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Abstract. This paper proposes an HMM-based approach to generating
emotional intonation patterns. A set of models were built to represent
syllable-length intonation units. In a classification framework, the models
were able to detect a sequence of intonation units from raw fundamental
frequency values. Using the models in a generative framework, we were
able to synthesize smooth and natural sounding pitch contours. As a
case study for emotional intonation generation, Maximum Likelihood
Linear Regression (MLLR) adaptation was used to transform the neutral
model parameters with a small amount of happy and sad speech data.
Perceptual tests showed that listeners could identify the speech with the
sad intonation 80% of the time. On the other hand, listeners formed
a bimodal distribution in their ability to detect the system generated
happy intontation and on average listeners were able to detect happy
intonation only 46% of the time.

1 Introduction

Emotional speech synthesis requires the appropriate manipulation of a wide
range of parameters related to voice quality and prosody. In this paper, we
focus on the generation of pitch contours which constitute the building blocks of
human intonation. Such prosodic generation schemes can plug into a variety of
speech synthesis or voice conversion frameworks. We argue that a robust model-
based approach can provide an adaptive framework which allows new emotional
intonations to be generated with little training data using model adaptation
algorithms.

The popularity of concatenative synthesis and unit-selection schemes have
made the prospect of emotional speech synthesis more viable, given the im-
provement in quality over formant-based approaches. One approach that has
been explored is to record neutral as well as emotional speech databases and
select the units with the appropriate emotional qualities [1][2][3]. However this
gives only limited capability for generating new emotions, since each new emo-
tion requires an extensive data collection effort. At the other end of the spectrum,
exploring dimensional approaches has proved valuable, particularly for generat-
ing non-extreme emotions and emotion build-up over time [4]. Due to lack of a
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Table 1. List of Intonation Units

a accent c unstressed

rb rising boundary fb falling boundary
arb  accent + rising boundary afb  accent + falling boundary
sil silence

comprehensive theory of emotion, however, it is unclear how all emotions can be
represented within this dimensional space.

We propose an HMM-based representation of intonation, where each HMM
represents a syllable-length intonational unit. Previous work on intonation mod-
elling based on HMM has been carried out by [6][5][7]. We revisit this approach
with the purpose of automatic contour synthesis and adaptation. Our moti-
vation is twofold: to create a set of unified models that can be used to both
recognize and synthesize natural sounding intonation patterns and to gener-
ate emotional intonation by adapting model parameters with a small amount of
emotional speech data. Our results show that syllable-based HMMs can generate
very natural sounding intonation contours. Adaptatation to a very small amount
of sad speech data also resulted in considerably sadder prosody, as confirmed by
preference tests. Adaptation to happy data was not as effective, suggesting that
intonation may not be the only key element in producing happy sounding speech.

Section 2 describes the models in detail. Section 3 presents the performance
of our models in a recognition framework, where two levels of context-sensitivity
are explored. Section 4 reviews the HT'S(HMM-based speech synthesis) system
which has been adapted to generate continuous pitch contours from HMMs and
illustrates the contours that result from our models. Section 5 describes the
MLLR adaptation method and demonstrates the results of adaptation to happy
and sad speech data. Section 6 summarizes conclusions and future work.

2 Intonation Models

A set of seven basic units, which constitute the parts of an intonational phrase,
were chosen (Table 1). Each syllable is assumed to belong to one of the seven
units of intonation. This label set is based on the work done on the Tilt intonation
model [7]. An accent is represented by a and any intonation movement that is
not an accent is either a falling or rising boundary tone (fb,rb) or an unstressed
segment of speech(c). For the cases when an accent and a boundary tone coincide,
the combination units (arb, afb) are used. Silence is also included as a marker
for intonational boundaries.

The basic models were trained on a female speaker from the Boston Radio
Corpus [12]. This is a corpus of news stories read by a professional news reader.
About 48 minutes of the female speaker’s speech was labelled with the into-
nation units. Out of the thirty-four news clips, five were set aside for testing.
To achieve speaker-independence, raw fundamental frequency values were nor-
malized by speaker mean and two orders of dynamic coefficients were computed
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(delta and delta delta). The models have three states, each with a single Gaus-
sian distribution. Training was carried out using HTK (Hidden Markov Model
Tool Kit)[11]. A number of iterations of embedded Baum-Welch algorithm were
performed. Context-sensitive models were also explored using incremental lev-
els of context around each intonation unit. A tri-unit model set was built by
replicating models based on their left and right neighbours and performing fur-
ther iterations of embedded training. The use of tri-unit models is analogous to
the use triphones in speech recognition. In order to overcome the problems of
data sparsity and unseen contexts, decision-tree based parameter tying was used,
where states of the models are clustered based on a log-likelihood criterion[10].
A full-context model set was also built incorporating sixteen contextual fac-
tors. The goal here was to capture more long distance intonation dependencies
and take advantage of more detailed information such as the relative location of
the vowel in the syllable. An intonational phrase (IP) is defined as the sequence
of labels between two silences. Based on this definition, the contextual factors
incorporated in the full-context models are as follows:

— identity of the unit to the left

— identity of the unit to the right

— relative position of current syllable in current IP

— the total number of each of a/c/rb/fb/arb/afbs in current IP

— the number each of a/arb/afb/rb/fbs before current syllable in current IP
— relative position of the vowel in current syllable

— total number of phones in current syllable

Decisions on how much context to incorporate in the models can depend on
the framework within which one wishes to use the system. In a speech synthesis
framework, for instance, access to phonetic information is straightforward and
further context can be incorporated. In a voice conversion framework, it may be
preferable to work with intonation units only.

3 Recognition Accuracy of Intonation Models

Evaluating the models in a recognition framework is important for two reasons:
to understand how effective our models are as a means to capture and analyze
intonation patterns and to ensure that they reliably represent the individual in-
tonation units since failing to do so would also degrade the quality of synthesis.
Recognition is performed using the Viterbi algorithm in HTK. Given consecutive
raw fO values extracted from an utterance of any length, the Viterbi algorithm
finds the sequence of intonation units that maximizes the likelihood of the ob-
servations. In addition to the label sequence, the syllable boundaries are also
determined by this process. The test data consisted of five news stories each
lasting for about two minutes, with an average syllable count of 200. Table 2
shows the percent accuracy and percent correct rates for models of varying con-
textual complexity. The difference between percent correct and percent accuracy
is that the latter also takes into consideration insertion errors (i.e. errors where a
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redundant intonation unit was inserted between two correctly recognized units)
and is therefore a more informative evaluation metric.

To illustrate the power of context we have also included the best results
that can be achieved by increasing the number of Gaussian mixture components
when context is ignored. Incorporating full context significantly improves the
performance even when compared with the best performance achieved by the
optimal configuration of mixtures components(N=10).

Table 2. Recognition results of varying mixture components in the no context case as
well as single mixture component with tri-unit and full context. Ten mixtures was the
optimal rate for the no-context case.

Model Set Number of Mixtures %Correct %Accuracy
N=1 53.26 44.52
Basic N=2 53.36 45.48
N=4 54.65 46.31
N=10 59.58 50.40
Tri-Unit N=1 61.50 49.75
Full Context N=1 64.02 55.88

4 Intonation Synthesis from HMM

We have adapted the HMM-based speech synthesis(HTS)[9] system to generate
continuous pitch values. HTS is a stand-alone speech synthesizer, which can
generate speech waveforms from a set of context-sensitive phone HMMs. We have
applied its cepstral parameter generation framework[8] to produce interpolated
pitch values from our continuous density intonation HMMs. The key idea behind
the parameter generation algorithm is the fact that in addition to fO values,
dynamic features (delta f0 and delta delta f0) are also used to optimize the
likelihood of the generated parameter sequence. Without the incorporation of
these dynamic features, the generated sequence would consist of the state mean
vectors regardless of immediate context.

The input to our system is an intonation label sequence with corresponding
syllable boundaries as well as a speaker mean value. The intonation models are
then concatenated according to the label sequence to form a larger HMM net-
work that represents the entire contour. The parameter generation algorithm is
then applied to generate an interpolated fO contour. Since training includes a
mean normalization for the speaker, the input mean value is added to the gen-
erated f0 values. Currently the system also assumes that syllable boundaries are
given since our focus is on intonation generation and a precise syllable-based du-
ration model will require a separate investigation of its own. We have generated
contours from both tri-unit and full-context model sets. Figure 1 illustrates the
interpolated contours generated by our system given two different sequences of
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intonation units for an utterance with six syllables. The introduction of accents
and boundary tones in the contour is clearly observable in these plots. Figure 2
is a comparison of a sample contour generated by the tri-unit and full context
models for the same label sequence. We were able to observe that, compared
with the tri-unit model, the full context model may shift accents slightly to the
right or to the left, based on the location of the vowel in the syllable. The full
context model was also found to frequently vary the amplitude of a pitch accent
based on the number of preceding accents. For instance, in an utterance with
many accents, some of the later ones may not be as pronounced as the earlier
ones. A number of these contextual modifications are observable in Figure 2.
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Fig. 1. Contours generated from two different label sequences using tri-unit model set
with mean f0=200Hz
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Fig. 2. Contours generated by tri-unit and full context models for the same label
sequence, mean f0=180Hz

The perceptual evaluation framework was based on transplanting the con-
tours onto naturally spoken utterances. In order to focus on the effects of the
generated contours, real utterances were modified using the PSOLA algorithm
[14] to replace their existing f0 contours with those generated by the intonation
models. We were able to transplant our contours onto a wide range of record-
ings from different speakers and still obtain very natural sounding results. A
brief perceptual test was conducted to quantify the naturalness of generated
contours. Listeners were asked to rate eight utterances on a scale of 1 to 5 for
their naturalness, 1 corresponding to least natural and 5 to very natural. Four
of the utterances were presented with their original, unmodified pitch contours
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and the other four had the synthetic contours generated by our tri-unit models.
The utterances were presented in random order. The objective of the test was to
ensure that the utterances with synthetic contours had ratings that overlapped
sufficiently with those of the original recordings. The mean rating was 4 out of
5 for the unmodified utterances and 3.55 for the modified utterances. A t-test
(p<0.05) on the two samples confirmed that the samples are not statistically
distinguishable.

5 MLLR Adaptation of Intonation Models with Happy
and Sad Speech

MLLR is an adapatation technique frequently used in speech recognition to
adapt phone models to different regional dialects[13]. The algorithm estimates
a set of linear transformations for the mean and variance parameters of the
Gaussian distributions for each state. Using HTK, MLLR can be applied flexibly
depending on the amount of training data available. A regression tree is used
to cluster the Gaussian parameters based on a similarity criteria and different
transformations can be applied to different nodes of the tree based on the data
available.

Thirty nine and ninety short segments of speech were acquired for sad and
happy emotions, respectively. The data came from the Emotional Prosody Speech
Corpus[15], which contains neutral and emotional utterances of four syllable
phrases, mainly dates and numbers. Since these are extremely short utterances
with limited long-distance context, tri-unit models were used for adaptation. Fig-
ure 3 illustrates sad, happy and neutral contours all generated by their respective
model sets for a given label sequence. Detailed analysis of the emotion-specific
changes in intonation is beyond the scope of this paper. However, it was ob-
served that both happy and sad contours generally had a higher mean pitch,
while the pitch range for happy contours was frequently wider than both sad
and neutral contours, particularly in the case of accents and accents with ris-
ing boundaries. Sad contours manifested very unpronounced intonation units,
particularly accents.
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Fig. 3. Synthesized sad, happy and neutral contours by tri-unit models for the label
sequence: ¢ arb ¢ ¢ ¢ c¢. mean f0=200Hz
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A two-part, perceptual preference test was conducted to compare the two
types of generated contours: neutral and emotional. In part one, listeners were
asked to listen to twenty pairs of short utterances and decide which utterance out
of each pair sounds happier. In part two, the same procedure was repeated for
sad speech. In order to evaluate the relative performance of emotional models
over neutral ones, a forced choice was required between a generated neutral
contour and a generated emotional contour. The utterances were taken from five
different speakers: 3 female and 2 male. The presented contours covered all of the
seven basic intonation units. Fourteen listeners took the test and a total of 280
choices were made in each part. The speech with sad contours were identified as
sounding sadder 80% of the time. This was statistically significant (Chi-Square,
p<0.01). On the other hand, only 46% of listener’s choices associated the happy
contours with happier sounding speech. While we would have hoped that our
models performed better for the happy case, our results seem to confirm previous
attempts in emotion synthesis[3][2].

When analyzed on a per listener basis, the distribution of preferences in part
one (happy) suggest strong bimodality: eight of the fourteen listeners had a mean
identification rate of 5 out of 20, while the remaining six had a mean identification
rate of 15. Figure 4 illustrates the distribution of speakers in both parts. Clearly
the intonational correlates of happiness are not universally sufficient on their
own to express the full texture of the emotion. On the other hand, there may
also be differences in imagined context for the two groups of listeners who seem
to disagree on the effectiveness of our models.
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Fig. 4. Distribution of listener agreements with system.

An interesting observation was made on the possible dependence of system
performance on the actual label sequence. In part one, the utterance where
thirteen out of fourteen listeners agreed with the contours produced by happy
models, consisted of six consecutive accents. The same label sequence was also
the least successful in part two, meaning that listeners consistently preferred
neutral contours over sad ones for sadder sounding speech. These facts suggest
that the frequency and organization of certain constituents such as accents may
be directly correlated with the proper expression of the two emotions at hand,
contributing to the generative power of our models. More rigourous analysis
of correlations between intonation unit sequences and emotions will be part of
future work.
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6 Conclusions and Future Work

A novel approach to synthesizing pitch contours based on syllable-based intona-
tion models has been proposed. The effectiveness of these models was assessed
both in a classification framework through recognition accuracy figures as well
as in a generative framework through perceptual tests. Model adaptation to sad
data proved successful while adaptation to happy data resulted in a division
between groups of listeners. One of our immediate objectives is to analyze the
dependence of emotions on the actual intonation unit sequence. Incorporation
of an emotion-specific pattern of basic units may actually improve the percep-
tion of difficult emotions such as happiness. Since the poor performance of the
happy synthesis may also be a consequence of the limited context in the specific
adaptation data, richer data sources will be evaluated. Further work on emotion
recognition using adapted intonation models will also be pursued in order to
explore advantages of recognition/synthesis duality.
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