generally have a sharper distribution

than its counterpart.

2.3.2 Confusion Networks

Confusion networks are an alternative dense representation of the most likely hypotheses in
lattices. The confusion network is also known as “sausage’” because of its constraint that all
paths in a confusion network pass through all nodes. Topologically, confusion networks are a
DAG-like structure where all the outgoing edges of a node are the incoming edges for the next

node. The nodes segment the network at different timestamps and the set of arcs in between

2.3 Decoding

any pair of adjacent nodes forms a confusion set. The arcs in a confusion network correspond

to words, some of which are null words inserted to comply with the special constraint.

W=HEY
p=-2.63503

W=HOW
p=-4.51853

W=<s>

p=-18.69590 p=-0.30052

W=!NULL
=-5.68403

W=</s>
=0.00000

Fig. 2.3 An example of a confusion network. The path shown in red is the one-best path.

In terms of the information stored in confusion networks, they discard a large number
of arcs with low likelihoods in lattices. However, confusion networks also create some new
sequences which are not presented in lattices by imposing the constraint.

Chapter 3

Confidence Scores in ASR

Confidence scores provide an indication of the reliability of the transcription given by the
recognition system. This piece of information is of paramount importance for many ASR-
related systems. Out-of-vocabulary detection and keyword spotting applications rely heavily on
the measure of confidence [34, 37]. Confidence scores can also provide substantial information
and insights for both in-system applications such as ASR system combination [5], unsupervised
adaptation of acoustic models [1], and active learning [16], and downstream applications such
as speaking assessment [36], dialogue systems [8] and machine translation [2].

The task of obtaining a good estimate of the recogniser’s confidence is challenging and
decades of research work has been devoted to improving this measure [11]. The core of
all existing approaches is to explore methods to effectively extract, represent and process
useful features from the recogniser to produce confidence scores. The most related feature
to confidence scores in the ASR system is the word posterior probability [4], which is firstly
described in this chapter. The posterior probabilities are used as a baseline, and other useful
features are also considered. Appropriate models are then built to use these features to yield a

better estimation of confidence.

3.1 Posterior Probabilities

By taking the advantage of the statistical nature of ASR systems, the posterior probabilities of
the hypotheses could be considered to be a reasonable reflection of the true accuracy of the
output transcription. As discussed in Chapter 2, the MAP decision rule chooses the sequence
with the highest posterior probability. Intuitively, multiple competing hypotheses with similar
posterior probabilities are a strong indication that the recogniser is confused and uncertain
about the result. Conversely, if one hypothesis has much higher posterior probability than all

others, it is reasonable to conclude that the system is confident about this particular hypothesis.

3.1 Posterior Probabilities 11

As described in Section 2.3, the intermediate output of the speech recogniser could be
represented efficiently using compact structures such as lattices and confusion networks. Both
of these structures contain rich information related to the decoding process. Since each arc in
these graphs corresponds to a word hypothesis, arc posterior probability could be derived and
could be directly used as the confidence score. Approaches to calculating such arc posteriors

are described as follows.

3.1.1 Lattice Arc Posteriors

For each arc in the lattice, it is associated with an acoustic model score and a language model
score defined in § 2.3.1. For any path in the lattice q, the joint lattice path probability can be
expressed as

1

p(q,0) = p(Olq)~ P(W) 3.1

——— —
AM LM

where the language scale factor is used to scale down the acoustic model score rather than

scaling up the language model score. It is important because the acoustic model severely

underestimates the emission probabilities due to the independence assumption. The lattice arc

posterior probability of an arc e can then be defined as

quge p(qv O)
p(O)

p(e|O) = (3.2)
where Q. is a set of lattice paths that passes through the arc e and p(O) is estimated by summing
over all paths in the lattice. For the summation to be computed efficiently, the forward-backward
algorithm is used. Forward probability o and backward probability /3 (in the log domain) are
stored for each node and edge in the lattice. Generally, to compute the arc posterior probability
for an arc e in an arbitrary lattice (Fig. 3.1):

i\, . S
/ <

Fig. 3.1 An arc in a lattice. The source node S, has n incoming arcs and the destination node
D, has m outgoing arcs.

3.1 Posterior Probabilities 12

¢ Initialisation

Qroot node = LOGZERO (33)
ﬁend node = LOGZERO (3.4)

* Forward (joint) probability
ag, = log (Z exp(ozez;)> (3.5)
j=1 ’
1
e = ag, + 5 log(AM,) + log(LM,) (3.6)

where S, denotes the source node of arc e and {e!, ..., e} is the set of incoming arcs of

the source node of arc e.

* Backward (conditional) probability

= 1
Bp, = log (Z exp <aez + ; log(AM,e) + log(AMez))> (3.7
k=1
fe = B, (3.8)
where D, denotes the destination node of arc e and {eJ, ..., ¢ } is the set of outgoing

arcs of the destination node of arc e.

* Arc posterior probability
logp(e|O) = a + B — log Z (3.9

where Z =), .. exp(ae + fe) is the normalisation constant which ensures the sum-
to-one constraint for a valid probability distribution. The normalisation term p(O) is
obtained at the end of forward passing Qengnoge Or €quivalently, the end of backward
Passing Sroot node-
Note that for numerical stability when adding in the log domain, the following identity is
used:
log(z + y) = max(x,y) + log <1 + exp (min(z,y) — max(z, y))) (3.10)

3.1.2 Confusion Network Arc Posteriors

An algorithm for generating confusion networks from lattices is briefly described below [17].

3.2 Standard Approaches 13

1. The lattice arc posterior probabilities are computed as in Equation 3.2.

2. Time alignment. The posterior probabilities for each word in the lattice with the given
start time ¢, and the end time ¢, are calculated using P(W|ts, t., O). Each word hypoth-
esis w; in the word sequence represents a cluster.

3. Intra-word clustering. Clusters corresponding to the same word which overlap in time

are merged. The word posterior probabilities become available.

4. Inter-word clustering. Clusters corresponding to different words that are considered as
belonging to the same confusion set are merged. The merge is based on the time overlap
between words and a phonetic similarity score weighted by the posterior probability. The
required structure is obtained and the competing word hypotheses can be identified.

5. Pruning. Null words are added to the structure and their associated posterior probabilities
are the remaining of the probability mass in each confusion set, i.e. all posteriors in a

confusion set sum to 1.

3.2 Standard Approaches

Apart from using arc posteriors directly from either lattices or confusion networks, the estima-
tion could be improved by considering other related information generated during the decoding
process. With appropriate models, effective features can be captured to make more accurate
predictions on confidence scores. In this section, features considered by previous work are

summarised and effective models are described.

3.2.1 Features

A number of direct and derived features from the recognition pass have been proposed in the
literature. Ideally, all features used to estimate the confidence scores are complementary with
each one providing some evidence about the difference between the correctly hypothesised
words and their counterparts. If these features are extracted and combined effectively, the
confidence scores are expected to be highly reliable. Some features available during the

decoding process which could be used as a part of the estimator are categorised as follows.
* Lattice-based features:

— hypothesis density [14] — a measure based on the number of alternative arcs that span
the given time interval. The higher the hypothesis density, the lower the confidence

3.2 Standard Approaches 14

score is likely to be. However, as mentioned in § 2.3.1, pruning is normally
conducted on lattices. The pruning method directly influences the effectiveness of
this feature.

— word trellis stability [23] — a measure based on the observation that a word is more
likely to be correct if it appears in the majority of the most probable hypotheses
within a particular time interval, as incorrect words are more sensitive to variations

of the grammar scale factor.
¢ Acoustic model-based features:

— normalised acoustic likelihood [21] — the acoustic model score divided by the
number of frames or the number of phones, which allows the acoustic model scores

to be comparable across different word hypotheses.

— acoustic stability [39] — a measure based on the number of times a given word

occurs in the same aligned position by varying the GSF.

— sub-word level acoustic scores [33]
* Language model-based features:

— language model score — as stated in Section 2.1.

— language model back-off behaviour [29] — a measure that assumes the language
model becomes less confident when it has to back-off to a lower order of n-gram to

have a more reliable estimation.

* Duration-based features [29]: HMM state duration, phone duration, or word duration
based on the premise that shorter duration typically corresponds to regions of poor
performance of the acoustic model.

» Utterance-based features [8]: measures including word position, length of utterance,
and lexical identity of hypothesised word sequences, with similar rationale as language
model-based features.

3.2.2 Models

Despite a large number of available features, most of them are more or less correlated to
each other [13]. Therefore, powerful models are expected to project these features into an
informative space for confidence score estimation. In the past, a wide selection of models has
been applied to combine multiple features and to boost their discriminative power. Some of the

3.2 Standard Approaches 15

statistical classifiers used for feature combination include decision trees, linear functions or
models, Gaussian classifiers, neural networks, boosting, naive Bayes, support vector machines,
and maximum entropy models. As one of the most recent works, conditional random fields
(CRFs) are briefly described below.

Conditional Random Field

CREFs are a probabilistic discriminative model that could combine multiple features to predict
confidence scores of a sequence. A simple linear chain CRF is shown as an undirected graphical
model in Fig. 3.2. The distribution modelled by CRFs is

T
P(Z/la S 7yT|X1> e 7XT) X exp (Z (Z)\dfd(ytyytfl) + Z/ﬁdgd(ytaxt)>) (3.11)
t=1 N d=1 d=1

where f(-,-) and g(-, -) are the feature functions. The parameters are estimated by maximum

likelihood learning.

Yt—1 Yt Yt4+1

Fig. 3.2 The linear chain CRF.

Some properties of CRFs are very useful for sequence modelling such as estimation of
confidence scores [26]. The input feature x; can be a combination of arbitrary features from
the input sequence. The label sequence is conditioned on the whole observation sequence.
Therefore, long-term dependencies on both sides of a word in a sequence are modelled. Other
variants of CRFs with greater complexity, including higher-order CRFs, hidden state CRFs and
hierarchical CRFs, could also be used.

3.2.3 Comparison of Approaches

In the context of confidence score estimation, the following aspects are discussed for the above

approaches [25]:

* Sources of information. By solely using the word posteriors in lattices or confusion
networks as confidence score, the information is already available in the ASR system.

Some other derived features from the decoding process require either additional heuristics

3.2 Standard Approaches 16

or other systems, e.g. stability-related features. It is desirable to have an approach that
takes the raw information from the recogniser without expert knowledge for confidence

score estimation.

» Complexities. Using word posteriors directly requires minimal effort. However, linear
and non-linear models are studied to yield better confidence scores by combining multiple
input features. The complexity varies from simple models such as the decision tree, to
some simple probabilistic models such as naive Bayes, to complex models including
CRFs.

* Score granularity. Usually, the confidence scores are defined at the word level. In
some applications, sub-word level or utterance level confidence scores may be required.
Although using arc posteriors could extend to the sub-word level, it is not applicable
at the utterance level. Employing a classification-based model is a more appropriate

approach to take feature vectors and predict confidence scores at any level of granularity.

* Sequentiality. Many models mentioned above can only classify a defined input feature
vector, e.g. Gaussian classifiers and support vector machines. However, these approaches
largely ignore the information encoded in the data structure. Models that could utilise

information from the past or the future are more suitable.

* In-system applications. A model that operates directly on lattices is preferred. Because
the confidence can be readily integrated into the system, such as lattice rescoring [4] and
unsupervised acoustic model adaptation [1]. Most classifiers mentioned are difficult for
such applications.

In summary, an ideal model for confidence score estimation would be a classification-
based model that could operate on lattices directly and could incorporate any raw information
contained in lattices. LATTICERNN is introduced in the next chapter as a solution to the

problem.

Chapter 4

Deep Learning Models for Confidence
Scores

In order to have more reliable confidence scores, word posteriors and multiple predictor features
from the decoding process should be optimally combined. Since all features mentioned in
§ 3.2.1 are more or less correlated, and hand-crafted features and feature functions are subject
to strong assumptions, the design of a general statistical framework that could extract useful
information for confidence estimation from an arbitrary number of highly dependent features is
desirable. § 3.2.2 introduces CRF as a sequential classification model for confidence scores,
which has been proved to be effective in combining multiple features with different types, i.e.
discrete and continuous values without making independence assumptions between information
sources. Instead of statistical models, artificial neural networks (ANNs) have been predominant
in recent research works on classification tasks due to their capability to model non-linear
processes. Recurrent neural networks (RNNs) is a class of ANN architectures, which has been
widely used for sequential data [12].

All previous models are applied to linear sequences where features of each word are
transformed by the model to predict the corresponding word confidence. However, this process
neglects a large amount of information from the decoder of ASR systems, namely the competing
hypotheses, by only using the information from the one-best sequences. In this chapter, a
structured deep learning model, LATTICERNN [15, 27], is introduced as a flexible framework
that could incorporate an arbitrary number of features with different types, and can be applied
not only on linear chains but more generally on any DAG-like structure. LATTICERNN can
also operate on the sub-word level or the utterance level, and can be integrated for in-system
applications.

4.1 Recurrent Neural Networks 18

4.1 Recurrent Neural Networks

RNNs model sequential data by using internal hidden states which can be considered as a
representation of history inputs. For a generic RNN model shown in Fig. 4.1, each unit applies
an element-wise non-linearity to the affine transformation of the previous hidden state and the
current input (Equation 4.1). The output of each time step is a function of the current hidden
state (Equation 4.2).

Yt—1 Ye Yi+1

<

X¢—1 Xt Xt+1

Fig. 4.1 The unrolled RNN model.

ht = gb(UXt + Wht_l + b) (41)
y = F(hy) 4.2)

where U, W, b are input weights, recurrent weights and bias shared across different time steps,
¢(-) is the activation function, and F(-) is any valid function that maps from the hidden state to
the output space.

By unrolling the RNN in time, the model can be viewed as a very deep fully connected
neural network with weights tied across all layers. Similar to other building blocks for deep
learning, multiple recurrent layers can be stacked together to form a deep architecture. Instead
of using standard error backpropagation to train feed-forward networks, backpropagation
through time (BPTT) [31] is used.

41.1 LSTM

In practice, when the input sequence grows longer, the simple RNN structure suffers from
vanishing gradients problem when the network is trained using gradient descent algorithms,
i.e. long-term information is lost. To address this issue, long short-term memory (LSTM)
model [10] uses multiple gating functions and an additional internal recurrence (the cell state
c), where the gradient can flow for longer durations. LSTM is a more complex model inherited
from Fig. 4.1, where each recurrent unit is replaced by the structure shown in Fig. 4.2. The

weights of the internal recurrence is controlled by a forget gate unit f. The external input gate i

4.1 Recurrent Neural Networks 19

is computed in a similar fashion as the forget gate, but with its own parameters. The hidden
state h is manipulated by the output gate o on the updated cell state. All three gating functions
produce values between 0 and 1 via the sigmoid function o (-).

Ci—1) Ct
%, @

l

f; 1t—)61<> 0,5—>
(o) (o] (tamn) (o]
ht;l hy
.

Fig. 4.2 The LSTM cell structure.
f, = a<fot +W/h,_, + bf> 4.3)
i, — a<Uixt +Wih,_ + bi> 4.4)
o = U(ont 4+ Weh,_, + bO) 4.5)
¢, =f,®ci1 +i; ® tanh (cht +Wehy, + bc> 4.6)
h; = o; ® tanh (ct) 4.7

where © indicates element-wise product.

4.1.2 Bidirectional LSTM

RNN or LSTM has a linear chain structure where the recurrence only depends on the current
input and the history. However, when a complete sequence is available, incorporating informa-
tion from the future is useful because the prediction could be more accurate when the network
observes both the past and future contexts. A bidirectional recurrent neural network [24]
achieves this by concatenating the hidden states of two RNN layers, with one processing the
sequence forwards and the other one backwards. In the context of LSTM, the bidirectional

form can be expressed as follows.

4.2 LATTICERNN 20

Yt—1 Yi Yt+1
[y, h] [, 0] (Woer, b
Forward pass
@ @ @ Backward pass
LSTM cell
operation
Xt—1 Xt Xt+1

Fig. 4.3 The unrolled BLSTM model.

T, = LSTM(H . 1,xi, Ci1) 4.8)

it = LSTM(HHL X, <€1t+1) 4.9)
%

Yi =f(ht,E) (4.10)

BLSTM is a suitable model for confidence score estimation on one-best hypotheses. Each
word and its associated features in the one-best sequence can be combined as the input feature
x to the network. Forward and backward passes allow the context in the one-best sequence to

be fully captured.

4.2 LATTICERNN

Compared with lattices and confusion networks, one-best sequences contain the least amount
of information about all other competing hypotheses produced by ASR systems. In order to
incorporate the information missed by one-best sequences, previous models based on linear
chains must be adapted to accommodate more general data structures, e.g. DAGs. To this end,
LATTICERNN , a form of recursive recurrent neural networks, is employed. LATTICERNN
traverses the graph in its topological order [15] and the detailed information flow is described
in the following sections. The designed characteristics of LATTICERNN include

* the input can be any valid directed acyclic graphs of variable structures;

* the feature vector associated with each arc could contain an arbitrary number of features
mentioned in § 3.2.1;

4.2 LATTICERNN 21

Forward pass

Backward pass

Weighted sum
operation

‘1 LSTM cell
: Xef ﬁ 5 operation
€n
Xe%

Fig. 4.4 The LATTICERNN model.

* each dimension of the feature vector is not subject to independence assumption;

* the model could be applied to different levels of granularity, i.e. the sub-word level, the
word level and the utterance level;

* the model could capture both long term and short term dependencies using context in the
structured input.

4.2.1 Model

The structure of the LATTICERNN is inspired by the forward-backward algorithm for com-
puting arc posteriors in the lattice described in § 3.1.1 and the LSTM network for modelling
sequential information. For each arc e in the lattices or confusion networks, multiple features
could be concatenated into the feature vector x..

LATTICERNN applies LSTM-like recurrence on the lattice structure in a topological order
both forwards and backwards as shown in Fig. 4.4. Different from a linear chain, each node
and each edge in the graph have their associated hidden states.

In a forward pass, the hidden state of an arc E)e is the output of the recurrence with the

%
input being the hidden state of its source node h g, and the input feature vector x.. The hidden

4.2 LATTICERNN 22

state of the source node h g, is a weighted sum of the hidden states of n incoming arcs h i for
J

7=1,...,n.

3

— —
hg, h

a;jb, (4.11)

J=1

T, = LSTM(h g, x.) 4.12)

where a; are the weights for the forward weighted sum operation where) ja; =1

Similarly in a backward pass, the hidden state of an arc R is the output of the recurrent
unit which takes the hidden state of its destination node % p, and the input feature vector x..
The hidden state of the destination node (E p, 1s a weighted sum of the hidden states of m
outgoing arcs teg fork=1,...,m.

b =3 by (4.13)
k=1
b =Lst™(h), %) (4.14)

where by, are the weights for the backward weighted sum operation where , b, = 1.

After finishing the forward pass and the backward pass, the hidden representation of an arc
is the concatenation of the forward hidden state E}e and the backward hidden state ﬁe. The
output prediction ¥, is a function of this hidden representation.

Ye = F<E>ea ie) 4.15)

Table 4.1 highlights the analogies and distinctions of LATTICERNN comparing to the
forward-backward algorithm on lattices. It is worth noting that there is no normalisation
term in LATTICERNN as the p(O) term in forward-backward algorithm. In the forward-
backward algorithm, since the probabilities are additive at merging point and multiplicative
as the probabilities are pushed through the lattice, global normalisation is required to yield
a valid probability distribution for arc posteriors. However, at each node in LATTICERNN
where there are multiple incoming arcs, the hidden states are summed with weights that adds
up to 1. The recurrent unit also ensures that the range of the hidden state to be consistent.
By normalising at each merging point and keeping the range to be invariant during message
propagation, the overall normalisation is no longer necessary. Unlike the posterior probabilities
in the forward-backward algorithm, LATTICERNN encodes the messages as hidden states,

which are not readily interpretable.

4.2 LATTICERNN

23

forward-backward algorithm ‘

LATTICERNN

input

message content
message propagation
message merging
message flow
normalisation

output

AM & LM scores

path log-probability
probability accumulation
log add

forward & backward
explicit

arc posteriors

feature vector

hidden state
recurrent unit
weighted average
bidirectional

implicit

hidden representation

Table 4.1 Comparison between forward-backward algorithm and LATTICERNN .

4.2.2 Arc Merging Functions

For the weighted sum at each node with multiple incoming arcs, the following functions that

yields positive weights with sum-to-one constraint are used:

* Max function based on arc posteriors

1 if j = arg max; p(e%|O) ; 1 if k = arg max,, p(e%,|O)
a; = k=
’ 0 otherwise 0 otherwise
e Mean function
1 1
aj = — bk = —
n m
» Normalised arc posteriors [15]
L el p(elo)
T NS (o0) E= X 0.0 10)
’ Zj’p<€j"o) > w p(ep]O)

(4.16)

4.17)

(4.18)

The max function can effectively reduce the lattice to the one-best sequence as the max

operation on arc posteriors follows the same procedure as the Viterbi algorithm. It will give

no advantage of LATTICERNN over BLSTM models as it incorporates no extra information.

The mean function assumes that the hidden state of the arc itself carries its importance, i.e. the

magnitude of each dimension would be smaller if it believes this arc provides little evidence

for confidence scores. However, this assumption is hard to be justified or to be imposed on

the network. Using normalised arc posteriors as weights is a more sensible approach where

the importance of each arc is assumed to be proportional to the arc posteriors. If the arc

posterior is relatively high, then the speech recogniser believes the corresponding word is more

4.2 LATTICERNN 24

likely to be correct, hence high confidence. However, this correlation between significance
and arc posteriors may not be linear. To dynamically allocate weights on merging arcs,
attention mechanism, which is particularly successful in image captioning [35] and machine
translation [28], could be used.

| Softmax |
aJ agT anT
[k, hu] | [k o [k, b,
k= | I I
h; h, h,

Fig. 4.5 The attention mechanism.

As shown in Fig. 4.5, the general attention mechanism takes all the inputs about to be
combined, along with a common key vector k. The concatenated vector of each input and the
key vector yields a scalar via some non-linear transform. ag, ..., a, are then passed through
a softmax layer which normalises all the weights into a valid probability mass function. For
LATTICERNN , the number of inputs varies as the number of incoming arcs are different at
each node, but the key vector must be of fixed length. One of the appropriate key vectors for
confidence scores is the first and second moments of the arc posterior probabilities of all the
merging arcs. Therefore, the concatenated input for forward merging becomes

=
[fLei, aei,p(eﬂOZ, h,

,L..
J

] (4.19)

~~ ~~
k; h;

where i and o,: are the mean and standard deviation of the incoming arc posteriors. The
attention mechanism for backward merging is similar.

4.2 LATTICERNN 25

4.2.3 Training

During the forward pass, nodes in a lattice are visited following the topological order. In
Algorithm 1, topological_sort() gives the list of nodes following topological order
on the input graph; in_arcs() and out_arcs() returns a set containing all the incoming
arcs and outgoing arcs w.r.t. to the node of interest respectively; arc_merge() is a function
described in § 4.2.2 that merges the hidden states of input arcs; and LSTM() is the LSTM
recurrence function.

Algorithm 1 LATTICERNN forward pass

1: for node n € topological_sort(G) do

2: if iriTarcs(n) # & then
3: h, = arc_merge(in_arcs(n))
4: else

%
5: h,=0
6: end if
7: for e € out_arcs(n) do

%

8: h, = 1sTM(h,,x.)
9: end for
10: end for

The backward pass is analogous, except the nodes are visited in the reversed topological
order.

For error backpropagation, stochastic gradient descent (SGD) is used. Similar to training a
BLSTM network by BPTT, the optimal parameters for LATTICERNN are found by backpropa-
gation through structure (BPTS) [7] where the DAG topology of lattices becomes useful since

a general recursion could be implemented on arbitrary input structures.

Chapter 5

Implementation

From data processing to network training, efficient data handling is of paramount importance.
Computationally, the data structure of the lattice must be both compact for storage and flexible
for bidirectional traversing. For supervised training, labels are needed for either the arcs on
the one-best path or all the arcs in the lattice, which proved to be non-trivial. Since each
training sample may have its individual structure, using batches or mini-batches is virtually
impossible. Furthermore, the recursive nature of the network impedes the full advantage of
GPU acceleration to be taken. This chapter reveals the implementation details that would allow
LATTICERNN to work practically and efficiently.

Python is chosen to be the main language for prototyping as it is the most compatible
language with the widely used and supported open-source deep learning libraries. PyTorch
library' provides the core building blocks of deep learning modules for this project. One
major advantage of PyTorch over other libraries, e.g. TensorFlow, Caffe, and CNTK, is that
computation graphs are dynamic using reverse-mode auto-differentiation, which is well-suited

for models with variable input structures such as LATTICERNN .

5.1 Data Preprocessing

Data preprocessing is used as an offline stage where the pre-computation of features and
conversion of data structures are finished before being fed into the neural networks. Although
it will take some disk space to store the preprocessed data, it significantly saves computational
overhead for data processing upon loading and some global features could be obtained. Since
there are no natural training labels available for words in lattices, alignment with the ASR

reference is required.

thttp://pytorch.org/

http://pytorch.org/

5.1 Data Preprocessing 27

5.1.1 Data Structure

The data structure is compatible with both lattices and confusion networks. Different from
lattices, confusion networks allows more than one arc between the adjacent pair of nodes. In
this project, conversion tools are implemented to convert from compressed HTK-style lattice
.lat.gz [38] and confusion network .scf.gz to a consistent and compressed NumPy format

.npz. In the converted format, the following attributes are available:
* topo_order — a list of node indices that follows a topological order;

* child_2_parent — a dictionary that maps from a node index to a dictionary, whose
key is the index of the parent node and the value is the index of the connecting edge for
lattices or a list indices of the connecting edges for confusion network. This is used for

the forward recursion;

* parent_2_child — a dictionary that maps from a node index to a dictionary, whose
key is the index of the child node and the value is the index of the connecting edge for
lattices or a list indices of the connecting edges for confusion network. This is used for

the backward recursion;

* edge_data — a matrix containing all relevant information from the source file indexed
by the edge index. For an arc in a lattice, the information includes the word, the start
time and the end time, LM and AM scores. For an arc in a confusion network, the arc

posterior probability, the start and the end time are available;

* ignore — a list of edge indices whose corresponding word is one of the following <s>,
</s>, !NULL, <hes>, which are due to be skipped during training of the network.

5.1.2 Word Embeddings

To represent the word identity, using one-hot encoding would be inefficient when the vocabu-
lary size gets large. Alternatively, word embeddings is a low-dimensional continuous space
representation mapped from one-hot encoded words [19]. In this project, fastText model [3] is
adopted to train the word embeddings in an unsupervised fashion. Building upon the skipgram
model [18], this model represents each word as a bag of character n-grams. A vector represen-
tation is associated with each character n-gram and words being represented as the sum of these
representations. FastText model allows sub-word information to be captured and consequently,
word embeddings for out-of-vocabulary words could be computed [3]. It has been shown that

the fastText model produces word vectors that achieve state-of-the-art performance on word

5.1 Data Preprocessing 28

similarity and analogy tasks. Operating on the sub-word level, the word embeddings by fastText
might contain implicit information such as the length of the word by adding character n-gram
representations, and pronunciation similarity due to the close relation between sub-word strings
and phonetics. FastText embeddings could be correlated to the acoustic model and could be

complementary to the word-level language model used for recognition.

5.1.3 Data Normalisation

One advantage of LATTICERNN for confidence score estimation is the use of an arbitrary
number of features with different dynamic ranges. Data whitening is employed by dividing
each dimension of the data by its standard deviation after the mean has been removed. For
numerical stability when computing the sum of squares, a two-pass algorithm is normally used.
The first step is to compute the sample mean, and then the variance is computed as the sum of
the squares of the differences from the mean. However, for a very large dataset, two passes
might be expensive. An online algorithm is used to estimate the statistics in a numerically

stable manner [30]. The recurrence relation is shown as follows.

T = Tpq + (5.1)
n
Mn = Z(:L‘ - j;n—l)Z = Mn—l + (:L‘n - :z'n—l)(xn - jn) (52)
=1
M,
sh=— (5.3)
n—1
M,
e — (5.4)
n

where Z,, denotes the sample mean, s? is the sample variance, and o2 is the population variance.

5.1.4 Arc Tagging

Since LATTICERNN is a supervised training task for classification, words associated with each
arc in lattices and confusion networks need to be labelled to compute the loss function. There

are two approaches for arc tagging:

* Partial tagging on one-best sequences using Levenshtein distance. For any lattice or
confusion network, Viterbi algorithm could be employed to find the indices of arcs along
the one-best path. Having the one best sequences and training transcriptions for the
ASR system, the Levenshtein distance between two strings a, b could be computed as

levgp(lal,|b]), where 1ev, (i, 7) is defined as

5.1 Data Preprocessing

29

if min(7, 7) = 0, then
leva,b(ia j) = max{ivj}

else

levep(i—1,7)+1 (deletion)

levap(i,j) =min{ lev,,(i,j — 1)+ 1 (insertion)

levap(i— 1,7 — 1) + 1,20, (substitution if a; # b;)

In the one-best sequences from lattices or confusion networks, all insertions and substitu-

tions are tagged as O (incorrect) or 1 (correct) otherwise since no deletions will appear in

one-best sequences.

 Full tagging on all arcs using timestamp information. Since each arc is associated with a

start frame ¢, and an end frame ¢, and the reference word-level time alignment (7,)

for the transcription is available, it is reasonable to classify the arc if the words are

the same and there is some overlap between these two time intervals. The degree of

overlapping is defined as

) = max {07 | min{r., t.}| — | me.LX{TS, ts} }
| max{r.,t.}| — | min{r,, t,}|
arc > ’
reference ; ‘
Ts ts Te te

Fig. 5.1 An example of overlapping of two time intervals.

(5.5

A threshold 1y, between 0 and 1 could be set so that the arc is tagged as 1 (correct) if

1 > 1y and O otherwise.

5.2 Training Procedure 30

5.2 Training Procedure

5.2.1 Training Criterion

As in many other classification tasks using neural networks, binary cross entropy is adopted as
the loss function for LATTICERNN

L= —ylogy. — (1 —y;)log(1 —y.) (5.6)

ec&

where y? is obtained from arc tagging in § 5.1.4. The error signals are only accumulated on the
one-best path for partial tagging, but can also be on all arcs for full tagging.

5.2.2 Parallelism

Generally, the neural network is trained using SGD algorithms and the entire dataset is seen
by the network over and over again until the loss converges. However, there are different
granularities about how much data is provided to the network before parameters being updated.
One end of the spectrum is called online learning, where the data samples are observed
sequentially and the gradients based on the single observation are computed to update the
parameters. The other extreme is called batch training where the gradient based on the entire
dataset is computed before each update. The former method provides a poor estimate of the
true gradient and results in noisy updates. In contrast, the latter approach is relatively expensive
computationally. As a compromise, mini-batch updates are generally used. The bonus of using
mini-batches is to exploit the parallel computing power of GPUs. Hundreds of samples are
passed to the network and the gradients can be computed concurrently in matrix form.

However, in the case of LATTICERNN , each sample has its unique structure in terms of the
forward/backward pass and the backpropagation process. Unlike the fully connected networks
or the convolutional neural networks whose input features share the same dimensionality,
lattices or confusion networks do not.

For neural network-based sequence models such as LSTM, input sequences of variable
lengths could be allowed by padding the all sequences in one mini-batch as the same length
as the longest one. It is true that the same idea could be applied to LATTICERNN such that
the lattices or confusion networks in a mini-batch share an identical structure. However, the
computational cost will rise dramatically. For lattices, the padding algorithm must ensure that
all samples have the same depth (length of the longest sequence) and the same breath with
identical connections at each level of depth. In the worst case, the padding could introduce

IV maX|2 number of new arcs where NV, is the maximum number of nodes in a lattice within

5.2 Training Procedure 31

the mini-batch. Although the computational cost for padded mini-batches is upper bounded by
the computational cost of the longest sequence for RNNs, the overall computational cost may
far exceed the individual cost of processing the most complex lattice.

To avoid complexity of padding, the online training procedure is followed. However, online
training takes too long for the model to be used practically when the dataset is large. The
speed-up offered by GPU concurrency is not significant because the data is not batched and
the model itself is recursive. Parallelising SGD on multiple CPU cores in a lock-free manner
would greatly enhance the throughput approximately by the number of cores available. This
is called the Hogwild! approach [22]. As far as the modern high-performance computing
infrastructure is concerned, occupying a few dozen CPU cores at a time is much less expensive
than taking up a handful of GPU cores.

Hogwild! training circumvents the issue of memory locking and synchronisation across
different cores that would diminish the proposition of parallelism. However, by assuming
that the optimisation problem is relatively sparse, i.e. most gradient updates only affect a
small portion of the parameters, it can be shown that asynchronous SGD without locking
could also achieve near-optimal performance. Although this allows processors to access the
shared memory with the possibility of overwriting each other’s work, the final convergence is
guaranteed. [22]

Chapter 6
Experiments

In this chapter, experiments are designed and carried out to verify the deep learning approaches
for confidence scores by comparing with the vanilla baseline by confusion network arc posteri-
ors. Although the effectiveness of confidence scores depend on its downstream applications,
two evaluation metrics are defined to compare the performance of different models. Experi-
ments on one-best sequences, confusion networks, and lattices are conducted sequentially. This
bottom-up approach in terms of system complexity and the amount of information incorporated
into the system allows us to evaluate the model progressively. Note that all numbers presented

are evaluated on the test set, unless stated otherwise.

6.1 Experimental Setup

6.1.1 Data

The practicality of confidence score lies around the applications where the recognition accu-
racies are moderate. Therefore, for the initial investigation of applying neural networks on
confidence scores, the ASR word error rate (WER) is not supposed to be too high or too low,
where the distribution of confidence scores will be skewed towards either extreme. WER, the

metric of the performance of the recogniser, is defined as follows.

substitution + deletion + insertion
WER = — - = 1 — word accuracy (6.1)
substitution + deletion + correct

One major downstream application of confidence scores is on low-resource languages,
where the training data is limited for the system to reach accuracies achieved for major
languages like English and Mandarin. Taking the above factors into consideration, Georgian
speech corpus from the BABEL project [6] is selected as the dataset for experimentation. The

6.1 Experimental Setup 33

recogniser operates at around 30% WER. Its reasonable size allows fast iteration for training
and debugging. Table 6.1 gives an overview of the size of the dataset and Table 6.2 shows the
corresponding ASR system performance.

| training set | test set

length of speech data (hours) 17.5 7.5
number of utterances (thousand) 20.6 8.7
number of words (thousand) 103.6 45.3

Table 6.1 Georgian dataset statistics.

‘ training set ‘ test set

correct (%) 69.1 72.5
substitution (%) 24.2 21.8
deletion (%) 6.7 5.7
insertion (%) 54 5.3
word accuracy (%) ‘ 63.7 ‘ 67.2

Table 6.2 Georgian ASR system performance.

6.1.2 Evaluation Metrics

In this project, the word confidence is estimated and the following two isolated metrics are

employed as general guidelines indicating how well the models perform.

* Normalised cross entropy (NCE) score. As the name suggested, this metric is based
on principles of information theory that measures the amount of information gained by
comparing the confidence scores obtained and a baseline where all scores equal to the
probability of a word being correct in the dataset.

H(Y*) — H(Y| M)

NCE =
H(Y™)

(6.2)

where H(Y™*) is the entropy of the Levenshtein distance-based labels described in § 5.1.4
and (Y| M) is the conditional entropy of estimated confidence scores by the model M.

6.1 Experimental Setup 34

The entropy of the tagged sequence is equivalent to

H(Y") = —plog(p) — (1 — p)log(1 — p) (6.3)

where p is the percentage of correctly recognised word. And the conditional entropy of

confidence score sequence is defined as

L
1 * *
HYIM) = = (v log(y) + (1 = y7) log(1 — 1)) (6.4)
i=1
where L is the total number of words in the dataset evaluated, y* are the target labels,
and y are predicted confidence scores.

If NCE is positive, then the confidence scores estimated provide some extra information
than simply using the chance of a word being correct. An increase of NCE score indicates

some improvement of performance.

* Area under curve (AUC) score. One of the curves for binary classification is the receiver
operating characteristic (ROC) curve. ROC curve is a plot of true positive rate (TPR)
against the false positive rate (FPR) at various threshold values, which illustrates the
discriminative ability of the system. TPR is also known as the probability of detection,
i.e. the proportion of words with confidence scores above the threshold that are also
tagged as correct against the reference. FPR is the same as the probability of false alarm,
i.e. the proportion of words with confidence scores below the threshold but is tagged
as correct against the reference. ROC curve visualises the trade-off between rejecting
the correct hypotheses and accepting the incorrect hypotheses. On such plots, curves
that are above the diagonal show improvement than the baseline with the probability for
all words. The goal is to push the ROC curve toward the the top-left corner, where a

threshold exists such that all classification results are the same as the reference.

6.1.3 Decision Tree Baseline

In order to compare the performance of the methods proposed to estimate the confidence scores,
a simple yet frequently used baseline is adopted — mapped word posterior probabilities [4].
Confusion network arc posterior probabilities normally overestimate the true confidence. Hence,
a piece-wise linear and monotonically increasing function, i.e. a decision tree as shown in
Fig. 6.1, is trained to map the word posteriors to appropriate confidence scores.

The NCE score increases noticeably whereas the AUC remains identical. This is as expected

since the decision tree should map the overestimated arc posteriors closer to the true confidence

6.2 Experiments 35

— before mapping

after mapping

confidence score

arc posterior probability

Fig. 6.1 Mapping function between arc posteriors and confidence scores.

word posteriors | NCE — AUC

before mapping | -0.1380 0.8488
after mapping 0.2877 0.8488

Table 6.3 Decision tree mapping of posterior probabilities.

while the total order is maintained due to the monotonicity. After mapping, the ROC curve
would look exactly the same as before, but the hidden thresholds are mapped according to the
decision tree. In the remaining of this chapter, the mapped confusion network arc posterior
probabilities by a decision tree are regarded as the baseline.

6.2 Experiments

6.2.1 One-best Sequences

With the decision tree mapped confusion network posterior probabilities being the baseline for
confidence scores on Babel Georgian dataset, a BLSTM model is trained using the one-best
sequence to investigate the effect of multiple input features to such sequence model. During
training, the standard SGD with momentum is used. For a word ¢ in the one-best sequence, the

most accessible features for include

* word identity, represented by a 50-dimensional word embedding w; using fastText model
described in § 5.1.2;

* time duration of the word At;, which is a scalar;

6.2 Experiments 36

* mapped confusion network arc posterior probability p;, which is a scalar.

Therefore, the input [w;, At;, p;] has 52 dimensions. The BLSTM model has 128 hidden
units and the hidden states from both directions are concatenated. The output layer reduces
the output dimension to 1, which is followed by a sigmoid function to produce the confidence
score. The network is trained using Hogwild! SGD with momentum. The dataset is shuffled
before the start of every epoch. The initial learning rate is set to 0.15 and the momentum is 0.5.
The learning rate is reduced by half when the validation cross entropy stopped decreasing for
consecutive two epochs. To prevent over-fitting, a weight decay factor of 0.001 is applied to
the output layer. Parameter updates are clipped when the absolute values are greater than 1 to
avoid exploding gradient, which may be observed in RNNs with long sequences.

Fig. 6.2 plots the training and validation loss during training where the fluctuations are
caused by the shuffling of the dataset. In the ROC curve in Fig. 6.3, the BLSTM model
is consistently closer to the top-left corner of the plot, indicating an improved performance.
Table 6.4 compares the BLSTM with the baseline and shows improvement on both NCE score
(7.86%) and AUC score (1.19%).

0.47 .
—— training

validation

Cross Entropy
N N
> >
SN W N

N
~
)

0.42

12345678 91011121314151617181920
Epoch

Fig. 6.2 Training plot of the BLSTM model.

| NCE AUC

baseline | 0.2877 0.8488
BLSTM | 0.3103 0.8588

Table 6.4 BLSTM model improves confidence score estimation on one-best sequences.

6.2 Experiments 37

1.0 —

o 0.8

<

22

2 0.61

£ 0.41

=

= o .
021 baseline

BLSTM

%0 02 04 06 08 1.0
False Positive Rate

Fig. 6.3 ROC curve of confidence scores by the BLSTM model.

The improvement from the baseline to the BLSTM model is as expected. Because BLSTM
not only uses the baseline confidence score as one of its features, but also incorporates the word
representation and duration information to make predictions. To demonstrate the contribution

of each feature, an ablation study is conducted.

model ‘feature Vector‘ NCE AUC
baseline | — | 0.2877 0.8488
[w;] 0.0608 0.6664
[At;] 0.0241 0.5833
(4] 0.2969 0.8530
BLSTM | 1y, At 0.0772 0.6804
[At;, pi] 0.3012 0.8546
[wi, pi] 0.3068 0.8578
| [wi, At p;] | 03103 0.8588

Table 6.5 An ablation study of BLSTM input features.

From Table 6.5, word embedding or duration alone does not offer much information on
the word confidence. Slight gain is observed when just passing the baseline confidence scores
into the bidirectional model. This is an indication that there is some sequential information
between the word confidence in the one-best sequences, which is captured by the BLSTM
model. Table 6.5 also shows that word embedding, duration and mapped arc posteriors are

more or less complementary to each other when estimating the confidence scores. The BLSTM

6.2 Experiments 38

model could extract useful information from not only individual features, but a combined
representation of features. The ablation experiments could well demonstrate the powerful
modelling capability of BLSTM model without assuming independence between multiple
features. Furthermore, the model could find certain corresponding hidden representation to

extract the complementary information from multiple features.

6.2.2 From One-best Sequences to Confusion Networks

Since the BLSTM model performs well with one-best sequences that are generated from
confusion networks, it is of great interest to incorporate other information in the confusion
network under the framework of LATTICERNN . However, there are a number of differences
between one-best sequences and confusion networks. Any degradation in performance is noted
and analysed carefully.

¢ Data:

— The one-best sequence can be in its raw form as it is generated from the confusion
network, i.e. the sequence may include words such as <s>, </s>, <hes>,

!NULL. These words are stripped to give the final transcription.

— As described in § 6.1.3, the word posterior probabilities are originally unmapped.

They are mapped by a decision tree to compensate the overestimation as the baseline.

* Source: MLF is an HTK file format [38] containing the word transcriptions and their
corresponding time frames. CN is the originally stored confusion network format. The
main difference between the two is the timestamp information where the one in CN is

considered to be less accurate due to clustering stages upon generation.

* Label: as described in § 5.1.4, the arcs can either be labelled in the same way the distance
between two sentences is computed or be aligned using timestamp information. The
threshold for time overlapping is set to g, = 0.1, as it minimises the difference between
labels following the Levenshtein distance and labels from the time alignment. The

discrepancies between them are detailed in Table 6.6.

‘ Lev.=1 Lev.=0

time =1 | 68.21% 0.25%
time = 0 0.80% 30.74%

Table 6.6 Arc tagging confusion matrix.

6.2 Experiments 39

data posterior LATTICERNN
sequence posterior NCE AUC | NCE AUC

O1 | stripped ~ mapped | MLF | Lev. | 0.2877 0.8488 | 0.3103 0.8588

source | label

02 MLF | Lev. | —0.1380 0.8488 | 0.3020 0.8529
O3 | stripped unmapped | CN Lev. | —0.1407 0.8488 | 0.3001 0.8524
04 CN | time | —0.1407 0.8488 | 0.2879 0.8481

O5 | unstripped unmapped | CN | time | —0.1407 0.8488 | 0.2922 0.8492

Table 6.7 Experimental results on one-best sequences.

Table 6.7 tabulates the experimental results on different settings of one-best sequences. All
NCE and AUC scores are calculated against the Levenshtein distance-based labels. Experiment
Ol is identical to the one described in § 6.2.1. To directly use the information from the one-best
sequences, a LATTICERNN model is trained (O2) to show that the model itself can reasonably
achieve the piece-wise linear mapping by its non-linear transform of features. When moving
from one-best sequences to confusion networks, the information contained in the confusion
network should be used instead of the one from MLF files. Experiment O3 illustrates that
the model is able to adjust the more noisy duration feature and is able to predict confidence
scores with similar accuracies. From O1 to O3, the marginal degradation in performance is
mainly caused by the unmapped arc posteriors. The degradation is not surprising considering
that the network in O2 needs to accomplish the work done by a decision tree and the feature
extraction achieved by O1. However, with fine-tuning of hyper-parameters, smarter learning rate
scheduling and more iterations, LATTICERNN in O3 is expected to be level the performance
of Ol despite discrepancies in input features.

The major restriction of Levenshtein label is that it is only available for one-best sequences.
Moving towards confusion network, it is ideal to have a tagging scheme to effectively label
all arcs in the confusion network. Experiment O4 is designed to examine the influence of
timestamp-based tagging. Although the tagging accuracy w.r.t. Levenshtein distance-based
labels is as high as 98.95%, the performance drops to the baseline level. It is arguably true
that training criterion and testing criterion are mismatched in this case, but the damage caused
by the 1% of inconsistent labels is unexpectedly large. OS5 is a sanity check on the skipped
operation implementation when the LATTICERNN sees special words such as <s>, </s>,
<hes>, !NULL. Theoretically, the performance of O4 and OS5 should be very close. The
little discrepancies here could be explained by the stochastic nature of the training procedure.
However, the conclusion would be more concrete if the results are the average of multiple runs

with same settings but different random seeds.

6.2 Experiments 40

6.2.3 Confusion Networks

Building upon the one-best sequences, LATTICERNN is able to incorporate more information
from the confusion network and try to extract rich features from both the inputs and the
special data structure. The model is expected to reach a higher level of performance when the
competing hypotheses are available as a part of the data. Following experiments have been

conducted to illustrate the impact of training labels and merging functions.

dat m label 1 posterior LATTICERNN

ata cree | 1abe 088 NCE AUC | NCE AUC
O1 | baseline Lev. 0.2877 0.8488 | 0.3103 0.8588
O3 | one-best — Lev. | one-best arcs | —0.1407 0.8488 | 0.3001 0.8524
OS5 | one-best time —0.1407 0.8488 | 0.2922 0.8492
Cl1 Lev. | one-best arcs 0.3021 0.8532
C2 confnet max time | one-best arcs | —0.1407 0.8488 | 0.2893 0.8479
C3 time all arcs 0.2900 0.8470
C4 Lev. | one-best arcs 0.3018 0.8528
C5 confnet mean time | one-best arcs | —0.1407 0.8488 | 0.2933 (.8498
C6 time all arcs 0.2927 0.8483
C7 Lev. | one-best arcs 0.3034 0.8536
C8 | confnet | posterior | time | one-best arcs | —0.1407 0.8488 | 0.2939 0.8500
C9 time all arcs 0.2914 0.8476
C10 Lev. | one-best arcs 0.3008 0.8527
C11 | confnet | attention | time | one-best arcs | —0.1407 0.8488 | 0.2955 0.8499
Cl12 time all arcs 0.2957 0.8496

Table 6.8 Experimental results on confusion networks.

This set of experiments agrees with previous findings. When transitioning from one-best
sequences to confusion networks, training on timestamp-based labels results in a serious
decrease in both NCE and AUC scores. For confusion networks trained on labels from the time
alignment, the performance of LATTICERNN is marginally better than the baseline figures,
but is still far behind the LATTICERNN model trained on the one-best sequence (O1). The
training loss of Experiment C9 against the number of epochs is plotted in Fig. 6.4. A large
gap between the average loss across all arcs and the average loss of all arcs on the one-best
path is prominent. This is another indication of the mismatch between training and evaluation
criteria. The arcs along the one-best path do not seem to be representative of all the arcs, but

they are a special set of great difficulty and a major contributor to the average loss. The same

6.2 Experiments

41

conclusion could also be reached by comparing training results of between C2 and C3, C5
and C6, efc. , where the final performance is virtually independent of whether the losses are
accumulated only on the one-best path or on all arcs. Therefore, the following two qualities is

strongly desired for an appropriate arc tagging scheme:

* labels should be nearly identical with Levenshtein distance-based labels on the one-best

path;

* as far as the LATTICERNN model is concerned, the one-best path should be a representa-
tive sample from all paths in the confusion network, i.e. the gap of cross entropy between

one-best arcs and all arcs should not be large.

0.451

Cross Entropy

0.35]

0.30

e
~
(e

— training (all arcs)

validation (all arcs)
------- training (one-best path)
....... validation (one-best path)

M

12345678 91011121314151617181920
Epoch

Fig. 6.4 Training plot of the LATTICERNN model on confusion networks.

Regarding different merging functions, the initial results demonstrate that posterior weighted
summation is the best approach. Max function and mean function are two extreme ways of

weighting, which either ignoring all other competing arcs when merging or paying too much

6.3 Discussion 42

attention to them. Therefore, it is expected that the posterior weighted merging outperforms
max function and mean function. The attention mechanism used in the experiment employs a
one-layer fully connected neural network with 256 hidden units to dynamically allocate weights
to different input streams. As discussed in § 4.2.2, attention mechanism is the most flexible
approach for merging. Although small gain is observed by attention mechanism from C9 to
C12, the design and training of the attention mechanism should be more carefully studied

before reaching the conclusion that the attention mechanism is a better approach.

6.3 Discussion

All the above experiments are run under the same set of framework built using PyTorch
library. It demonstrates the flexibility of the framework, which can be applied to one-best
sequences (LATTICERNN reduces to BLSTM in this case), confusion networks and even
general lattices produced by ASR systems. The experiments are conducted in a systematic
manner where each individual step moving from one-best sequences to confusion networks is
shown. Applying LATTICERNN model to sequences can improve the estimation of confidence
scores significantly. Although only three basic features are used, the model is able to extract
useful complementary information from all features. By incorporating more related features
into the input feature vector, the LATTICERNN model is expected to have a greater gain on
both NCE and AUC scores.

When the LATTICERNN model is trained on confusion networks whose arcs are labelled
according to timestamp information, some degradation in performance is observed. By recon-
structing the process of generating one-best sequences from confusion networks, intermediate
stages are analysed. Results indicate that the arc tagging approach using time alignment is
not ideal, which causes a significant drop in performance. To take full advantage of the LAT-
TICERNN model, a better arc tagging scheme should be proposed. Nevertheless, the system
and arc merging functions are shown to be working properly, with more care should be taken to

design and train the attention mechanism.

Chapter 7
Conclusions and Future Work

The problem of estimating confidence scores is investigated in this project. Previous work on
confidence measure is reviewed. Based on the working principles of the speech recogniser and
basics of deep learning, a more general and flexible framework LATTICERNN is proposed.
Implementation details are described and initial experimental results are analysed to evaluate
the performance of LATTICERNN . The project serves as a proof of concept of applying the
novel deep learning model in the context of confidence scores. More detailed investigations
and experimentations are demanded for future work. The conclusions of this work are drawn

as follows.

* Confidence score estimation is a challenging but significant task for many practical
applications. Models that could incorporate the most amount of information from the

speech recogniser without expert knowledge and hand-crafted features are desirable.

* The lattice-based approach is strongly favoured since the lattices contain the complete
information in the speech recogniser. It could offer an in-system solution for many
systems that require confidence scores if estimations could be made at the lattice level,

e.g. unsupervised acoustic model adaptation and lattice rescoring.

* The key to confidence estimation is information extraction from all available features
on structured data. Deep learning approaches are particularly useful due to the powerful

non-linear modelling capability of neural networks.

* Interpretation and analysis of deep neural networks are not straightforward. Unlike
forward-backward algorithm where the forward and backward messages are interpretable
as probability distributions, the hidden states passing through the LATTICERNN are

much less so.

44

Notices should be taken on the trade-off between complexity and efficiency. Although
modern computing facilitates the training of more complex models, the gain in perfor-

mance may not be justified given the increased complexity under certain applications.

Based on the progress of the project, possible future work is suggested as follows.

Detailed investigation of the arc tagging approach, as the current timestamp-based tagging

may not be optimal.

Experimentations on lattices to evaluate the performance. The lattice could be beam-
pruned or UAPS-pruned, where appropriate comparisons could be made to evaluate the
sensitivity of LATTICERNN on different inputs.

Implementations to accelerate the training of LATTICERNN , especially on large lattices.
Parallelism on a smaller granularity is possible. BPTS could be restricted to a certain
depth as the back-propagation to root may not be worthwhile on large structures.

Experimentations on different datasets to verify that LATTICERNN can be applied more
generally.

Incorporation of more features that could be obtained from the decoding process. Also,

sub-word features may also be used, e.g. phone embeddings.

Integration of LATTICERNN system to other applications, e.g. system combination,
keyword spotting and dialogue systems.

References

[1] Tasos Anastasakos and Sreeram V. Balakrishnan. The use of confidence measures in
unsupervised adaptation of speech recognizers. In ICSLP, 1998. 10, 16

[2] John Blatz, Erin Fitzgerald, George F. Foster, Simona Gandrabur, Cyril Goutte, Alex
Kulesza, Alberto Sanchis, and Nicola Ueffing. Confidence estimation for machine
translation. In COLING, 2004. 10

[3] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word
vectors with subword information. TACL, 5:135-146, 2017. 27

[4] Gunnar Evermann and Philip C. Woodland. Large vocabulary decoding and confidence
estimation using word posterior probabilities. In ICASSP, 2000. 10, 16, 34

[5] Gunnar Evermann and Philip C. Woodland. Posterior probability decoding, confidence
estimation and system combination. In NIST Speech Transcription Workshop, 2000. 10

[6] Mark J. F. Gales, Kate Knill, Anton Ragni, and Shakti P. Rath. Speech recognition and
keyword spotting for low-resource languages: Babel project research at cued. In SLTU,
2014. 32

[7] Christoph Goller and K Andreas. Learning task-dependent distributed representations by
backpropagation through structure. 1996. 25

[8] Timothy J Hazen, Stephanie Seneff, and Joseph Polifroni. Recognition confidence scoring
and its use in speech understanding systems. Computer Speech & Language, 16(1):49-67,
2002. 10, 14

[9] Geoftrey E. Hinton, Li Deng, Dong Yu, G. Dahl, A. Mohamed, Neelam K Jaitly, Andrew
Senior, Vincent Vanhoucke, P. Nguyen, Tara N. Sainath, and Brian Kingsbury. Deep
neural networks for acoustic modeling in speech recognition: The shared views of four
research groups. IEEE Signal Processing Magazine, 29:82-97, 2012. 2

[10] Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural Computation,
9(8):1735-1780, 1997. 18

[11] HuiJiang. Confidence measures for speech recognition: A survey. Speech Communication,
45:455-470, 2005. 10

[12] Kaustubh Kalgaonkar, Chaojun Liu, Yifan Gong, and Kaisheng Yao. Estimating confi-
dence scores on asr results using recurrent neural networks. In /CASSP, 2015. 17

References 46

[13] Simo O. Kamppari and Timothy J. Hazen. Word and phone level acoustic confidence
scoring. In ICASSP, 2000. 14

[14] Thomas Kemp and Thomas Schaaf. Estimating confidence using word lattices. In
Eurospeech, 1997. 13

[15] Faisal Ladhak, Ankur Gandhe, Markus Dreyer, Lambert Mathias, Ariya Rastrow, and
Bjorn Hoffmeister. Latticernn: Recurrent neural networks over lattices. In Interspeech,
2016. 17, 20, 23

[16] Mingkun Li and Ishwar K. Sethi. Confidence-based active learning. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 28:1251-1261, 2006. 10

[17] Lidia Mangu, Eric Brill, and Andreas Stolcke. Finding consensus among words: lattice-
based word error minimization. In Eurospeech, 1999. 12

[18] Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. CoRR, abs/1301.3781, 2013. 27

[19] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Dis-
tributed representations of words and phrases and their compositionality. In NIPS, 2013.
27

[20] Julian James Odell. The Use of Content in Large Vocabulary Speech Recognition. PhD
thesis, Cambridge University Engineering Department, 1995. 7

[21] Joel Pinto and R. N. V. Sitaram. Confidence measures in speech recognition based on
probability distribution of likelihoods. In Interspeech, 2005. 14

[22] Benjamin Recht, Claudia Ernestina Re, Stephen J. Wright, and Feng Niu. Hogwild: A
lock-free approach to parallelizing stochastic gradient descent. In NIPS, 2011. 31

[23] Alberto Sanchis, Alfons Juan, and Enrique Vidal. Estimating confidence measures
for speech recognition verification using a smoothed naive bayes model. In Iberian
Conference on Pattern Recognition and Image Analysis, 2003. 14

[24] Mike Schuster and Kuldip K. Paliwal. Bidirectional recurrent neural networks. /IEEE
Transactions on Signal Processing, 45:2673-2681, 1997. 19

[25] Matthew Seigel. Confidence Estimation for Automatic Speech Recognition Hypotheses.
PhD thesis, Cambridge University Engineering Department, 2013. 2, 15

[26] Matthew Stephen Seigel and Philip C. Woodland. Combining information sources for
confidence estimation with crf models. In Interspeech, 2011. 15

[27] Jinsong Su, Zhixing Tan, Deyi Xiong, Rongrong Ji, Xiaodong Shi, and Yang Liu. Lattice-
based recurrent neural network encoders for neural machine translation. In AAAI 2017.
17

[28] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017. 24

References 47

[29] Mitch Weintraub, Francoise Beaufays, Zeév Rivlin, Yochai Konig, and Andreas Stolcke.
Neural-network based measures of confidence for word recognition. In ICASSP, 1997. 14

[30] BP Welford. Note on a method for calculating corrected sums of squares and products.
Technometrics, 4(3):419-420, 1962. 28

[31] Paul J. Werbos. Backpropagation through time: What it does and how to do it. 1990. 18

[32] Frank Wessel, Ralf Schliiter, Klaus Macherey, and Hermann Ney. Confidence measures
for large vocabulary continuous speech recognition. IEEE Transactions on Speech and
Audio Processing, 9:288-298, 2001. 2

[33] Gethin Williams and Steve Renals. Confidence measures from local posterior probability
estimates. Computer Speech & Language, 13:395-411, 1999. 14

[34] Jay G. Wilpon, Lawrence R. Rabiner, Chin-Hui Lee, and E. R. Goldman. Automatic
recognition of keywords in unconstrained speech using hidden markov models. IEEE
Transactions on Acoustics, Speech, and Signal Processing, 38:1870-1878, 1990. 10

[35] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C. Courville, Ruslan Salakhut-
dinov, Richard S. Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption
generation with visual attention. In ICML, 2015. 24

[36] Su-Youn Yoon, Mark Hasegawa-Johnson, and Richard Sproat. Automated pronunciation
scoring using confidence scoring and landmark-based svm. In Interspeech, 2009. 10

[37] Sheryl R. Young. Recognition confidence measures: Detection of misrecognitions and
out-of-vocabulary words. In ICASSP, 1994. 10

[38] SJ Young, G Evermann, MJF Gales, D Kershaw, G Moore, JJ Odell, DG Ollason, D Povey,
V Valtchev, and PC Woodland. The htk book version 3.4. 2006. 27, 38

[39] Torsten Zeppenfeld, Michael Finke, Klaus Ries, Martin Westphal, and Alexander H.
Waibel. Recognition of conversational telephone speech using the janus speech engine.
In ICASSP, 1997. 14

	Table of Contents
	List of Figures
	List of Tables
	Notation
	1 Introduction
	1.1 Motivation
	1.2 Approach
	1.3 Report Outline

	2 Automatic Speech Recognition
	2.1 Acoustic Modelling
	2.2 Language Modelling
	2.3 Decoding
	2.3.1 Lattices
	2.3.2 Confusion Networks

	3 Confidence Scores in ASR
	3.1 Posterior Probabilities
	3.1.1 Lattice Arc Posteriors
	3.1.2 Confusion Network Arc Posteriors

	3.2 Standard Approaches
	3.2.1 Features
	3.2.2 Models
	3.2.3 Comparison of Approaches

	4 Deep Learning Models for Confidence Scores
	4.1 Recurrent Neural Networks
	4.1.1 LSTM
	4.1.2 Bidirectional LSTM

	4.2 LatticeRNN
	4.2.1 Model
	4.2.2 Arc Merging Functions
	4.2.3 Training

	5 Implementation
	5.1 Data Preprocessing
	5.1.1 Data Structure
	5.1.2 Word Embeddings
	5.1.3 Data Normalisation
	5.1.4 Arc Tagging

	5.2 Training Procedure
	5.2.1 Training Criterion
	5.2.2 Parallelism

	6 Experiments
	6.1 Experimental Setup
	6.1.1 Data
	6.1.2 Evaluation Metrics
	6.1.3 Decision Tree Baseline

	6.2 Experiments
	6.2.1 One-best Sequences
	6.2.2 From One-best Sequences to Confusion Networks
	6.2.3 Confusion Networks

	6.3 Discussion

	7 Conclusions and Future Work
	References

