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ABSTRACT

Spoken dialogue systems provide a convenient way for uedrs t
teract with a machine using only speech. However, they oéilgron
a rigid turn taking regime in which a voice activity detectimodule

is used to determine when the user is speaking and decide iwhen

an appropriate time for the system to respond. This papestiav
gates replacing the VAD and discrete utterance recognfsecon-
ventional turn-taking system with a continuously opemtincog-
niser that is always listening, and using the recognisesst-path to
guide turn taking. In this way, a flexible framework for inorental
dialogue management is possible. Experimental results st it
is possible to remove the VAD component and successfullythese
recogniser best path to identify user speech, with morestoless to
noise, potentially smaller latency times, and a reductionverall
recognition error rate compared to using the conventiopgtaach.

Index Terms— Dialogue system, ASR, VAD, POMDP, incre-
mental ASR

1. INTRODUCTION

Spoken dialogue systems provide a convenient way for usantet-
act with a machine using speech. They are often deployedigy no
environments such as in-car applications, where the uses dot
have their hands free to interact in any other way.

Conventional dialogue systems typically use the idea ofaa di
logue turn being a user turn followed by a system turn. Onlgmh
the user has finished speaking does the system process tha-use
put and take any action. This gives rise to a rigid model of-tur
taking, which can be unnatural to users. There are many tonsli
under which users employ a more flexible turn-taking modei, f

The outline of this paper is as follows. Section 2 discusses p
vious work in the area, section 3 discusses the incremeiatialgiie
management using only the ASR output, section 4 presentsiexp
mental results, and section 5 draws conclusions.

2. EXISTING WORK

Incremental dialogue management has been proposed as af way o
achieving a flexible turn-taking model in dialogue systeifffss sec-

tion discusses existing work on incremental dialogue memamt,

and existing work on VAD.

2.1. Incremental dialogue
Recent work in dialogue systems has moved away from usirgich ri
model of turn-taking and towards using incremental ASRIteda
determine the best system action before the user has finsgieedk-
ing [3, 4, 5]. Partial, or incremental, ASR results are paigally
obtained while the user is speaking, and the dialogue martege
cides whether to act on these partial hypotheses or notdhase
all available information. In this paper, the term “dialegman-
ager” refers to everything downstream from ASR, to simptifg
discussion. In reality, the dialogue manager of a POMDPesyst
consists of several components such as semantic decodifigf b
state update, TTS etc. An incremental dialogue system cablen
modelling of conversational effects that are difficult todaebwith
a strict turn-taking model, such as split utterances, uskasging
their mind, self-correction and hesitations, barge-in badkchan-
nels on the part of both the system and the user.

Incremental ASR results have the problem that partial Hygot
ses are often unstable, particularly at the beginning of mlw®hat
is, the words that are on the best path at one point in time nayge

example when they are under cognitive load and use moresfiller by the next point in time. Thus, the best system action may lads

hesitations and barge-ins [1]. Furthermore, rigid tuikirtg models
often rely on a voice activity detection (VAD) component tcitle

unstable. The stability and accuracy of partial hypothésessbeen
measured using features collected from the decoding éafiic7].

whether the user is speaking or not, and this component can peSuch metrics can be used by the dialogue manager to decideavhe

form poorly, especially in noisy conditions, leading to figsion if
the speech/non-speech classification is incorrect. Toawgpuser
satisfaction, several commercially deployed systemsdabe VAD
problem by using a push-to-talk button.

to make use of a partial hypothesis or whether to discardditveait
until the next partial hypothesis is seen. The expectedl|isyabf

partial hypotheses can also be improved. In [6], the pointghéch
partial hypotheses are computed are carefully selected & times

Recent research has suggested the use of an incremental dighen the ASR either has high confidence in the current worter t

logue system that allows for a more flexible turn taking modéis
paper investigates the replacement of the separate VAD aiod a
matic speech recognition (ASR) components of a POMDP disdog
system [2] by a single continuously operating ASR compotiest
is always listening in order to facilitate incremental diglie. Exper-
imental results show that it is possible to remove the VAD aied
entirely and, with appropriate training data, achieve aprovement
in the detection of speech with potentially lower latenecyes. This
framework gives the further advantage of increased flakibéind
fewer components to adapt.

language model end of utterance symbol has been reachef], In [
additional right context is included before a partial hyystis is re-
turned, which introduces a short lag but improves stability

One final decision to be made in an incremental dialogue syste
is when the system should respond to the user. The systenecan r
spond immediately as in [4], thus potentially interruptthg user, or
wait until the end of a user utterance. In [9], prosodic antastic
features were used to predict the end of a user utteranceuwtitiav-
ing to wait for a user silence. Alternatively, the system eatimate
the optimal moment to barge in based on, for example, a measur



of information density in the user’s utterance [10]. Suckdiction  Such an architecture simplifies the incremental dialogueager

is useful in allowing incremental dialogue systems to resp@t ap-  which no longer has to interface with two, potentially castfhig,

propriate times with minimal delay. modules, allows for more flexible turn-taking models to beate
Despite the issues with using partial ASR hypotheses,imere  oped, and allows easy adaptation to noisy environments) ysiw-

tal dialogue systems have been shown to be favoured by esers, erful techniques developed for noisy ASR. This idea is dised in

if they do not yield improved objective performance, dueheit  more detail in the following section.

speed and naturalness [3]. However, the system archiésistaom-

plicated by the use of an incremental dialogue manager wigich 3. INCREMENTAL ASR WITHOUT VAD

ceives potentially conflicting ipformation about macrorifrom  There are many advantages to removing the VAD componentief a d
the VAD module, and about micro turns from the ASR module. alogue system and relying solely on the ASR output. Redutiag

. . . number of system components leads to a simpler architetttatés
2.2. Voice Activity Detection easier to implement and test. Furthermore, using an alwaysSR
Voice activity detection is typically a computationallyfiefent pre-  component provides a framework in a dialogue system for amor
processing step to classify audio frames as either speedorer flexible turn-taking model. Dialogue turn-taking is complend
speech, so non-speech frames can be discarded and onl) sggec  requires the system to recognise and make use of many vetthal a
ments are passed downstream to the speech recogniser. Bie mon-verbal cues. Recognition features can easily be irdwehen
popular approach is to use speech and non-speech Gausgtanemi the system is making a decision about when to speak. Thegdialo
models (GMMs) trained on appropriate data [11, 12], and $igas  manager can inspect partial ASR hypotheses or partiatdattit ap-
each audio frame to the class which has the highest liketih@ther  propriate times, before deciding whether to take actiome®tues,
classifiers such as SVMs [13] and MLPs [14] have also been. useduch as prosody, can be integrated into the decision makoweps
This classification approach has been used successfulY@BR  to better determine the end of a user turn.
tasks such as meetings [15, 14, 16] and broadcast news [W/]. T Performance of both ASR and VAD components are often de-
improve on the use of a single classifier, a hybrid approachpsa  graded in noisy conditions, and so a key advantage of comipini
posed that uses a threshold on the energy of the audio toificstrd ~ VAD and ASR is the ability to adapt both at the same time, mdte
very low energy frames [18]. Then, only the high energy framee  of separately. Hence, more advanced speaker and noisernebsis
passed to the GMM classifier. The threshold is relative tele@mce  techniques such as CMLLR, MLLR [21], VTS [22] or PCMLLR

level in the audio, which is estimated as the audio progeesse [23] can be used to directly improve VAD performance alodgsi
However, VAD is often one of the weakest components of anASR.
ASR system, particularly in noisy environments that aremaitched When removing the VAD component, the ASR best path can be

to the training data. In ASR tasks, it is impossible to recdvem  used to guide the dialogue system. Figure 1 shows the user of a
VAD errors where speech is incorrectly classified as noresipebut  system uttering the phrag€hinese <pause> in the centre”. The
non-speech frames classified as speech are passed to theiseco recogniser best token at each frame (speech/silence isdteiow.
and so can be transcribed as silence at the recognition dtagee, At point (a) the user has begun to speak and speech is detectbd
VAD modules are often tuned to give a high recall of speecth@t recogniser best path. There is a short lag between the @stngt
price of low precision. In a dialogue system where the VADuteis  and ending speech before the corresponding best tokentsetftec
also used as an input to the dialogue manager to controkailing,  true state, but the best token at this point can be traced toafkd
incorrectly identifying noise as speech can lead to coofusihere  the actual beginning of the speech. At point (b) silence teated
the system thinks the user is speaking but the user is, inddent. as the user has paused in the middle of the utterance, andnat po
Use of a VAD component is an easy way of reducing the compu¥{c), speech is again detected on the best path as the useshased
tation done by the speech recogniser when computationalimess  speaking. At point (d), there is silence again as the usefihiabed
are limited. As available computational power increasemsy-h  speaking, and after a small number of frames, e.g. 30, testlli
ever, and the move is made towards server based systems, thailence on the best path and so the system can be confidetii¢hat
is less need to reduce the computational load of the ASR reodul user has finished speaking. This is point (e) on the graph.
It has long been acknowledged that the speech recognitionr co The dialogue system can then behave differently depending o
ponent itself is a far better speech/silence detector thamgle  the pointina userturn. For example, points (b) and (d) carskd to
speech/silence classifier since it has a much more accuradelm pass the partial hypothesis to the dialogue manager to ipegpar-
of speech. Recent efforts have been made to use feedback fraomy a response or to utter a backchannel. The belief projoagat
the speech recognition to adapt and improve VAD performairte algorithm for updating estimates of the dialogue state soay it-
[19], input features to the VAD classifier were derived frdma state  erative algorithm. At points (b) and (d), the current pantigerance
output distributions of an LVCSR HMM set. Full decoding wag n  can be used to update the belief state, thus altering thegtialbe-

performed, but instead a subset of likely Gaussians fronHiié/ lief state before the user has finished speaking and befergy/giem
output distributions were used to compute approximatdiikeds  has decided to take action.
for broad phone classes, and these were fused with energy feses To avoid interrupting the user, the system may delay respond

tures for use in a GMM classifier. In [20], high confidence sibee ing until point (e). This introduces a lag between the endsafris
and silence segments identified by the recogniser were assthpt  speech and the system response, but this can be mitigateerby p
the VAD models online, yielding gains in ASR performancee3& forming processing at points (b) and (d) and waiting untihpée) is
methods make use of acoustic models to improve the perfaenan reached before responding. Points (b) and (d) can also bepp
of the VAD models. ate places to utter backchannels or to interrupt the ustre Kystem
This paper lays the framework for a flexible incremental dia-has determined that there is no match to the user’s requgstne
logue system that has no explicit VAD module. In contrastravp Chinese restaurant that satisfies earlier constraintssytbiem can
ous work, the ASR recogniser is listening continuously tigttout  interrupt the user to tell them so without waiting for the eridhe
the dialogue without the use of a separate VAD classificatiage.  user utterance.



(a) (b} (c) (dj fe)
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Fig. 1. System user speaking the utteralChinese <pause> in the centre” and recogniser best path

Such strategies do not make full use of the ASR decodingtresulfound to be helpful as the things that people tend to say ircdine
It is often possible to predict the word being spoken befbeeuser  text of the dialogue system are very limited, and well coteog
has finished speaking it, as the language model encodes ggithe r data from previous trials. Thus the perplexity of the larggimodel
context. For example, the user may be part-way through spgak is very low, around 6-14.
the word“Chinese” and the recogniser is confident that this is the  In order to perform ASR over whole dialogues, the language
word being spoken. In this case, as soon as the recognisenfis c model needs to allow for the silences between utterancesieéod-
dent of the current word, the partial ASR hypothesis can lssgéh  ing segments and whole dialogues, different language raadete
downstream to the dialogue manager before the user hasefthishbuilt. The first uses one entry per utterance in the dialogitle av
speaking. start and end of utterance symba>, </ s>, while the second uses
The use of confusion networks rather than 1-best or N-best wo one entry per dialogue, with separate markers for the staread
strings has been shown to improve semantic decoding agcirac of utterance<u>, </ u>, and start/end of dialogues >, </ s>.
conventional turn taking systems[24]. The same performaains
can be obtained in an incremental system since at any pdimét
a partial ASR decoding result can be returned in the form obedw
lattice or confusion network spanning the previously destart P! €ase </ s>
of the user utterance upto <s> cheap </s>
This section has explained some of the ways in which the ASR <S> where is it </s>
decoding result can be used to improve dialogue systemalaéss <s> ok thank you good bye </s>
and responsiveness. The following sgctior) presents expatal re- Whole-dialogue language model:
sults to demonstrate that an always-listening ASR modulfopes A : . .
better than a VAD module for detecting user speech, espedial <s> <u>hello i"d like an italian
noisy data, with only a small change in ASR performénce trus restaurant please </u> <u> cheap </u> <u>
; ’ . s ' where is it </u> <u> ok thank you good
abling these techniques to be used in dialogue systems. bye </u> </ s>

Segment language model:
<s> hello i'd like an italian restaurant

4. EXPERIMENTAL RESULTS Two configurations were compared. First, a conventional con
figuration was tested consisting of a VAD component feedimj@
segments to an ASR component. In the second test, ASR was per-
formed on the whole dialogue with no separate VAD compon&nt.
key advantage of using ASR only is being able to adapt both the
VAD and the ASR in one step. Thus the goal was to perform offline
adaptation and adapt the system to the noisy data iG\d&t Base-

Experiments were carried out using audio data collectedguali
restaurant information dialogue system. This is a mediuoako-
lary ASR task where the ASR output feeds into a statisticaViP®
dialogue system. Two live trials were performed to colleatiadsets
GML and GMR. The first was collected in a stationary car and the
segqnd in 8 moving car, each set was split into a) a dev setipsed line VAD GMM models were trained on whole dialogues collecte
training and b) a test set. Taple_l s_hows the amount Of. d_ata_gn e during trials, including all the silence between user aitees. The
set. Alarge portion of the audio is silence where the uséstienling  \/Ap GMMs had 256 components in the silence state and 128 in the
to the system speak. speech state. Initial VAD models (V1) were trained on cleatad
including theGMLa set. Noisy VAD models,V2, were trained by

| GMia GMib GWea GWb also using the nois@Ra data.
Audio (hrs) 8.5 5.8 9.7 5.8 Table 2 shows that the inital VAD models, V1, perform well on
Speech (hrs) 1.7 0.7 1.3 0.8 the matched clean datag@tll, but their accuracy degrades on the
# Dialogues 361 242 467 312 noisy GV data. The noisy VAD models, V2, have improved per-
formance on the noisy s@W. For example, frame correctness for
Table 1. Data sets the noisy test seBVRb rises from 84.3% to 89.8% when moving

Acoustic models were trained using 76 hours of narrowbandrom VAD models V1 to V2. Much of the error in the VAD accu-
conversational speech, where speech segments with a snmlha  racy arises as a consequence of noise being erroneousiifieldsis
of pre- and post-silence were extracted from the audio. NéAP speech. On sdéBVRb when the frame correctness is 89.8%, speech
adaptation was used to adapt the models to task specificatdta, recall is 94.5% and speech precision is 61.4%.
lected during trials, followed by MPE training with the coiméd ASR models Al are trained on all data, and both the cl@da
data set. There are an average of 8 GMM components per HMMnd noisyG\VRa dev sets were used as task specific data to perform
state, with the number of components per state being priopaitto  the final MAP adaptation and MPE stages. Table 2 also shows the
the amount of training data for that state. Each of the sédestates  VAD results when these acoustic models were used to deceade th
had roughly 30 components. whole dialogue audio, and the recogniser best path was aseelrt-

A language model was trained on 410k words of transcribedify speech segments as described in section 3. The A1 ASRIsiod
speech from previous trials. A general background modelwes perform worse than the standalone VAD models, with a frante co



VAD ASR | GMla GMlb Gwa Gweb noisy data and using continuous ASR works better than augpti
dev test dev test the ASR and the VAD models separately. The ASR models are more
V1 93.7 93.5 82.9 84.3 robust to noise and the ASR best path can be successfullyfosed
V2 95.3 95.5 89.5 89.8 voice activity detection, allowing for system behaviouclsas that
- Al 75.9 73.0 72.5 76.0 described in the previous section.
- A2 98.0 98.3 95.5 96.6
| VAD+ASR ASR
Table 2. VAD performance, Frames Correct (%) Reference segments identified 86% 83%
rectness of 76.0% on the noisy test &b, and tend to identify Inserted segments . 63% 39%
many non-speech segments as speech. Average error detecting end of speech ~ 108ms 45ms
To address this poor performance, the decoding hypotheses u Expected latency >608ms <345ms

ing A1 models were used to identify segments of the audiolétht
to erroneous insertions in the dev s@dla and G\Ra. That is,
those ASR insertions that are hesitations or probable nbigeare

not immediately adjacent to actual segments of speech.ahdb6 Table 4 shows an analysis of the segments predicted by beth ap
hours of non-speech segments were collected this way, whetk  proaches, using the V2 and A2 models on the noisy tesB¥eb.
then used during the MAP and MPE stages to train improvedsacou The VAD models correctly identify more of the reference segts
tic models A2. The silence models for A2 were not updatednduri than the ASR models alone, 83% compared to 86%, but the VAD
the MPE training stage since updating them was found to degra models also insert far more erroneous segments. 63% of the se
performance. Table 2 shows that these new acoustic moaeltde ments hypothesised by the VAD models are non-speech segment
large improvements in VAD performance, and outperform th@s  compared to only 39% of the segments predicted by the continu
dalone VAD mOdeIS, pal’ticularly on the nOisy data where thene 0us|y |istening ASR models. The average error in detecﬁw‘hd
classification rate on the noisy test set was 96.6%. of speech is also shown, for the correctly detected speeghesgs,
These results show that a simple GMM classifier for idemidyi  and is larger for the VAD models than for using the ASR decgdin
speech and non-speech in noisy data becomes unreliablés@, no path. Finally, the average error in the end border can be tospe:-
even when the GMMs are trained on noisy data, and that agproprdict the expected latency in responding to the user. Usipgrsage
ately trained acoustic models can give a more reliable atdicof ~ VAD models, a lookahead window of 500ms has been found to give
user speech. good performance and this leads to an average delay of 60@ens a
Table 3 shows the ASR word error rates for both scenarios. Ashe user has finished speaking before the system can stparjmmg
expected, results for the cle@VLL set are better than the noi§vR a response. In contrast, the expected latency when usingSRe
set, by roughly 10% absolute. ASR results are scored ovevitibée  path is shorter. In this paper, a conservative delay of 3dfaebeen
dialogue, so a large source of errors results from inseggthents  ysed to identify a segment as speech, i.e. the time betweats po
where the audio contains non-speech. Thatis, where naises®-  (d) and (e) in figure 1. However, all processing can be doneiat p

Table 4. Analysis of detected speech segments using V2 and A2
models on noisy test s&VRb

verbal sounds from the user are erroneously transcribepezsh. (d), leaving the system ready to respond as soon as the enasef a
utterance has been confirmed. This 300ms is a conservatiue fig
VAD ASR | GMla GMlLb Gwa Gwb and in practice the system can be ready to respond muchrearlie
dev test dev test even before the user has finished speaking if the final worcels w
V1 Al 233 20.7 20.1 38.1 predicted by the language model.
V2 Al 23.1 29.4 27.0 375
V2 A2 19.7 244 224 340 5. CONCLUSIONS
- Al 28.4 34.5 41.0 44.3 Conventional dialogue systems normally use a cascade of afD
- A2 19.3 23.8 22.4 32.9 ASR components to identify when the user is speaking and what
they are saying. This imposes an artificial rigid turn-tgkmodel
Table 3. ASR performance, Word Error Rate (%) which is unnatural to users and can lead to poor user sdtisfiac

When using VAD+ASR moving from the V1 to V2 VAD mod- When using a spoken dialogue system.
els, there is a small gain in ASR performance, 38.1 to 37.54RWE  This paper has investigated replacing the VAD+ASR cascade
on theG\VRb test set. Then, when using the improved A2 acousticwith a single ASR component that is always listening, andgighe
models, the improved performance of 34.0% is achieved drstiia  real-time decoded output to identify user speech. This rfiexéle

As expected because the Al acoustic models had poor VAD peframework allows for more robust adaptation to noisy envinents
formance, they also have poor ASR performance when useiheont and for finer control over turn-taking during dialogues.
uously with no VAD module. This is due to the large number of ~ Experimental results showed an improvement in VAD perfor-
insertions from noises and other non-vocal sounds. FinABR  Mance when using acoustic models adapted for the noisy tommsi
results show that using just acoustic models A2, the pedaga @ small improvement in ASR performance, and potential fochnu
achieved is comparable to that when using the standalonerd@®  Shorter system response times. As statistical dialoguersgshave
els followed by ASR on each segment. For example, on the nois§h inbuilt resiliance to ASR errors, it requires a large gfeaim ASR
test setGVR2b, performance improves from 34.0% to 32.9% when performance (perhaps 10% absolute) for the user to notigeefin
moving from VAD+ASR to ASR only. This small improvement is fect. Thus the improved speech activity detection perforcesand
unlikely to be noticeable to the user of a statistical diagystem, —responsiveness are expected to improve user satisfaction.
and a greater effect on user satisfaction is likely to coroenfthe Future work will involve moving this work from offline recog-
improved VAD performance leading to better turn-taking. nition and adaptation to an online dialogue scenario andbaung

These results show that offline adaptation of ASR models tdt With an incremental turn-taking model.
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