HIDDEN VECTOR STATE MODEL FOR HIERARCHICAL SEMANTIC
PARSING

Yulan He

Steve Young

Cambridge University Engineering Department
Trumpington Street, Cambridge CB2 1PZ
United Kingdom

ABSTRACT

The paper presents a Hidden Vector State (HVS) model
for hierarchical semantic parsing. The model associates
each state of a push-down automata with the state of a
HMM. State transitions are factored into separate stack
pop and push operations and then constrained to give
a tractable search space. The result is a model which is
complex enough to capture hierarchical structure but
which can be trained automatically from unannotated
data. Experiments have been conducted on ATIS-3
1993 and 1994 test sets. The results show that the
HVS model outperforms a general finite state tagger
(FST) by 19% to 32% in error reduction.

1. INTRODUCTION

Semantic parsing involves analysing an utterance in
sufficient detail to enable the relevant information to
be extracted. In the context of spoken dialogue sys-
tems, this function has typically been implemented via
hand-crafted semantic grammar rules and some form
of robust parser [1]. However, this approach carries
a high development cost and it can also lead to fragile
operation since users do not typically know what gram-
matical constructions are supported by the system.
An alternative approach is to use statistical meth-
ods to map directly from word strings into the intended
meaning structures. In this approach, explicit gram-
mar rules are replaced by a statistical model of sentence
generation [2]. The generative power of such models
extend from finite-state regular languages to recursive-
hierarchical context-free languages. Examples of the
former include the finite state semantic tagger used in
AT&T’s CHRONUS [3] and of the latter include re-
cursive models such as BBN’s Hidden Understanding
Model (HUM) [4]. In practice it is found that both
these extremes have limitations. Finite state taggers
(FSTs) are unable to represent embedded structural in-
formation and thus fail to make important distinctions
(eg confusing the departure and destination in a travel

request). Recursive-hierarchical models can represent
such dependencies but they are not easily trained from
unlabelled data [5], instead they typically require fully
annotated treebank data [6].

This paper describes a class of models, called Hid-
den Vector State (HVS) models, which extend simple
discrete hidden Markov models to enable hierarchical
structure to be efficiently represented whilst retaining
the computational tractability of regular HMMs. The
experiments described below show both that this model
can be trained on unannotated data using EM and that
it can learn long range dependencies sufficient to resolve
semantic ambiguities.

The remainder of this paper is organized as follows:
Section 2 describes the HVS model and how it can be
trained from unannotated data using EM and the tar-
get semantics as a constraint. Section 3 then presents
experimental results obtained using the ATIS database.
Finally, Section 4 presents our conclusions regarding
the HVS model.

2. HIDDEN VECTOR STATE MODEL

aleres
G

\ \
sent_start show me flights from Boston to NewY ork sent_end

Fig. 1. Example of a parse tree.

The hidden vector state (HVS) model is best intro-
duced by an example. Consider the parse tree shown
in Figure 1, the semantic information relating to any
single word can be stored as a vector of semantic tag
names starting from the preterminal tag and ending at

ss SsS
s FLIGHT ss FLIGHT
ss ss FLIGHT | FROMLOC] | FLIGHT || TOLOC ss
SS | |DUMMY || FLIGHT ||FROMLOC | CITY TOLOC || CITY SE
sent_start show me flights from Boston to NewYork sent_end

Fig. 2. Vector state equivalent of the parse tree.

the root tag. For example, the word Boston is de-
scribed by the semantic vector [CITY, FROMLOC,
FLIGHT, SS] and the complete parse tree can be re-
placed by a sequence of vectors as shown in Figure
2. Viewing each vector state as a hidden variable, the
whole parse tree can again be treated as a Markov pro-
cess, this is the Hidden Vector State (HVS) model.

When viewed as a generator, each state in a HVS
model represents the state of the stack in a push down
automata. If state transitions were unconstrained the
result would be a model with equivalent power to a
fully recursive hierarchical HMM (ie it would be con-
text free). However, transitions between states can
be factored into a stack shift followed by a push of
one or more semantic concepts relating to the next in-
put word. Each operation in this two stage factori-
sation can then be constrained. In particular, if the
stack size is limited and the number of new concepts to
be pushed for each new word is limited to one, then
the resulting parser is effectively a form of discrete
Markov model extended to include an efficient history
mechanism. Viewed from the perspective of parsing,
the model supports embedding but all parse trees are
strictly right branching.

More formally, let the complete set of model pa-
rameters be denoted by A and let each state at time ¢
be denoted by a vector of D; semantic concept labels
(tags) ¢; = [c1t,C2t,--CD,t] Where ¢y is the pretermi-
nal concept and cp,: is the root concept (SS in Figure
2). Given a word sequence W, concept vector sequence
C and sequence of stack pop operations N, the joint
likelihood function is defined as:

L(X\) =log P(W,C, N|X) 1)

EM-based parameter estimation then aims to maximize
the expectation of L()\) given the observed data and
current estimates. To do this, define the auxiliary @
function as:

Q(\|*¥) = E [log P(W, C, N|\)|W, \¥]

= 3" P(C,N|W,) log P(W,C, N|¥*) ()
C,N

As discussed above, P(W, C, N) can be decomposed as

follows

T
P(W,C,N) =[] P(n|Wi*, CY) - 3)
t=1

P(c[1]|W{~1,C 7 ny) - Pwy | WY1, CY)
where the notation Wlt denotes words w;..w; and sim-

ilarly for concepts. In the version of the HVS model
discussed in this paper, equation 3 is approximated by

P(ny| Wy, CY) & P(ngles—s) (4)
Ple[1W{~',Ci Y ny) &~ P(e[1]|es[2--- Dy])(5)
P(w|Wy 1, Cl) ~ P(wcy) (6)

Thus, the generative process associated with this con-
strained version of the HVS model consists of three
steps for each word position ¢: (a) choose a value for
ng; (b) select preterminal concept tag c:[1]; (c) select a
word w;.

Our goal in training the HVS model is to avoid
the use of word-level annotations on the grounds that
whilst it is reasonable to ask an application designer
to provide examples of utterances which would yield
each type of semantic schema, it is not reasonable to re-
quire utterances with manually transcribed parse trees.
Thus, for training we assume the availability of a set
of domain specific lexical classes and abstract seman-
tic annotations for each utterance. For example, in
a flight information system, it is possible to group all
city names like Boston, New York, Denver etc into one
class CITY. Such domain specific classes can usually be
extracted directly from the domain database schema.
Given these classes, all word sequences are then pre-
processed and the detected class members are replaced
by their corresponding class names. This also effec-
tively reduces the vocabulary size of the model. An ab-
stract semantics provides dominance relationships be-
tween individual semantic tags without considering tag
sequences or attempting to identify tag/word pairs. For
example, all the following sentences share the same se-
mantics:

1. Show me flights arriving in X at T.
2. List flights arriving around T in X.
3. Which flight reaches X before T.

FLIGHT (TOLOC(CITY(X) ,TIME_RELATIVE(TIME(T))))

These semantic annotations serve to partially an-
notate the training data'. Experiments using pure ab-
stract semantics (ie without any lexical features) have
also been conducted and the result will be presented in
Section 3.

INote that the use of lexical items is justified on the
grounds that they can be derived automatically from the domain
database.

Parameter estimation is based on EM. Equations
4 to 6 are plugged into equation 2 and maximised.
State occupation probabilities are then computed using
a conventional forward-backward scheme. The abstract
annotations are used to constrain the search space by
assigning zero probability to any stack configuration
which is incompatible with the target semantics.

3. EXPERIMENTS

This section describes the experimental evaluation of
the HVS model using the ATIS-3 NOV93 and DEC94
test sets. The training set consists of 4978 utterances
selected from the Class A training data in the ATIS-2
and ATIS-3 corpora. In order to evaluate the perfor-
mance of the HVS model, a simple finite state seman-
tic tagger (FST) has been implemented as a baseline
system. Note however that in contrast to the earlier
work using an FST conducted by AT&T [3], where
maximum likelihood estimation based on relative fre-
quency counts on a fully annotated ATIS training set
was used, our FST model only uses abstract annota-
tions for training data, similar to those described for
the HVS model.

3.1. Experimental Setup

A set of 30 domain-specific lexical classes were extracted
from the ATIS-3 database. The training data was then
preprocessed with the detected class members being re-
placed by their corresponding class names. Abstract se-
mantics for each training utterance were derived semi-
automatically from the SQL queries provided in ATIS-
3.

In order to evaluate the performance of the model,
a frame structure for every test set utterance was also
derived consisting of a goal and a number of slot/value
pairs. An example of such a reference frame is:

Show me flights from Boston to New York.
Goal: FLIGHT
Slots: FROMLOC.CITY = Boston

TOLOC.CITY = New York

Performance was then measured in terms of goal de-
tection accuracy as well as slot/value pair comparison.
In the experiments reported here, Bayesian Belief Net-
works (BN) similar to those proposed in [7] were used
to identify each of the 19 distinct goals using as input
47 distinct semantic concepts.

Various smoothing techniques have been tested and
it was found that linear discounting for transition prob-
abilities and Good-Turing for output probabilities yield
the best result for the FST model, whereas nonlinear
discounting for vector state stack operation probabil-
ities and Witten-Bell for output probabilities achieve
the highest F-measure score for the HVS model [8, 9].

3.2. Results

The trained FST and HVS models were tested on the
NOV93 and DEC94 ATIS-3 test sets. In each case,
the parsed results were compared with the slots from
the reference frames and the precision (P) and recall
(R) values were computed. These two values are then
combined to form a single F-measure:

F =2PR/(P +R) (7)

Table 1 gives the F-measure scores as well as goal
detection accuracy for both the FST and the HVS mod-
els. It can be observed that the HVS model outper-
forms the FST model in both F-measure and goal de-
tection for NOV93 test set and F-measure for DEC94
test set. The goal detection accuracy for DEC94 is
about the same for both models. The HVS model has
a higher precision and slightly higher recall than those
of the FST model, which results in F-measure being
increased by 3.61% and 5.37% for NOV93 and DEC94
test sets respectively. The lower precision compared to
recall exhibited by the HVS model is a result of incor-
rect taggings. For example, the tag FROMLOC.CITY
may be assigned to a word which is not one of the
city names. This is a penalty incurred from eschewing
the use of fully annotated training data. If the system
is trained on pure abstract semantic annotated data
(without any lexical features), F-measure for NOV93
and DEC94 are 77.80% and 84.18% respectively, and
the goal detection accuracy is 85.91% and 86.52%.

1993 Test Set 1994 Test Set

Measurement || FST | HVS FST | HVS
Recall 91.23% | 91.53% || 92.51% | 94.69%
Precision 78.27% | 83.45% | 79.94% | 86.44%
F-measure 84.26% | 87.30% || 85.77% | 90.38%
Goal 83.48% | 89.29% || 88.09% | 87.64%

Table 1. Performance comparison of FST and HVS.

The stack depth in the HVS model determines the
number of previous semantic tags which can be recorded
as history context. Figure 3 shows the effect of varying
the maximum stack depth where solid lines represent
F-measure and dash lines represent goal detection accu-
racy 2. It can be observed that the highest F-measure
score and the best goal detection accuracy are obtained
when the stack depth is set to 3 for both NOV93 and
DEC94 test sets. These two values remain constant for
the stack depth 4 and above. The optimal stack depth

2As the tag SS for sentence start marker always exists in all
vector states, it is omitted from vector state stacks for clarity,
ie, the actual number of semantic tags kept in a vector state is
n + 1 for the stack depth n.

is in fact determined by the deepest hierarchical level
within the semantic tags that appear in the abstract se-
mantic annotations. Another conclusion we can draw
from Figure 3 is that the system performance is sim-
ilar to that of the FST model when the stack depth
is set to 2. The HVS model with stack depth 2 thus
corresponds to an FST model with bigram transition
probabilities.

1

0.95

o
©
T

F-measure and Goal Detection Accuracy
o o o
o o o ~ o 0
> & 3 @ @ &
T T T T T T

[=4

o

@
T

0.5
0

4 6 7 8 9 10
Vector State Stack Depth

Fig. 3. F-measure and goal detection accuracy vs stack
depth.

Another interesting issue is the number of param-
eters to be estimated in each model. This is related
to the total number of distinct states and the vocabu-
lary size. Table 2 gives the relevant statistics for the
FST model and the HVS model. Although the state
space for the HVS model is large relative to the FST
model, the possible transitions between any two states
are constrained by the maximum depth of the vector
state stack and the condition that only one new seman-
tic tag can be added per input word.

| [FST Model | HVS Model |

Number of States 120 2799
Vocabulary Size 611 611
Total Parameters 87720 1724184

Table 2. Statistics of states and vocabulary size.

4. CONCLUSION

This paper has presented the hidden vector state (HVS)
model for hierarchical semantic parsing and its exper-
imental evaluation on the ATIS-3 database. The key
features of the model are its ability for representing
hierarchical information in a constrained way and its
capability for training directly from the target seman-
tics without explicit word-level annotation. The latter

is thought to be particularly important since it sim-
plifies the development process and facilitates on-line
learning.

Also, unlike more general hierarchical models, the
HVS model is well-suited to left-right decoding since
all partial paths covering W{ can be compared directly
without normalisation and pruning since they contain
exactly the same number of probabilities. Moreover,
the effective state space and model size are much re-
duced compared to fully recursive hierarchical models.

The experimental results show improved performance
of the HVS model relative to a conventional finite state
semantic tagger and suggest that a maximum stack
depth of 3 is sufficient to capture all necessary hier-
archical structure in the ATIS data. Larger and more
complex tasks may require deeper stack depths and cor-
respondingly larger search spaces, and we are currently
investigating this.

5. REFERENCES

[1] W. Ward and S. Issar, “Recent improvements in the
CMU spoken language understanding system,” in Proc.
of the ARPA Human Language Technology Workshop.
1996, pp. 213-216, Morgan Kaufman Publishers, Inc.

[2] S.J. Young, “Talking to machines (statistically speak-
ing),” in Proc. of Spoken Language Processing, Denver,
Colorado, Sep 2002.

[3] E. Levin and R. Pieraccini, “CHRONUS, the next gen-
eration,” in Proc. of the DARPA Speech and Natural
Language Workshop, Austin, TX, Jan. 1995, pp. 269—
271, Morgan Kaufman Publishers, Inc.

[4] R. Schwartz, S. Miller, D. Stallard, and J. Makhoul,
“Hidden understanding models for statistical setence
understanding,” in Proc. of the IEEE Intl. Conf. on
Acoustics, Speech and Signal Processing, Munich, 1997,
pp. 1479-1482.

[6] K. Lari and S.J. Young, “The estimation of stochas-
tic context-free grammars using the inside-outside algo-
rithm,” Computer Speech and Language, vol. 4, no. 1,
pp. 35-56, 1990.

[6] C. Chelba and M. Mahajan, “Information extraction
using the structured language model,” in Proc. of Con-
ference on Empirical Methods in Natural Language Pro-
cessing, 2001.

[7] H. Meng, W. Lam, and C. Wai, “To believe is to under-
stand,” in Proceedings of the 6th European Conference
on Speech Communication and Technology, 1999.

[8] H. Ney, U. Essen, and R. Kneser, “On structuring
probabilistic dependencies in stochastic language mod-
elling,” Computer Speech and Language, vol. 8, no. 1,
pp. 1-38, 1994.

[9] I.H. Witten and T.C. Bell, “The zero frequency prob-
lem: estimating the probabilities of novel events in
adaptive text compression,” IEEE Trans. on Informa-
tion Theory, pp- 1085-1093, 1991.

