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Abstract

Deep reinforcement learning (RL) meth-
ods have significant potential for dia-
logue policy optimisation. However, they
suffer from a poor performance in the
early stages of learning. This is es-
pecially problematic for on-line learning
with real users. Two approaches are in-
troduced to tackle this problem. Firstly, to
speed up the learning process, two sample-
efficient neural networks algorithms: trust
region actor-critic with experience replay
(TRACER) and episodic natural actor-
critic with experience replay (eNACER)
are presented. For TRACER, the trust re-
gion helps to control the learning step size
and avoid catastrophic model changes.
For eNACER, the natural gradient iden-
tifies the steepest ascent direction in pol-
icy space to speed up the convergence.
Both models employ off-policy learning
with experience replay to improve sample-
efficiency. Secondly, to mitigate the cold
start issue, a corpus of demonstration data
is utilised to pre-train the models prior to
on-line reinforcement learning. Combin-
ing these two approaches, we demonstrate
a practical approach to learning deep RL-
based dialogue policies and demonstrate
their effectiveness in a task-oriented infor-
mation seeking domain.

1 Introduction

Task-oriented Spoken Dialogue Systems (SDS)
aim to assist users to achieve specific goals via
speech, such as hotel booking, restaurant informa-
tion and accessing bus-schedules. These systems
are typically designed according to a structured
ontology (or a database schema), which defines the

domain that the system can talk about. The de-
velopment of a robust SDS traditionally requires
a substantial amount of hand-crafted rules com-
bined with various statistical components. This
includes a spoken language understanding mod-
ule (Chen et al., 2016; Yang et al., 2017), a dia-
logue belief state tracker (Henderson et al., 2014;
Perez and Liu, 2016; Mrkšić et al., 2017) to predict
user intent and track the dialogue history, a dia-
logue policy (Young et al., 2013; Gašić and Young,
2014; Budzianowski et al., 2017) to determine the
dialogue flow, and a natural language generator
(Rieser and Lemon, 2009; Wen et al., 2015; Hu
et al., 2017) to convert conceptual representations
into system responses.

In a task-oriented SDS, teaching a system how
to respond appropriately in all situations is non-
trivial. Traditionally, this dialogue management
component has been designed manually using flow
charts. More recently, it has been formulated as
a planning problem and solved using reinforce-
ment learning (RL) to optimise a dialogue policy
through interaction with users (Levin and Pierac-
cini, 1997; Roy et al., 2000; Williams and Young,
2007; Jurčı́ček et al., 2011). In this framework,
the system learns by a trial and error process gov-
erned by a potentially delayed learning objective
called the reward. This reward is designed to en-
capsulate the desired behavioural features of the
dialogue. Typically it provides a positive reward
for success plus a per turn penalty to encourage
short dialogues (El Asri et al., 2014; Su et al.,
2015a; Vandyke et al., 2015; Su et al., 2016b).

To allow the system to be trained on-line,
Bayesian sample-efficient learning algorithms
have been proposed (Gašić and Young, 2014;
Daubigney et al., 2014) which can learn policies
from a minimal number of dialogues. However,
even with such methods, the initial performance is
still relatively poor, and this can impact negatively



on the user experience.
Supervised learning (SL) can also be used for

dialogue action selection. In this case, the policy is
trained to produce an appropriate response for any
given dialogue state. Wizard-of-Oz (WoZ) meth-
ods (Kelley, 1984; Dahlbäck et al., 1993) have
been widely used for collecting domain-specific
training corpora. Recently an emerging line of
research has focused on training neural network-
based dialogue models, mostly in text-based sys-
tems (Vinyals and Le, 2015; Shang et al., 2015;
Serban et al., 2015; Wen et al., 2017; Bordes et al.,
2017). These systems are directly trained on past
dialogues without detailed specification of the in-
ternal dialogue state. However, there are two key
limitations of using SL in SDS. Firstly, the effect
of selecting an action on the future course of the
dialogue is not considered and this may result in
sub-optimal behaviour. Secondly, there will of-
ten be a large number of dialogue states which are
not covered by the training data (Henderson et al.,
2008; Li et al., 2014). Moreover, there is no rea-
son to suppose that the recorded dialogue partici-
pants are acting optimally, especially in high noise
levels. These problems are exacerbated in larger
domains where multi-step planning is needed.

In this paper, we propose a network-based ap-
proach to policy learning which combines the best
of both SL- and RL-based dialogue management,
and which capitalises on recent advances in deep
RL (Mnih et al., 2015), especially off-policy algo-
rithms (Wang et al., 2017).

The main contribution of this paper is two-fold:

1. improving the sample-efficiency of actor-
critic RL: trust region actor-critic with ex-
perience replay (TRACER) and episodic
natural actor-critic with experience replay
(eNACER).

2. efficient utilisation of demonstration data for
improved early stage policy learning.

The first part focusses primarily on increasing
the RL learning speed. For TRACER, trust regions
are introduced to standard actor-critic to control
the step size and thereby avoid catastrophic model
changes. For eNACER, the natural gradient iden-
tifies steepest ascent direction in policy space to
ensure fast convergence. Both models exploit the
off-policy learning with experience replay (ER) to
improve sample-efficiency. These are compared
with various state-of-the-art RL methods.

The second part aims to mitigate the cold start
issue by using demonstration data to pre-train an
RL model. This resembles the training procedure
adopted in recent game playing applications (Sil-
ver et al., 2016; Hester et al., 2017). A key feature
of this framework is that a single model is trained
using both SL and RL with different training ob-
jectives but without modifying the architecture.

By combining the above, we demonstrate a
practical approach to learning deep RL-based dia-
logue policies for new domains which can achieve
competitive performance without significant detri-
mental impact on users.

2 Related Work

RL-based approaches to dialogue management
have been actively studied for some time (Levin
et al., 1998; Lemon et al., 2006; Gašić and Young,
2014). Initially, systems suffered from slow train-
ing, but recent advances in data efficient meth-
ods such as Gaussian Processes (GP) have enabled
systems to be trained from scratch in on-line inter-
action with real users (Gašić et al., 2011). GP pro-
vides an estimate of the uncertainty in the underly-
ing function and a built-in noise model. This helps
to achieve highly sample-efficient exploration and
robustness to recognition/understanding errors.

However, since the computation in GP scales
with the number of points memorised, sparse ap-
proximation methods such as the kernel span al-
gorithm (Engel, 2005) must be used and this limits
the ability to scale to very large training sets. It is
therefore questionable as to whether GP can scale
to support commercial wide-domain SDS. Never-
theless, GP provides a good benchmark and hence
it is included in the evaluation below.

In addition to increasing the sample-efficiency
of the learning algorithms, the use of reward shap-
ing has also been investigated in (El Asri et al.,
2014; Su et al., 2015b) to enrich the reward func-
tion in order to speed up dialogue policy learning.

Combining SL with RL for dialogue modelling
is not new. Henderson et al. (2008) proposed a hy-
brid SL/RL model that, in order to ensure tractabil-
ity in policy optimisation, performed exploration
only on the states in a dialogue corpus. The policy
was then defined manually on parts of the space
which were not found in the corpus. A method
of initialising RL models using logistic regression
was also described (Rieser and Lemon, 2006). For
GPRL in dialogue, rather than using a linear kernel



that imposes heuristic data pair correlation, a pre-
optimised Gaussian kernel learned using SL from
a dialogue corpus has been proposed (Chen et al.,
2015). The resulting kernel was more accurate on
data correlation and achieved better performance,
however, the SL corpus did not help to initialise
a better policy. Better initialisation of GPRL has
been studied in the context of domain adaptation
by specifying a GP prior or re-using an existing
model which is then pre-trained for the new do-
main (Gašić et al., 2013).

A number of authors have proposed training
a standard neural-network policy in two stages
(Fatemi et al., 2016; Su et al., 2016a; Williams
et al., 2017). Asadi and Williams (2016) also ex-
plored off-policy RL methods for dialogue policy
learning. All these studies were conducted in sim-
ulation, using error-free text-based input. A sim-
ilar approach was also used in a conversational
model (Li et al., 2016). In contrast, our work intro-
duces two new sample-efficient actor-critic meth-
ods, combines both two-stage policy learning and
off-policy RL, and testing at differing noise levels.

3 Neural Dialogue Management

The proposed framework addresses the dialogue
management component in a modular SDS. The
input to the model is the belief state b that encodes
a distribution over the possible user intents along
with the dialogue history. The model’s role is to
select the system action a at every turn that will
lead to the maximum possible cumulative reward
and a successful dialogue outcome. The system
action is mapped into a system reply at the seman-
tic level, and this is subsequently passed to the nat-
ural language generator for output to the user.

The semantic reply consists of three parts: the
intent of the response, (e.g. inform), which slots
to talk about (e.g. area), and a value for each slot
(e.g. east). To ensure tractability, the policy selects
a from a restricted action set which identifies the
intent and sometimes a slot, any remaining infor-
mation required to complete the reply is extracted
using heuristics from the tracked belief state.

3.1 Training with Reinforcement Learning

Dialogue policy optimisation can be seen as the
task of learning to select the sequence of responses
(actions) at each turn which maximises the long-
term objective defined by the reward function.
This can be solved by applying either value-based

Figure 1: A2C, TRACER and eNACER architec-
tures using feed-forward neural networks.

or policy-based methods. In both cases, the goal is
to find an optimal policy π∗ that maximises the
discounted total return R =

∑T−1
t=0 γ

trt(bt, at)
over a dialogue with T turns where rt(bt, at) is
the reward when taking action at in dialogue be-
lief state bt at turn t and γ is the discount factor.

The main difference between the two categories
is that policy-based methods have stronger con-
vergence characteristics than value-based meth-
ods. The latter often diverge when using function
approximation since they optimise in value space
and a slight change in value estimate can lead to a
large change in policy space (Sutton et al., 2000).

Policy-based methods suffer from low sample-
efficiency, high variance and often converge to lo-
cal optima since they typically learn via Monte
Carlo estimation (Williams, 1992; Schulman et al.,
2016). However, they are preferred due to their su-
perior convergence properties. Hence in this paper
we focus on policy-based methods but also include
a value-based method as a baseline.

3.1.1 Advantage Actor-Critic (A2C)
In a policy-based method, the training objective
is to find a parametrised policy πθ(a|b) that max-
imises the expected reward J(θ) over all possible
dialogue trajectories given a starting state.

Following the Policy Gradient Theorem (Sutton
et al., 2000), the gradient of the parameters given
the objective function has the form:

∇θJ(θ) = E [∇θ log πθ(a|b)Qπθ(b, a)] . (1)

Since this form of gradient has a potentially high
variance, a baseline function is typically intro-
duced to reduce the variance whilst not chang-
ing the estimated gradient (Williams, 1992; Sut-
ton and Barto, 1999). A natural candidate for this



baseline is the value function V (b). Equation 2
then becomes:

∇θJ(θ) = E [∇θ log πθ(a|b)Aw(b, a)] , (2)

where Aw(b, a) = Q(b, a) − V (b) is the ad-
vantage function. This can be viewed as a spe-
cial case of the actor-critic, where πθ is the ac-
tor and Aw(b, a) is the critic, defined by two pa-
rameter sets θ and w. To reduce the number of
required parameters, temporal difference (TD) er-
rors δw = rt + γVw(bt+1)− Vw(bt) can be used
to approximate the advantage function (Schulman
et al., 2016). The left part in Figure 1 shows the
architecture and parameters of the resulting A2C
policy.

3.1.2 The TRACER Algorithm
To boost the performance of A2C policy learning,
two methods are introduced:

I. Experience replay with off-policy learning
for speed-up

On-policy RL methods update the model with
the samples collected via the current policy.
Sample-efficiency can be improved by utilising
experience replay (ER) (Lin, 1992), where mini-
batches of dialogue experiences are randomly
sampled from a replay pool P to train the model.
This increases learning efficiency by re-using past
samples in multiple updates whilst ensuring sta-
bility by reducing the data correlation. Since
these past experiences were collected from differ-
ent policies compared to the current policy, the use
of ER leads to off-policy updates.

When training models with RL, ε-greedy ac-
tion selection is often used to trade-off between
exploration and exploitation, whereby a random
action is chosen with probability ε otherwise the
top-ranking action is selected. A policy used to
generate a training dialogues (episodes) is referred
to as a behaviour policy µ, in contrast to the policy
to be optimised which is called the target policy π.

The basic A2C training algorithm described in
§3.1.1 is on-policy since it is assumed that actions
are drawn from the same policy as the target to be
optimised (µ = π). In off-policy learning, since
the current policy π is updated with the samples
generated from old behaviour policies µ, an im-
portance sampling (IS) ratio is used to rescale each
sampled reward to correct for the sampling bias
at time-step t: ρt = π(at|bt)/µ(at|bt) (Meuleau
et al., 2000).

For A2C, the off-policy gradient for the
parametrised value function Vw thus has the form:

∆woff =
∑T−1

t=0

(
R̄t − V̂w(bt)

)
∇wV̂w(bt)

t
Π
i=0
ρi, (3)

where R̄t is the off-policy Monte-Carlo return
(Precup et al., 2001):

R̄t = rt + γrt+1

1
Π
i=1
ρt+i + · · ·+ γT−t−1rT−1

T−1
Π
i=1

ρt+i. (4)

Likewise, the updated gradient for policy πθ is:

∆θoff =
T−1∑
t=0

ρt∇θ log πθ(at|bt)δ̂w, (5)

where δ̂w = rt + γV̂w(bt+1)− V̂w(bt) is the TD
error using the estimated value of V̂w.

Also, as the gradient correlates strongly with the
sampled reward, reward rt and total return R are
normalised to lie in [-1,1] to stabilise training.

II. Trust region constraint for stabilisation

To ensure stability in RL, each per-step policy
change is often limited by setting a small learn-
ing rate. However, setting the rate low enough to
avoid occasional large destabilising updates is not
conducive to fast learning.

Here, we adopt a modified Trust Region Policy
Optimisation method introduced by Wang et al.
(2017). In addition to maximising the cumula-
tive reward J(θ), the optimisation is also subject
to a Kullback-Leibler (KL) divergence limit be-
tween the updated policy θ and an average policy
θa to ensure safety. This average policy represents
a running average of past policies and constrains
the updated policy to not deviate far from the av-
erage θa ← αθa + (1− α)θ with a weight α.

Thus, given the off-policy policy gradient ∆θoff

in Equation 5, the modified policy gradient with
trust region g is calculated as follows:

minimize
g

1

2
‖∆θoff − g‖22,

subject to ∇θDKL [πθa(bt)‖πθ(bt)]
T g ≤ ξ,

where π is the policy parametrised by θ or θa,
and ξ controls the magnitude of the KL constraint.
Since the constraint is linear, a closed form solu-
tion to this quadratic programming problem can



be derived using the KKT conditions. Setting
k = ∇θDKL [πθa(bt)‖πθ(bt)], we get:

g∗tr = ∆θoff −max

{
kT∆θoff − ξ
‖k‖22

, 0

}
k. (6)

When this constraint is satisfied, there is no change
to the gradient with respect to θ. Otherwise, the
update is scaled down along the direction of k and
the policy change rate is lowered. This direction is
also shown to be closely related to the natural gra-
dient (Amari, 1998; Schulman et al., 2015), which
is presented in the next section.

The above enhancements speed up and stabilise
A2C. We call it the Trust Region Actor-Critic with
Experience Replay (TRACER) algorithm.

3.1.3 The eNACER Algorithm
Vanilla gradient descent algorithms are not
guaranteed to update the model parameters in
the steepest direction due to re-parametrisation
(Amari, 1998; Martens, 2014). A widely used so-
lution to this problem is to use a compatible func-
tion approximation for the advantage function in
Equation 2: ∇wAw(b, a) = ∇θ log πθ(a|b), where
the update of w is then in the same update direc-
tion as θ (Sutton et al., 2000). Equation 2 can then
be rewritten as:

∇θJ(θ) = E
[
∇θ log πθ(a|b)∇θ log πθ(a|b)Tw

]
= F (θ) · w,

where F (θ) is the Fisher information matrix. This
implies ∆θNG = w = F (θ)−1∇θJ(θ) and it is
called the natural gradient. The Fisher Matrix can
be viewed as a correction term which makes the
natural gradient independent of the parametrisa-
tion of the policy and corresponds to steepest as-
cent towards the objective (Martens, 2014). Em-
pirically, the natural gradient has been found to
significantly speed up convergence.

Based on these ideas, the Natural Actor-Critic
(NAC) algorithm was developed by Peters and
Schaal (2006). In its episodic version (eNAC), the
Fisher matrix does not need to be explicitly com-
puted. Instead, the gradient is estimated by a least
squares method given the n-th episode consisting
of a set of transition tuples {(bnt , ant , rnt )}Tn−1t=0 :

Rn =
[∑Tn−1

t=0 ∇θ log πθ(a
i
t|bit; θ)T

]
·∆θNG + C, (7)

which can be solved analytically. C is a constant
which is an estimate of the baseline V (b).

As in TRACER, eNAC can be enhanced by
using ER and off-policy learning, thus called
eNACER, whereby Rn in Equation 7 is replaced
by the off-policy Monte-Carlo return R̄n0 at time-
step t = 0 as in Equation 4. For very large models,
the inversion of the Fisher matrix can become pro-
hibitively expensive to compute. Instead, a trun-
cated variant can be used to calculate the natural
gradient (Schulman et al., 2015).

eNACER is structured as a feed forward net-
work with the output π as in the right of Figure 1,
updated with natural gradient ∆θNG. Note that by
using the compatible function approximation, the
value function does not need to be explicitly cal-
culated. This makes eNACER in practice a policy-
gradient method.

3.2 Learning from Demonstration Data

From the user’s perspective, performing RL from
scratch will invariably result in unacceptable per-
formance in the early learning stages. This prob-
lem can be mitigated by an off-line corpus of
demonstration data to bootstrap a policy. This
data may come from a WoZ collection or from in-
teractions between users and an existing policy. It
can be used in three ways: A: Pre-train the model,
B: Initialise a supervised replay buffer Psup, and
C: a combination of the two.

(A) For model pre-training, the objective is to
‘mimic’ the response behaviour from the corpus.
This phase is essentially standard SL. The input to
the model is the dialogue belief state b, and the
training objective for each sample is to minimise a
joint cross-entropy loss L(θ) = −

∑
k yk log(pk)

between action labels y and model predictions p,
where the policy is parametrised by a set θ.

A policy trained by SL on a fixed dataset may
not generalise well. In spoken dialogues, the noise
levels may vary across conditions and thus can sig-
nificantly affect performance. Moreover, a policy
trained using SL does not perform any long-term
planning on the conversation. Nonetheless, su-
pervised pre-training offers a good model starting
point which can then be fine-tuned using RL.

(B) For supervised replay initialisation, the
demonstration data is stored in a replay pool Psup
which is kept separate from the ER pool used for
RL and is never over-written. At each RL up-
date iteration, a small portion of the demonstration
data P ′sup is sampled, and the supervised cross-
entropy loss L(θ) computed on this data is added



to the RL objective J(θ). Also, an L2 regularisa-
tion loss ‖·‖22 is applied to θ to help prevent it from
over-fitting on the sampled demonstration dataset.
The total loss to be minimised is thus:

Lall(θ) = −J(θ)+λ1L(θ;P ′sup)+λ2‖θ‖22, (8)

where λ’s are weights. In this way, the RL policy
is guided by the sampled demonstration data while
learning to optimise the total return.

(C) The learned parameters of the pre-trained
model in method A above might distribute differ-
ently from the optimal RL policy and this may
cause some performance drop in early stages while
learning an RL policy from this model. This can
be alleviated by using the composite loss proposed
in method B. A comparison between the three op-
tions is included in the experimental evaluation.

4 Experimental Results

Our experiments utilised the software tool-kit Py-
Dial (Ultes et al., 2017), which provides a platform
for modular SDS. The target application is a live
telephone-based SDS providing restaurant infor-
mation for the Cambridge (UK) area. The task is
to learn a policy which manages the dialogue flow
and delivers requested information to the user.
The domain consists of approximately 100 venues,
each with 6 slots out of which 3 can be used by the
system to constrain the search (food-type, area and
price-range) and 3 are system-informable proper-
ties (phone-number, address and postcode) avail-
able once a database entity has been found.

The input for all models was the full dialogue
belief state b of size 268 which includes the last
system act and distributions over the user inten-
tion and the three requestable slots. The output in-
cludes 14 restricted dialogue actions determining
the system intent at the semantic level. Combin-
ing the dialogue belief states and heuristic rules,
it is then mapped into a spoken response using a
natural language generator.

4.1 Model Comparison

Two value-based methods are shown for compar-
ison with the policy-based models described. For
both of these, the policy is implicitly determined
by the action-value (Q) function which estimates
the expected total return when choosing action a
given belief state b at time-step t. For an opti-
mal policy π∗, the Q-function satisfies the Bellman

equation (Bellman, 1954):

Q∗(bt, at) = Eπ∗{rt + γmaxa′ Q
∗(bt+1, a

′)|bt, at}. (9)

4.1.1 Deep Q-Network (DQN)
DQN is a variant of the Q-learning algorithm
whereby a neural network is used to non-linearly
approximate the Q-function. This suggests a se-
quential approximation in Equation 9 by minimis-
ing the loss:

L(wt) = E
[
(yt −Q(bt, at;wt))

2
]
, (10)

where yt = rt + γmaxa′ Q(bt+1, a
′;w−t ) is the

target to update the parameters w. Note that yt
is evaluated by a target network w− which is up-
dated less frequently than the network w to sta-
bilise learning, and the expectation is over the tu-
ples (bt, at, rt+1,bt+1) sampled from the experi-
ence replay pool described in §3.1.2.

DQN often suffers from over-estimation on Q-
values as the max operator is used to select an
action as well as to evaluate it. Double DQN
(DDQN) (Van Hasselt et al., 2016) is thus used
to de-couple the action selection and Q-value esti-
mation to achieve better performance.

4.1.2 Gaussian Processes (GP) RL
GPRL is a state-of-the-art value-based RL algo-
rithm for dialogue modelling. It is appealing
since it can learn from a small number of obser-
vations by exploiting the correlations defined by a
kernel function and provides an uncertainty mea-
sure of its estimates. In GPRL, the Q-function
is modelled as a GP with zero mean and kernel:
Q(B,A) ∼ GP(0, (k(b, a), k(b, a)). This Q-
function is then updated by calculating the poste-
rior given the collected belief-action pairs (b, a)
(dictionary points) and their corresponding re-
wards (Gašić and Young, 2014). The implicit
knowledge of the distance between data points in
observation space provided by the kernel greatly
speeds up learning since it enables Q-values in as
yet unexplored space to be estimated. Note that
GPRL was used by Fatemi et al. (2016) to com-
pare with deep RL but no uncertainty estimate was
used to guide exploration and as a result had rela-
tively poor performance. Here GPRL with uncer-
tainty estimate is used as the benchmark.

4.2 Reinforcement Learning from Scratch
The proposed models were first evaluated under
0% semantic error rate with an agenda-based sim-
ulator which generates user interactions at the
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Figure 2: The success rate learning curves of on-
policy A2C, A2C with ER, TRACER, DQN with
ER, GP and eNACER in user simulation under
noise-free condition.

semantic-level (Schatzmann et al., 2006). In this
case, the user intent is perfectly captured in the di-
alogue belief state without noise.

The total return of each dialogue was set to
1(D)− 0.05× T , where T is the dialogue length
and 1(D) is the success indicator for dialogue
D. The maximum dialogue length was set to 20
turns and γ was 0.99. All deep RL models (A2C,
TRACER, eNACER and DQN) contained two hid-
den layers of size 130 and 50. The Adam opti-
miser was used (Kingma and Ba, 2014) with an
initial learning rate of 0.001. During training, an
ε-greedy policy was used, which was initially set
to 0.3 and annealed to 0.0 over 3500 training dia-
logues. For GP, a linear kernel was used.

The ER pool P size was 1000, and the mini-
batch size was 64. Once an initial 192 samples had
been collected, the model was updated after ev-
ery 2 dialogues. Note that for DQN, each sample
was a state transition (bt, at, rt,bt+1), whereas in
A2C, TRACER and eNACER, each sample com-
prised the whole dialogue with all its state tran-
sitions. For eNACER, the natural gradient was
computed to update the model weights of size ∼
42000. For TRACER, αwas set to 0.02, and ξ was
0.01. Since the IS ratio has a high variance and can
occasionally be extremely large, it was clipped be-
tween [0.8,1.0] to maintain stable training.

Figure 2 shows the success rate learning curves
of on-policy A2C, A2C with ER, TRACER, DQN
with ER, GP and eNACER. All were tested with
600 dialogues after every 200 training dialogues.
As reported in previous studies, the benchmark

GP model learns quickly and is relatively sta-
ble. eNACER provides comparable performance.
DQN also showed high sample-efficiency but with
high instability at some points. This is because
an iterative improvement in value space does not
guarantee an improvement in policy space. Al-
though comparably slower to learn, the differ-
ence between on-policy A2C and A2C with ER
clearly demonstrates the sample-efficiency of re-
using past samples in mini-batches. The enhance-
ments incorporated into the TRACER algorithm
do make this form of learning competitive al-
though it still lags behind eNACER and GPRL.

4.2.1 Learning from Demonstration Data
Regardless of the choice of model and learning al-
gorithm, training a policy from scratch on-line will
always result in a poor user experience until suffi-
cient interactions have been experienced to allow
acceptable behaviours to be learned.

As discussed in §3.2, an off-line corpus of
demonstration data can potentially mitigate this
problem. To test this, a corpus of 720 real user
spoken dialogues in the Cambridge restaurant do-
main was utilised. The corpus was split in a 4:1:1
ratio for training, validation and testing. It con-
tains interactions between real users recruited via
the Amazon Mechanical Turk service and a well-
behaved SDS as described in Su et al. (2016b).

For A2C with ER and TRACER, the three ways
of exploiting demonstration data in §3.2 were ex-
plored. The exploration parameter ε was also set
to 0.3 and annealed to 0.0 over 2000 training di-
alogues. Since TRACER has similar patterns to
A2C with ER, we first explored the impact of
demonstration data on the A2C with ER results
since it provides more headroom for identifying
performance gains.

Figure 3a shows the different combinations of
demonstration data using A2C with ER in noise-
free conditions. The supervised pre-trained model
(SL model) provides reasonable starting perfor-
mance. The A2C ER model with supervised pre-
training (A2C ER+SL model) improves on this af-
ter only 400 dialogues whilst suffering initially.
We hypothesise that the optimised SL pre-trained
parameters distributed very differently to the op-
timal A2C ER parameters. Also, the A2C ER
model with SL replay (A2C ER+SL replay) shows
clearly how the use of a supervised replay buffer
can accelerate learning from scratch. Moreover,
when SL pre-training is combined with SL replay
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Figure 3: Utilising demonstration data for improving RL learning speed.

(A2C ER+SL model+replay), it achieved the best
result. Note that λ1 and λ2 in Equation 8 were 10
and 0.01 respectively. In each policy update, 64
demonstration data were randomly sampled from
the supervised replay poolPsup, which is the same
number of RL samples selected from ER for A2C
learning. Similar patterns emerge when utilising
demonstration data to improve early learning in
the TRACER and eNACER algorithms as shown
in Figure 3b. However, in this case, eNACER is
less able to exploit demonstration data since the
training method is different from standard actor-
critics. Hence, the supervised loss L cannot be
directly incorporated into the RL objective J as in
Equation 8. One could optimise the model using
L separately after every RL update. However, in
our experiments, this did not yield improvement.
Hence, only eNACER learning from a pre-trained
SL model is reported here. Compared to eNACER
learning from scratch, eNACER from SL model
started with good performance but learned more
slowly. Again, this may be because the optimised
SL pre-trained parameters distributed very differ-
ently from the optimal eNACER parameters and
led to sub-optimality. Overall, these results sug-
gest that the proposed SL+RL framework to ex-
ploit demonstration data is effective in mitigat-
ing the cold start problem and TRACER provides
the best solution in terms of avoiding poor initial
performance, rapid learning and competitive fully
trained performance.

In addition to the noise-free performance, we
also investigated the impact of noise on the
TRACER algorithm. Figure 4 shows the results af-
ter training on 2000 dialogues via interaction with

Figure 4: The success rate of TRACER for
a random policy, policy trained with corpus
data (NN:SL) and further improved via RL
(NN:SL+RL) respectively in user simulation un-
der various semantic error rates.

the user simulator under different semantic error
rates. The random policy (white bars) uniformly
sampled an action from the set of size 14. This
can be regarded as the average initial performance
of any learning system. We can see that SL gen-
erates a robust model which can be further fine-
tuned using RL over a wide range of error rates. It
should be noted, however, that the drop-off in per-
formance at high noise levels is more rapid than
might be expected, comparing to the GPRL. We
believe that deep architectures are prone to over-
fitting and in consequence do not handle well the
uncertainty of the user behaviour. We plan to in-
vestigate this issue in future work. Overall, these
outcomes validate the benefit of the proposed two-
phased approach where the system can be effec-
tively pre-trained using corpus data and further be
refined via user interactions.



5 Conclusion

This paper has presented two compatible ap-
proaches to tackling the problem of slow learn-
ing and poor initial performance in deep reinforce-
ment learning algorithms. Firstly, trust region
actor-critic with experience replay (TRACER) and
episodic natural actor-critic with experience re-
play (eNACER) were presented, these have been
shown to be more sample-efficient than other deep
RL models and broadly competitive with GPRL.
Secondly, it has been shown that demonstration
data can be utilised to mitigate poor performance
in the early stages of learning. To this end, two
methods for using off-line corpus data were pre-
sented: simple pre-training using SL, and using
the corpus data in a replay buffer. These were
particularly effective when used with TRACER
which provided the best overall performance.

Experimental results were also presented
for mismatched environments, again TRACER
demonstrated the ability to avoid poor initial
performance when trained only on the demon-
stration corpus, yet still improve substantially
with subsequent reinforcement learning. It was
noted, however, that performance still falls off
rather rapidly in noise compared to GPRL as the
uncertainty estimates are not handled well by
neural networks architectures.

Finally, it should be emphasised that whilst this
paper has focused on the early stages of learning
a new domain where GPRL provides a benchmark
and is hard to beat, the potential of deep RL is its
readily scalability to exploit on-line learning with
large user populations as the model size is not re-
lated with experience replay buffer.
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Wen, Milica Gašić, and Steve Young. 2017. CU-
PyDial: A Multi-domain Statistical Dialogue Sys-
tem Toolkit. In ACL Demo.

Hado Van Hasselt, Arthur Guez, and David Silver.
2016. Deep reinforcement learning with double q-
learning. In Proc of AAAI.

David Vandyke, Pei-Hao Su, Milica Gašić, Nikola
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M. Rojas-Barahona, Pei-Hao Su, Stefan Ultes,
David Vandyke, and Steve Young. 2017. A network-
based end-to-end trainable task-oriented dialogue
system. In Proc of EACL.

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Pei-
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