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Jost Schatzmann and Steve Young, Fellow, IEEE

Abstract—A key advantage of taking a statistical approach
to spoken dialogue systems is the ability to formalise dialogue
policy design as a stochastic optimization problem. However, since
dialogue policies are learnt by interactively exploring alternative
dialogue paths, conventional static dialogue corpora cannot be
used directly for training and instead, a user simulator is com-
monly used. This paper describes a novel statistical user model
based on a compact stack-like state representation called a user
agenda which allows state transitions to be modeled as sequences
of push- and pop-operations and elegantly encodes the dialogue
history from a user’s point of view. An expectation-maximisation
based algorithm is presented which models the observable user
output in terms of a sequence of hidden states and thereby allows
the model to be trained on a corpus of minimally annotated
data. Experimental results with a real-world dialogue system
demonstrate that the trained user model can be successfully used
to optimise a dialogue policy which outperforms a hand-crafted
baseline in terms of task completion rates and user satisfaction
scores.

Index Terms—Dialogue management, Markov decision process,
planning under uncertainty, spoken dialogue system (SDS), user
simulation.

I. INTRODUCTION AND OVERVIEW

A. Statistical Spoken Dialogue Systems

T HE general architecture of a conventional spoken di-
alogue system (SDS) is shown in Fig. 1. The speech

recognizer receives the acoustic signal emitted by the user,
translates it into a feature-based representation and outputs the
most likely sequence of words . The text-based output of
the speech recognizer is then semantically decoded by a speech
understanding component and associated with a meaning rep-
resentation, typically in the form of a dialogue act [1]. On
the output side, the reverse process is followed. The machine
generated dialog act is converted into a sequence of words

which is synthesized using a text-to-speech component to
produce the acoustic output signal .

The task of the dialogue manager (DM) at the core of a SDS is
to control the flow of the dialogue, handle the uncertainty arising
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Fig. 1. Main components of an SDS.

from speech recognition and understanding errors, and perform
forward planning. The DM interprets the observed (and poten-
tially corrupted) user act , resolves contextual references, and
updates the machine’s internal state . Based on , an ap-
propriate system response is then selected according to the
system’s dialogue policy which defines the machine’s conver-
sational behavior.

In recent years, statistical approaches to SDS have gained in-
creasing popularity [2], [3] since they allow design criteria to
be expressed as objective reward functions and dialogue policy
learning to be cast as a stochastic optimization problem. Using
the Markov-Decision-Process model as a formal representation
of human–computer dialogue, the DM is cast as a learning agent
operating in a discrete state space and using an action set

. At each time step, the DM is in some state ,
takes action , receives a real-valued numerical re-
ward and transitions to the next state . A dialogue
policy can thus be viewed as a deterministic map-
ping from states to actions. The optimal policy is defined as
the one that maximizes the expected total reward per dialogue
and it can be learnt using reinforcement learning [4], [5].

B. Simulation-Based Reinforcement Learning

Since dialogue policies are learned by interactively exploring
alternative dialogue paths, conventional static dialogue corpora
cannot be used directly to train a statistical DM. Instead, a two-
stage approach is used (see Fig. 2). In the first stage, a statis-
tical model of user behavior is trained on a limited amount of
dialogue data collected with real users using a system prototype
or a Wizard-of-Oz setup. In the second stage, the dialogue man-
ager is optimized using reinforcement-learning through interac-
tion with the simulated user. User behavior is typically modeled
at the abstract level of dialogue acts since this avoids the unnec-
essary complexity of generating acoustic speech signals or word
sequences. As shown in Fig. 2, an error model can also be added
to simulate the noisy communication channel between the user
and the system [6]. The simulation-based approach allows any
number of training episodes to be generated so that the learning
DM can exhaustively explore the space of possible strategies.
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Fig. 2. Dialogue policy optimization with a simulated user.

Given that the simulated user generalizes well to unseen dia-
logue situations, it also enables the DM to deviate from the di-
alogue policies present in the training corpus, hence making it
possible to explore new and potentially better policies.

C. Statistical User Modeling

A survey of user simulation techniques for dialogue optimiza-
tion is given in [7]. Much of the difficulty in building a good
user simulator lies in combining the conflicting objectives of
reproducing the complex characteristics of user behavior in a
realistic fashion while simultaneously maintaining a small and
readily trainable model parameter set. Early work on semantic
level user simulation by Levin and Pieraccini [8] investigated
the use of a simple bigram model for predicting user
responses to machine acts. While the parameters of this model
could be easily trained on data, the generated dialogues often
lacked realism, with the simulated user continuously changing
its goal, repeating information or violating logical constraints.
Later work hence examined the use of explicit goal representa-
tions [9], [10] and longer dialogue histories [11], [12] to ensure
greater coherence in user behavior over the course of a dialogue.
Generally, some representation of the user state is re-
quired to capture the relevant dialogue history and achieve con-
sistency in user behavior. A variety of different state space defi-
nitions and techniques for modeling can be found in
the literature, including feature-rich information state-based ap-
proaches [11], [13], clustering techniques [14], [15], and hidden
Markov models [16].

A practical problem arising when training state-based user
models, is that the true user state is not observable in
human–computer dialogue data. In the existing state-based
approaches, this problem is typically circumvented by labeling
training data with dialogue state information and conditioning
user output on the annotated dialogue state rather
than the unobservable user state . While this simplifies the
training process, it requires the state space to be defined
in advance and providing the necessary annotation involves
a considerable effort. If done manually, labeling is expensive
and it can be difficult to ensure inter-annotator agreement.
Using an automatic tool for dialogue state annotation [11] can
improve efficiency, but the development of the tool itself is a
time-consuming process and there is no way of evaluating if the
automatic annotation is correct without manually inspecting
large amounts of data. A new model parameter estimation
approach that requires only the derivation of dialog acts from
the directly observable user utterances as proposed in this paper
is thus highly desirable.

D. Paper Outline

This paper introduces a novel statistical method for user sim-
ulation based on the concept of a stack-like representation of
the user state. Referred to as the user agenda, this structure of
pending dialogue acts serves as a convenient mechanism for
encoding the dialogue history and the user’s “state of mind”
(Section II). To allow model parameter estimation to be per-
formed on minimally labeled training data without state-specific
annotation, an expectation-maximization (EM)-based algorithm
is presented which models the observable user output in terms
of a sequence of hidden agenda states (Section III). While the
space of possible agenda states and state transitions is vast, it is
shown that tractability can be achieved by reducing action selec-
tion and state updates to a sequence of atomic push- and pop-op-
erations. Using dynamically growing tree structures to represent
state sequences and a summary-space mapping for state transi-
tions, parameter estimation can then be successfully carried out
on minimally annotated data.

Considerable attention in this paper is devoted to evalua-
tion methods and results (Sections IV to VI). Following an
overview of the experimental setup in Section IV-A, dialogue
policy training experiments are described in Section IV-B
and a rule-based baseline dialogue manager is described
in Section IV-C. The simulation-based results reported in
Section V show that policies trained with the agenda-based
user model outperform those trained with a competing baseline
simulator and indicate the benefit of training under noisy con-
ditions. A user study conducted with 36 subjects demonstrates
that the robust performance of the learned policies also carries
over to a real-world human interaction task (Section VI).
Finally, Section VII concludes the paper with a summary and
an outline of future work.

II. HIDDEN AGENDA USER MODEL

A. User Behavior at a Semantic Level

Human–machine dialogue at a semantic level can be formal-
ized as a sequence of states and dialogue acts. Dialogue acts
generally “represent the meaning of an utterance at the level of
illocutionary force” [17]. They enable the user model and di-
alogue manager interface to be standardized and they serve as
an annotation standard for labeling dialogue data [18]. The def-
inition of dialogue act taxonomies is an ongoing research area
and a variety of different proposals can be found in the literature
[19]–[21].

For the experiments presented in this paper the Cambridge
University Engineering Department (CUED) dialogue act set
[22] is used. The CUED set is compact and designed to cover the
communicative functions needed to model simple database re-
trieval tasks. Its main distinction in comparison to other dialogue
action sets is that it allows utterances to be decoded or labeled as
distributions over alternative dialogue acts in a way that avoids
the computational problems arising when allowing multiple di-
alogue acts per utterance. For this purpose, the scheme uses ac-
tion type definitions that allow each utterance to be represented
as a single act rather than a combination of acts. By allowing
dialogue acts to be associated with a probability, each utterance
can be labeled with a set of dialogue act hypotheses, with their
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probabilities summing to one. The syntax of the CUED dialogue
action set requires each act to be of the form

where denotes the probability of the hypothesis.
The specifies the type of dialogue act such as

, or . The following
(possibly empty) list of arguments are re-
ferred to as dialogue act items. These items are usually
slot-value pairs such as or ,
but can also be individual slot names such as . For
example, in the domain of tourist information described
later in Section IV, the utterance “I am looking for a
cheap Chinese restaurant near the Cinema.” would be en-
coded as

, whereas “Can
you give me the address and phone number of Pizza Palace?”
would be encoded as

. The shorthand notation will be
used to denote the th item of the act and denotes the

of .

B. State Decomposition Into Goal and Agenda

At any time , the user is in a state , takes action
, transitions into the intermediate state , receives

machine action , and transitions into the next state where
the cycle restarts. Note that throughout this paper the double
dash notation will be used to denote the state at time , thus

(1)

Assuming a Markovian state representation, user behavior
can be decomposed into three models: for user
action selection, for the state transition into

, and for the transition into . Inspired by
agenda-based approaches to dialogue management [23], [24]
the user state is factored into an agenda and a goal such
that where consists of constraints

and requests . During the course of the dialogue, the goal
ensures that the user behaves in a consistent, goal-directed

manner. The constraints specify the required venue, e.g., “a
centrally located bar serving beer,” and the requests specify
the desired pieces of information, e.g., “the name, address and
phone number of the venue.” Both and can be conve-
niently represented as lists of slot-value pairs, as shown in the
following example:

The user agenda is a stack-like structure containing the
pending user dialogue acts that are needed to elicit the informa-
tion specified in the goal. At the start of the dialogue a new goal
is randomly generated using the system database and the agenda

is populated by converting all goal constraints into
acts and all goal requests into acts. In addition, a

act is added at the bottom of the agenda to close the di-
alogue. The initial agenda for the example introduced above
would therefore be as shown below. As the dialogue progresses,
the agenda is dynamically updated and acts are selected from
the top of the agenda to form user acts. In the example, the user
response is
generated by popping items off to give as shown as
follows:

In response to incoming machine acts , new user acts are
pushed onto the agenda and no longer relevant ones are re-
moved. The agenda thus serves as a convenient way of tracking
the progress of the dialogue as well as encoding the relevant
dialogue history. Dialogue acts can also be temporarily stored
when actions of higher priority need to be issued first, hence
providing the simulator with a simple model of user memory
(see Fig. 3 for a detailed illustration). When using an -gram
based approach, by comparison, such long-distance dependen-
cies between dialogue turns are neglected unless is set to a
large value, which in turn often leads to poor generalization and
unreliable model parameter estimates.

Another, perhaps less obvious, advantage of the agenda-based
approach is that it enables the simulated user to take the ini-
tiative when the dialogue is corrupted by recognition errors or
when the incoming system action is not relevant to the current
task. The latter point is critical for training statistical dialogue
managers because policies are typically learned from a random
start. The “dialogue history” during the early training phase is
often a sequence of random dialogue acts or dialogue states that
has never been seen in the training data. In such cases, the stack
of dialogue acts on the agenda enables the user model to take
the initiative and behave in a goal-directed manner even when
the system appears to be aimless.

C. Action Selection and State Transition Models

The decomposition of the user state into a goal and an
agenda simplifies the models for action selection and state
transition. The agenda (of length ) is assumed to be ordered
according to priority, with denoting the top and de-
noting the bottom item. Forming a user response is thus equiv-
alent to popping items off the top of the stack. Letting
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Fig. 3. Sample dialogue showing the state of the user goal and agenda.

denote the th dialogue act item in , the resulting user act is
formed as follows:

(2)

Using as a shorthand for the top items on
, the action selection model becomes

(3)

where the Kronecker delta function is 1 iff and
zero otherwise. This implies that the user response can only
be generated in state if can be popped off .
The probability of the corresponding pop operation depends on
the number of popped items and is conditioned on and .

The state transition models and
are rewritten as follows. Letting denote the agenda after pop-
ping off and using to denote the size of , we
have

(4)

Using this definition of and assuming that the goal remains
constant when the user executes , the first state transition de-
pending on is entirely deterministic as it only involves pop-
ping a given number of items off the agenda

(5)
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The second state transition based on is decomposed into
goal update and agenda update steps

(6)

and the model parameter set can now be summarized as

(7)

Representations for the update steps shown on the RHS of (6)
are discussed in the following sections.

III. MODEL PARAMETER ESTIMATION

A. User State as a Hidden Variable

Estimating the parameters of the action selection and state
transition models is nontrivial, since the goal and agenda states
are not observable in the training data. As explained in the in-
troduction to the paper, previous work on the state-based ap-
proach to statistical user simulation [11], [13], [14] has circum-
vented the problem of the unobservable user state by labeling
training data with dialogue state information and conditioning
user output on the observable dialogue state. While this simpli-
fies the training process, providing the necessary annotation is
prone to error and requires considerable effort.

The parameter estimation approach presented here avoids the
need for dialogue state annotation by modeling the observable
user and machine dialogue acts in terms of a hidden sequence of
agendas and user goal states. More formally, the dialogue data

containing dialogue turns 1 to

(8)

is modeled in terms of latent variables where
and .

Collecting the results from Section II, noting that from (5) the

choice of deterministically fixes , and using to denote
, the joint probability can be expressed as

(9)

The goal is to learn maximum likelihood (ML) values for
the model parameter set such that the log likelihood

is maximized

(10)

Due to the presence of the sum over the latent variables in
(10), the direct optimization of is not possible, however, an
iterative expectation-maximization (EM)-based approach can
be used to find a (local) maximum of the latent variable model
likelihood. As shown in [25], this involves maximizing the aux-
iliary function

(11)

and leads to the parameter re-estimation formulas given in
(12)–(14), shown at the bottom of the page.

B. Agenda Updates as a Sequence of Push Actions

Implementing the latent variable approach described above in
a tractable fashion is not straightforward. The sizes of the user
and machine dialogue act sets and used for the experi-
ments presented in this paper are and .
Using typical values for the goal specifications used in previous
SDS user trials [26], the size of the goal state space can be es-
timated as . The size of the agenda state space
depends on the number of unique user dialogue acts as
defined above and the maximum number of user dialogue acts
on the agenda. The maximum length of the agenda is a design
choice, but it is difficult to simulate realistic dialogues unless it
is set to at least 8. As shown in [25], thus comprises the vast

(12)

(13)

(14)
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number of potential agenda states and the number of
parameters needed to model is of the order

(15)

These estimates show that when no restrictions are placed
on , the space of possible state transitions from to
is vast. While the figures given above are estimates specific
to the agenda model and dialogue domain presented here,
similar tractability problems are likely to arise with any user
model training algorithm where the true state is assumed
to be hidden—regardless of the state representation. The
agenda-based state representation has the significant advantage
that each state can be assumed to be derived from the previous
state, and that each transition entails only a limited number
of well-defined atomic operations. As will be shown in the
remainder of this section, this allows tractability to be achieved
without unduly limiting the expressive power of the model.

More specifically, the agenda transition from to can
be viewed as a sequence of push-operations in which dialogue
acts are added to the top of the agenda. In a second “clean-up”
step, duplicate dialogue acts, “empty” acts, and unnecessary

acts for already filled goal request slots must be re-
moved but this is a deterministic procedure so that it can be ex-
cluded in the following derivation for simplicity. Considering
only the push-operations, the items 1 to at the bottom of the
agenda remain fixed and the update model can be rewritten as
follows:

(16)

The second term on the RHS of (16) can now be further
simplified by assuming that every dialogue act item (slot-value
pair) in triggers one push-operation. This assumption can be
made without loss of generality, because it is possible to push
an “empty” act (which is later removed) or to push an act with
more than one item. The advantage of this assumption is that the
known number of items in now determines the number
of push-operations. Hence, and

(17)

(18)

The expression in (18) shows that each item in the system
act triggers one push operation, and that this operation is con-
ditioned on the goal. For example, given that the item in

violates the constraints in , one of the following might
be pushed onto :

, etc.
Let denote the pushed act and

denote the conditioning dialogue act containing the single

dialogue act item . Omitting the Kronecker delta function
in (16), the agenda update step then reduces to the repeated ap-
plication of a push transition model . The
number of parameters needed to model is
of the order

(19)

While still large, this number is significantly smaller then the
number of parameters needed to model unrestricted transitions
from to [cf. (15)].

C. Summary Space Model for Push Transitions

To further reduce the size of the model parameter set and
achieve a tractable estimation of , it is
useful to introduce the concept of a “summary space,” as has
been previously done in the context of dialogue management
[27]. First, a function is defined for mapping the machine
dialogue act and the goal state from
the space of machine acts and goal states to a smaller
summary space of “summary conditions” as follows:

(20)

For example, all system acts which attempt to
a slot value pair that violates an existing user goal
constraint are mapped to the summary condition

.
Second, a “summary push action” space is defined,

which groups real user dialogue acts into a smaller set of equiv-
alence classes. Using a function , summary push actions are
mapped back to “real” dialogue acts

(21)

The summary push action PushNegateAY, for example, maps to
the real dialogue act `` '' .
Note that both mappings and are deterministic and need to
be handcrafted1 by the system designer as will be discussed in
more detail below.

Letting and , agenda state tran-
sitions can now be modeled in summary space using

(22)

where and . For the
experiments presented in this paper, roughly 30 summary con-
ditions and 30 summary push actions were defined (see ex-
amples and discussion below). The total number of parame-
ters needed to model agenda state transitions
is therefore , i.e., small enough to be
estimated on real dialogue data.

Fig. 4 shows a simplified example illustrating the summary
space technique for agenda updates. The incoming machine act

in this example is an implicit confir-
mation of the slot-value pair and a request for the slot .
The update step proceeds as follows.

1Linear function approximation may provide a more principled approach for
mapping to and from summary space (see [28])
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Fig. 4. Simplified example illustrating the summary space technique for agenda updates.

1) Based on the current state of the goal (not shown here),
the first step is to map each dialogue act item (slot-value
pair) to a summary condition . Given that the
confirmation in the example does not violate
any of the constraints in the user goal, it is mapped to

. The request for is
mapped to .

2) A list of summary push actions , each with probability
, is now generated for each summary con-

dition . A (shortened) list of examples is shown in
the figure. The summary push action PushInformAX, for
instance, implies that an act with the requested
slot (in this case ) is pushed onto the agenda. Note that
summary push actions with zero probability can be dis-
carded at this point.

3) The summary push actions are now mapped to real push
actions. This is a 1-to-1 mapping for most summary push
actions, but some summary push actions can map to sev-
eral real push actions. This is illustrated in the figure by the
summary push action PushInformBY, which implies that
the corresponding real push action is an dia-
logue act containing some slot-value pair other
than the requested slot, in this case or . In such
cases, the probability mass is split evenly between the real
push actions for a summary push action, as shown in the
figure.

4) Using one real push action from each summary condition, a
list of all possible combinations of push actions is now gen-
erated. Each combination represents a series of dialogue
acts to be pushed onto the agenda. As shown in the figure,
each combination is used to create a new agenda. The tran-
sition probability is computed as the product of the real
push actions that were used to make the transition.

The set of summary conditions and summary push actions
is domain-independent and independent of the number of

slots and database entries, hence allowing the method to scale to
more complex problem domains and larger databases. The defi-
nition of and , and the implementation of the hand-
crafted mappings and
requires detailed knowledge of the dialogue act set and basic

familiarity with user behavior in slot-filling dialogue scenarios.
The handcrafted mappings, however, are not dependent on the
specific domain and application—only the general class of ap-
plication.

A systematic approach to the design process can be taken
by defining a single summary condition for each machine act
type, e.g., ReceiveHello for , ReceiveInformAX for

, ReceiveConfirmAX for ).
Similarly, a single summary push action is defined for each
user act type, e.g., PushHello for , PushRequestA for

, PushBye for . This ensures that the set of
summary conditions covers the space of possible machine acts
and goal states, and that the set of summary push actions covers
the space of possible user acts. In the case of the CUED dia-
logue act set described in Section II-A and [29], this results in a
set of approximately 15 summary conditions and 15 summary
push actions. can then be further refined by “splitting”
summary conditions: ReceiveConfirmAX for example, can be
split into ReceiveConfirmAXok and ReceiveConfirmAXnotOk
to distinguish the two cases where the given slot-value pair

matches/violates the existing user goal constraint for
the slot . Similarly, can be refined by choosing a more
fine grained set of summary push actions: PushRequestA for
example, can be split into PushRequestForUnknownSlotA and
PushRequestForFilledSlotA. This process typically requires
some trial-and-error, but the time needed to make these iter-
ative refinements2 is still insignificant compared to the effort
involved in annotating a dialogue corpus with state specific
information. Moreover, the result is reusable across a class of
slot-filling applications with the same dialogue act set.

D. Representing Agenda State Sequences

Given the vast size of the agenda state space, the direct enu-
meration of all states in advance is clearly intractable. The actual
number of states needed to model a particular dialogue act se-
quence, however, is much smaller, since agenda transitions are
restricted to push/pop operations and conditioned on dialogue

2For the system described here, these refinements required approximately 1
day.
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Fig. 5. Tree-based method for representing state sequences.

context. The training algorithm can exploit this by generating
state-sequences on-the-fly, and discarding any state sequence
for which .

A suitable implementation for this is found in the form of a
dynamically growing tree, which allows agenda states to be rep-
resented as tree-nodes and state transitions as branches. The tree
is initialized by creating a root node containing an empty agenda
and then populating the agenda according to the goal specifi-
cation as explained in Section II-B. Since the initial ordering
of dialogue acts on the agenda is unknown, all permutations of
constraints and requests must be created as shown in Fig. 5.

Following initialization, the dialogue is “parsed” by growing
the tree and creating branches for all possible state sequences.
Updates based on a machine dialogue act involve mapping
each item in to its corresponding summary condition

using the function . For each a list of sum-
mary push actions is generated, discarding cases where

. The summary push actions are then
mapped back to real push actions using and used to create
new agendas which are attached to the tree as new branches.
The probability of the transition/branch is computed as the
product of the probabilities of the real push actions (cf. Fig. 4
in Section III-C). The leaf nodes are then cleaned up in a de-
terministic procedure to remove empty and duplicate dialogue
acts, to delete all dialogue acts below a act, and to
remove all requests for items that have already been filled in
the user goal.

In the next step, the tree is updated based on the observed
user act . This part simplifies to popping from the top
of the agenda wherever this is possible. Agendas which do not
allow to be popped off represent states with zero probability
and can be discarded. In all other cases, a new node with the
updated agenda is attached to the tree. The branch is marked
as a pop-transition and its probability is computed based on the
number of items popped.

Once the update based on is completed, the tree is pruned
to reduce the number of nodes and branches. First, all branches
which were not extended during the dialogue turn, i.e., branches
where could not be popped off the leaf node agenda, are
removed. All remaining branches represent possible sequences
of agenda states with nonzero probability for the dialogue acts

Fig. 6. Number of agenda tree leaf nodes after each observation during a
training run.

seen so far. In a second step, a more aggressive type of pruning
can be carried out by removing all branches which do not have
a given minimum leaf node probability. After pruning, the size
of the tree is further reduced by joining nodes with identical
agendas.

Fig. 6 shows the number of agenda tree leaf nodes during
a typical training episode on a sample dialogue. As explained
above, the tree is extended for each machine dialogue act and
1 or more new nodes are attached to each tree branch, so that
the number of leaf nodes stays constant or increases. Pop op-
erations are then performed where possible, the tree is pruned
and identical nodes are joined so that the number stays constant
or decreases. At the end of the dialogue, only a single leaf node
with an empty agenda remains.

E. Action Selection and Goal Update Model

The action selection and goal update models experience sim-
ilar tractability problems as the agenda update model, but in both
cases a straightforward solution was found to produce satisfac-
tory results. To simplify the action selection model ,
the random variable can be conditioned on the type of dialogue
act of the top item on the agenda stack. Letting denote the
type of a dialogue act, this may be expressed as

(23)

The probability distribution over small integer
values for (typically in the range from 0 to 6) can then be
estimated directly from dialogue data by obtaining frequency
counts of the number of dialogue act items in every user act.

The goal update model is decomposed into
separate update steps for the constraints and requests. Assuming
that is conditionally independent of given it is easy
to show that

(24)
The two update steps can be treated separately and implemented
deterministically using two rules. 1) If contains an empty
slot and is a dialogue act of the form

, then is derived from by setting given that
no other information in violates any constraints in . 2) If

contains a request for the slot , a new constraint or
is added to to form . Note that this does

not imply that the user necessarily responds to a system request
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for any slot , since the agenda update model does not enforce
a corresponding user dialogue act to be issued.

The goal update model implementation described here allows
the user goal to change over the course of a dialogue, but restricts
the space of possible goal state transitions to deterministic up-
dates. This simplifies model parameter estimation because the
sequence of goal states can be directly inferred from the observ-
able sequence of dialogue acts. However, it limits the user sim-
ulator to dialogue tasks where the user does not relax or modify
its constraints. The behavior of real users in situations where
the desired venue does not exist, for example, cannot always be
covered by the current implementation. The deterministic up-
date model is also not trainable, meaning that the probability of
different goal state transitions cannot be learned from data.

F. Applying the Forward/Backward Algorithm

Using the summary space mapping for agenda transitions and
simplifying assumptions for the goal update and action selec-
tion model described above, the parameter update equation set
defined by (12)–(14) reduces to a single equation

(25)

Note that is used here rather than , since every dialogue turn
involves two state transitions, and there are hence

observations and update steps. The parameter update equation
can now be efficiently implemented by applying the forward/
backward algorithm, as shown in [25].

IV. EVALUATION METHOD

A. Domain Specification and Experimental Setup

All experiments presented in this paper are set in the tourist
information domain. The user is assumed to be visiting a
fictitious town called “Jasonville,” and requests the help of the
dialogue system to find a particular hotel, bar or restaurant
according to a given set of constraints. For example, the user
might be looking for a “cheap Chinese restaurant near the Main
Square,” “a 3-star hotel on the riverside,” or a “wine bar playing
Jazz music.” Once a suitable venue has been identified, the user
may request further information about this venue such as the
address or phone number. All of the venues have a unique name
and are described using slot-value pairs such as

,
etc. In total, the database contains 31 entries, each of which is
described by up to 13 slots, with each slot taking one out of
approximately five to ten possible values.

The evaluation setup used in this paper is illustrated in Fig. 7
and the remainder of this paper roughly follows the pictured se-
quence of experiments. First, user model parameter estimation
was carried out on a training dataset consisting of 160 dialogues
from the Jasonville domain. These were recorded with a pro-
totype dialogue manager [30] and 40 human subjects, each of
whom completed four dialogues, as reported in [26]. The utter-
ances in the corpus were transcribed and annotated according to

Fig. 7. Experimental setup.

the CUED dialogue act taxonomy (as described in Section II-A).
No dialogue state specific annotation was added. In total, the
corpus contains 1804 user utterances and 5765 words. A Word
Accuracy (WAcc) of 75.15% and a Semantic Accuracy (SAcc)
of 61.35% was computed based on the number of substitutions,
insertions, and deletions, as defined by [31].

As shown in Fig. 7, an MDP-based dialogue manager was im-
plemented and trained via interactions with the simulated user
model to learn a dialogue policy (Section IV-B). A rule-based di-
alogue manager was also implemented to provide a competitive
baseline (Section IV-C). System evaluation was then carried out
through simulation experiments (Section V) and a study with
real users (Section VI). In related work not presented here, ex-
periments were also carried out with a prototype POMDP-based
dialogue manager [26]. Additional evaluation results comparing
the statistical properties of simulated and real data can further
be found in [32].

B. MDP Policy Training

To evaluate the agenda-based user model in the context of
a working dialogue system, a state-of-the-art MDP-based dia-
logue manager was implemented. Its state space representation
covers the status (UNKNOWN, FILLED, or CONFIRMED) and value
of each slot ( , etc.). In addition to the
slot status variables, a number of other flags and variables are
maintained. This includes a list of the slots requested by the user
in the most recent user dialogue act (e.g., , etc.), as
well as a list of all currently pending system and user confirma-
tion requests. The state representation also tracks the number of
database entities matched by the current set of slot-values and
classifies the confidence of the last user act as either very low,
low, medium, high, or very high. In total, the state space defini-
tion allows for 57 600 unique states.

For the action set, nine high-level “summary” acts are
defined: GREET, REQUEST, IMP-CONFIRM, EXP-CONFIRM-ONE,
EXP-CONFIRM-ALL, OFFER, INFORM, REQMORE, and GOODBYE.3
These specify the broad action class selected by the dialogue
manager and reduce the number of state-action combinations
that need to be explored during policy training. A handcrafted
mapping is defined to map from DM summary acts to real dia-
logue acts according to the current dialogue state. For example,
a GREET act is mapped to a act, a REQUEST act is

3Note that this set of dialogue manager actions is very similar to the summary
action set previously used by [29].
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Fig. 8. MDP policy training graph. Each point indicates the average value for
the last 1000 training dialogues. As shown, decreases over time from 0.9 to
0.0. The success rate converges to 99.8%, the length of the dialogues converges
to approximately 4.3 turns and the average reward converges to 94.5 points.

mapped to a act for the next UNKNOWN slot, and a
EXP-CONFIRM-ALL act is mapped to a act including
all FILLED slot-value pairs.

The reward function used for all experiments awards 100
points for successful dialogue completion. This includes recom-
mending a correct venue and satisfying all additional requests
for extra information (e.g., the address and phone number), zero
points are awarded otherwise. A correct venue is defined as a
venue that matches all of the constraints on the user’s goal. A
1 point penalty is deducted for each dialogue turn to encourage
efficient dialogue completion. Letting denote the number of
dialogue turns, the reward function may be expressed as

Reward
if completed successfully
otherwise

(26)

While more sophisticated reward functions are easily conceiv-
able, the simple choice made here illustrates that it is not nec-
essary to guide the learning algorithm by providing rewards for
partial completion.

For policy training, a standard Monte Carlo control algo-
rithm for reinforcement learning was implemented [5]. The al-
gorithm estimates the value of each summary act in each state.
An -greedy approach is used to balance exploration and ex-
ploitation: At each dialogue turn, a random action is selected
with probability (which decreases over time), while the best
action has the probability . During each training dialogue,
the algorithm records all state-action pairs visited by the DM.
Once the dialogue has completed, the reward signal is computed
and used to update all visited state-action pairs. A plot of the
training progress over 150 000 dialogues is shown in Fig. 8.

C. Rule-Based DM Baseline

In order to benchmark the trained policies against a standard
handcrafted dialogue manager, a rule-based dialogue policy was
designed by hand. To provide a fair comparison, this baseline
policy uses the same state representation and summary action
set as the MDP dialogue manager and thus has access to the
same state information as the trained policy. Great care was
taken to fine tune the rule-based DM to optimize the reward
function given in (26).

The handcrafted policy starts the dialogue with a GREET sum-
mary action to welcome the user and then issues a REQUEST ac-

tion to narrow down the number of database entries matching
the users query. If the constraints provided by the user do not
match any of the database entries, then the system immediately
issues an OFFER act which is mapped to a system utterance of
the form “There is no 5-star hotel in the moderate pricerange.”
If there is exactly one matching item, the system will make an
OFFER matching the given constraints, e.g., “The Ville Hotel is
a nice 5-star hotel in the moderate price range.”

If the information provided by the user matches more than
one item in the database, the DM keeps asking for further infor-
mation as long as there are four or more matching items in the
database before proceeding to make an OFFER. This was found
to produce optimal results with the given reward function. By
using IMP-CONFIRM actions the FILLED slots can be implicitly
confirmed while simultaneously asking for an UNKNOWN slot.
If however, there has been no “progress” for 2 turns (i.e., if the
user repeatedly says “I don’t care” in response to a query, or if
the user repeats information he/she has provided before) then
the system makes an OFFER instead of requesting further infor-
mation. If sufficient information is available for making a rec-
ommendation and or user acts are received
in two consecutive turns (possibly due to poor recognition per-
formance) the system also makes an OFFER.

Once an offer has been made, the task specification typically
requires users to ask for further information about the recom-
mended venue (e.g., “What is the address of that place?”). The
system then uses INFORM acts to provide the requested infor-
mation. Users may also attempt to confirm pieces of informa-
tion (“Is that in the moderate price range?”). When the user has
completed the task and does not request or provide further in-
formation, then the system issues a REQMORE act to say “Can
I help you with anything else?”. If the user response to this is
“No,” then the system closes the dialogue by saying GOODBYE.

V. SIMULATION-BASED EVALUATION RESULTS

A. Cross-Model Evaluation With a Handcrafted Baseline
Simulator

This paper adopts a cross-model approach to evaluation
whereby policies are trained and tested on different user
models, as previously suggested by [33]. To provide a compet-
itive baseline for comparisons with the trained agenda model,
a handcrafted simulator [34] was designed to reproduce user
behavior for the given tourist information domain as naturally
as possible. The handcrafted baseline simulator was devel-
oped and refined over several months and used extensively
for training a variety of MDP- and POMDP-based statistical
dialogue managers. It uses the same goal and agenda-based
state representation as the trained agenda simulation model and
therefore has access to the same state information. In contrast
to the trained model, however, the state transition and action
selection models are implemented using a manually defined
set of rules for each type of system dialogue act . These
rules govern the behavior of the simulated user and are largely
deterministic. Where possible, some degree of randomness is
introduced to allow for a greater variety in user behavior. For
example, if the type of is and an act item
violates the constraints in the user goal , then one of the

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 8, 2009 at 04:18 from IEEE Xplore.  Restrictions apply.



SCHATZMANN AND YOUNG: HIDDEN AGENDA USER SIMULATION MODEL 743

Fig. 9. Simulation-based evaluation on the handcrafted simulator AGD-H.
Each data point is based on 15 000 simulated dialogues. Error bars indicate
99% confidence intervals.

following is pushed onto : , or
. Previously published results [34] show

that the generated user responses are sufficiently realistic to
successfully train a dialogue policy which works competitively
when tested on real users.

B. Overview of Trained and Tested Policies

MDP policies were trained using both the handcrafted simu-
lator and the trained agenda model. In each case, one policy was
trained under noise-free conditions and one policy was trained
under simulated noise conditions with a 25% semantic error rate
[6]. Policy evaluation experiments were then run with the fol-
lowing five policies:

• the handcrafted rule-based policy (HANDCR);
• the policy learned with the handcrafted agenda simulator

(AGD-H);
• the policy learned with the handcrafted agenda simulator

under noisy conditions (AGD-H-ERR);
• the policy learned with the trained agenda simulator

(AGD-T);
• the policy learned with the trained agenda simulator under

noisy conditions (AGD-T-ERR).
Each of the five policies was tested on the handcrafted

AGD-H simulator (Fig. 9) and the trained AGD-T simulator
(Fig. 10). In common with previous work by Lemon and Liu
[35] which evaluates policies under “low” and “high” noise
settings, the results presented here show dialogue performance
over a range of simulated error conditions. These were achieved
by setting a confusion rate in the simulator ranging from 0
to 50%. Subsequent evaluation showed that these simulator
confusion rates resulted in an actual semantic error rate which
varied linearly from 0 to 30%. At each step, 15 000 dialogues
were generated and dialogue performance was computed using
the reward function defined by (26) in Section IV-B.

C. Evaluation on the Handcrafted Simulator (AGD-H)

Fig. 9 shows the performance of the five policies when tested
on the handcrafted agenda-based simulator (AGD-H). As can be
seen, the handcrafted policy (labeled HANDCR) performs very
well. The four trained policies, all match the performance of the
handcrafted policy at 0% error rate, but cannot outperform it.

Fig. 10. Simulation-based evaluation on the trained simulator AGD-T. Each
data point is based on 15 000 simulated dialogues. Error bars indicate 99% con-
fidence intervals.

This demonstrates the competitiveness of the handcrafted policy
and illustrates the large amount of manual effort invested to op-
timize this policy for the AGD-H simulator.

As the error rate increases, both of the policies trained without
noise drop off rapidly. It is interesting to note that the policy
learned with the trained AGD-T user simulator decreases more
slowly than the policy learned with the handcrafted simulator
AGD-H. This shows that the AGD-T simulator produces more
varied behavior during training and thus leads to a slightly more
robust policy.

By training under simulated noise conditions, the perfor-
mance of the trained policies can be improved dramatically. As
shown in Fig. 9, the policies trained with noise (AGD-H-ERR,
AGD-T-ERR) outperform those trained without noise (AGD-H,
AGD-T) by more than ten points at high error rates. One may
also note that the policies trained under noisy conditions match
or slightly outperform the handcrafted policy HANDCR, even
at high error rates. This means that the learning process au-
tomatically discovers the same optimal policy settings which
were found when manually designing the handcrafted policy.
A final interesting detail to note here is that the policy trained
with the AGD-H-ERR simulator performs slightly better than
the AGD-T-ERR simulator when testing on the HDC simulator
at high error rates. This shows that the best results are achieved
when training and testing conditions match perfectly and
confirms that the learning algorithm works.

D. Evaluation on the Trained Simulator (AGD-T)

Fig. 10 shows the performance of the five policies when
tested on the AGD-T simulator. The first thing to note is that
the AGD-T simulator is a much harder test case: an absolute
decrease of approximately 40 points in dialogue performance
is observed. Again, the benefits of training in noisy conditions
with a statistical user model are evident: The AGD-T-ERR
policy outperforms the AGD-T policy, and the AGD-H-ERR
policy outperforms the AGD-H policy. Also, the AGD-T policy
outperforms the AGD-H policy, and the AGD-T-ERR policy
outperforms the AGD-H-ERR policy.

An interesting detail can be spotted when comparing the di-
alogue performance of the AGD-T and AGD-T-ERR policy at
0% error rate. Here the policy trained without noise performs
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slightly better than the policy trained with noise. This is plau-
sible, because performance should be highest when the training
and testing conditions match. It shows that training under noisy
conditions may require a tradeoff in that while the policy will
work better when noise levels are high, it may be slightly worse
when noise levels are low.

Another interesting finding shown in the figure is that
when testing on the AGD-T model the handcrafted policy
(HANDCR) works significantly better than the policies trained
with the AGD-H and the AGD-H-ERR simulator. This indicates
that the handcrafted policy is more robust to unseen dialogue
situations than the policy trained on a handcrafted user model.
The result illustrates the potential pitfalls of training and testing
on the same user model discussed in [33] and underlines the
importance of a cross-model evaluation.

The experiment shows that the policy trained with the
AGD-T-ERR model outperforms the handcrafted policy when
testing on the AGD-T model. This result must be interpreted
with care: it may indicate that the handcrafted policy works less
well on real users than anticipated when testing on the AGD-H
simulator. The performance gain achieved here with the trained
policy, however, may be simply due to the fact that training
and testing use the same model. The more significant result
is that the AGD-T-ERR policy approximately matches the
handcrafted policy and the AGD-H-ERR policy when testing
on the AGD-H model. This shows that the policy learned with
the trained agenda model transfers well to the handcrafted user
model, but not vice versa.

VI. POLICY EVALUATION WITH REAL USERS

A. User Study Setup

To validate the results obtained in simulations, a user study
was carried out with 36 human subjects recruited from outside
the research group. The participants included 13 male and 23
female native British speakers. None of the participants had pre-
viously participated in a user study involving spoken dialogue
systems. The evaluation was run under controlled conditions in
three rooms with very quiet noise conditions. Each room was
equipped with a state-of-the-art desktop machine with 2 GB of
RAM and a Quadcore CPU running at 2.4 GHz. All record-
ings were done in an “open-mic” setting with KOSS CS-100
close-talking headsets/microphones.

Three different systems were tested during the user study to
investigate 1) the effect of the statistical user simulation model
and 2) the effect of training under noisy conditions. All three
systems were based on the same MDP dialogue manager de-
scribed in the previous section and differed only in their di-
alogue policy. One policy was trained using the handcrafted
(AGD-H) simulator, one was trained using the trained statistical
agenda model (AGD-T), and one was trained using the statistical
agenda model under noisy conditions with a simulated 25% se-
mantic error rate (AGD-T-ERR).

The computing hardware and all other dialogue system com-
ponents were identical. For the speech recognizer the ATK/HTK
toolkit was used, with a standard trigram language model and
vocabulary of approximately 2000 words. The n-best output of

Fig. 11. Sample task instruction and questionnaire.

the recognizer was limited to the single most likely hypothesis.
Semantic representations in the form of CUED dialogue acts
(cf. Section II-A) were extracted using a rule-based Phoenix
decoder [36], [37] on the output of the recognizer. The lan-
guage generation component was implemented using simple
templates for mapping system dialogue acts to word-level utter-
ances. These were then synthesized using the publicly available
FLITE text-to-speech engine.

Each of the 36 subjects completed two dialogues with each of
the three systems. Dialogue tasks were randomly selected from
a set of 13 task specifications and the order of the systems and
tasks was also chosen randomly. All task specifications were
presented in written form, as shown by the example task speci-
fication in Fig. 11. It was ensured that the database always con-
tained exactly one matching venue for each task specification.
To evaluate the perceived task completion (PTC) rate and the
level of user satisfaction, subjects were also asked to answer
two questions after completing each task, as shown in Fig. 11.

B. User Study Results

The full evaluation corpus consists of 216 dialogues, con-
taining a total of 1524 user turns and 8336 words. When av-
eraging over all utterances, the WAcc based on the number of
word substitution, insertion, and deletion errors is 66.1% and
the SAcc is 81.2%. The Semantic Error Rate (SER), i.e., the
percentage of user turns where the top recognition hypothesis
does not exactly match the true user act is 28.3%. The results of
the user study are shown in Tables I and II.

1) Statistical Versus Handcrafted User Simulation: The
objective actual task completion results show that the policy
trained with the AGD-T simulator clearly outperforms the
policy trained with the handcrafted AGD-H simulator, both
in terms of partial and full completion rates (Table I). The
objective dialogue performance score of 83.15 achieved with
the AGD-T model exceeds the score of 72.21 obtained with the
AGD-H simulator, a statistically significant relative improve-
ment of 15.15% .

The subjective user scores agree with the objective metrics:
The perceived task completion (PTC) rate of 97.2% is a sta-
tistically significant 16.7% relative improvement over the score
achieved by the AGD-H simulator (83.3%), as shown in Table II.
This is statistically significant according to Fisher’s exact test,
with a two-tailed P value of 0.0091. The perceived task com-
pletion score is higher than the actual task completion score be-
cause users did not always ask for all pieces requested in the task
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TABLE I
ACTUAL TASK COMPLETION STATISTICS

TABLE II
PERCEIVED TASK COMPLETION

TABLE III
USER SATISFACTION

specification and did not always notice when the system recom-
mended an incorrect venue (i.e., a venue that did not match all
of the user’s constraints).

The user satisfaction scores obtained from questionnaires
(Table III) also show that the policy learned with the statistical
user model is rated significantly higher (i.e., easier to use) by
real users than the policy learned with the handcrafted simulator
( , statistically significant according to a Chi-Square
test with ). This confirms the result obtained in simu-
lation runs and shows the benefit of training with a statistical
model of user behavior. The results also compare very favor-
ably with the task completion rates of 64% [38] and 81.8% [13]
reported in previous user studies on reinforcement-learning of
dialogue policies.

2) Training With and Without Noise: As predicted in sim-
ulation runs, the policy learned with the trained simulator
under noisy conditions (AGD-T-ERR) outperforms the policy
learned with the handcrafted simulator (AGD-H) (statistically
significant with ). The policy trained in noisy condi-
tions (AGD-T-ERR) also outperforms the policy trained on the
agenda model without noise (AGD-T) on the objective partial
completion metrics (statistically significant with ).
However, all other ATC and PTC scores achieved when training
with noise are generally lower than when training without noise.
The subjective user satisfaction scores draw the same picture.

Fig. 12. Bins group dialogues according to their average semantic accuracy
(SAcc). Dialogue performance is averaged over all dialogues in each SAcc bin.
Error bars indicate 99% confidence intervals.

Again, the simulator without noise (AGD-T) outperforms the
simulator with noise (AGD-T-ERR), which in turn outperforms
the handcrafted simulator (AGD-H). This disagrees with the
result predicted during simulation runs and shows that the
simulation-based policy evaluation results do not always carry
over to real users.

Further analysis of the recorded dialogues shows that the
SER of 25% assumed during training is approximately in line
with the actual SER encountered during testing with real users
(28.3% when averaging over all 216 dialogues). The negative
impact of noise on dialogue performance in our simulation
experiments, however, was clearly overestimated. In Fig. 12,
dialogues are grouped into bins according to their semantic
accuracy, and the average performance is shown for each bin
from 100% (1.0) down to 50% (0.5). As indicated by the
99% confidence intervals, dialogue performance varies more
strongly as the error rate increases. The mean, however, is
shifted only very slightly showing that real users are much less
affected by recognition errors than the simulated users.

3) Testing on Real vs. Simulated Users: A comparison of the
results obtained with real and simulated users reveals a number
of interesting findings. Most importantly, the ranking of the
learned AGD-H and AGD-T policies obtained with real users
is predicted correctly in simulation runs. The predicted perfor-
mance scores, however, are significantly different from those
observed with real users. At very low error rates, the tests on real
users show a dialogue performance score (across all three tested
policies) of approximately 80 points (see Fig. 12). The simula-
tion runs with the AGD-H model significantly overestimate the
performance with scores of approximately 95 points (Fig. 10).
The AGD-T model on the other hand significantly underesti-
mates the performance with scores under 60 points (Fig. 9).

This demonstrates that both simulators despite their useful-
ness for training policies are not accurate predictors of dialogue
performance. It also illustrates a second interesting point: Al-
though the AGD-T model is a worse predictor of dialogue per-
formance than the AGD-H model, the dialogue policy learned
with the AGD-T model performs better on real users than the
policy learned with the AGD-H model. This relates to an inter-
esting discussion in the literature on statistical user simulation:
Should the user model mimic the user population in the given
training data as truthfully as possible or should it vary from the
observed behavior to expose the learning dialogue manager to
unseen user behavior? As in Rieser and Lemon [14], one may
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argue that the training model should be (partly) evaluated based
on whether it allows for a desired amount of deviation from the
seen user behavior. The testing model, on the other hand, should
above all produce a reliable rank ordering of dialogue policies,
as argued by Williams [39].

VII. CONCLUSION

This paper has presented a novel statistical method for
user simulation which models the observable semantic-level
user output in terms of a sequence of hidden user goals and
agendas. The goal consists of slot-value pairs describing the
user’s requests and constraints, and ensures consistency in user
behavior over the course of a dialogue. The agenda stores a list
of pending user dialogue acts and serves as a convenient way
of encoding dialogue context from a user’s point of view. Its
stack-like format allows state transitions and user act generation
to be modeled using simple push- and pop-operations without
unduly limiting the expressive power of the model.

Since the sequence of user state transitions is treated as un-
observable, model parameter estimation cannot be performed
using simple maximum likelihood frequency counting. To
solve this problem, an EM-based training algorithm is pre-
sented which uses dynamically growing tree structures and
a “summary space” mapping to achieve tractability. This ap-
proach is more complex then previously presented user model
parameter estimation techniques, but it has the significant ad-
vantage of not requiring any state-specific dialogue annotation.

The experimental results presented in this paper demonstrate
that the model can be successfully trained on a limited amount
of minimally labeled dialogue data. The trained model may then
be used to learn a competitive MDP dialogue policy using a
standard Reinforcement-Learning algorithm. Using a simula-
tion-based cross-model evaluation, the learned policy outper-
forms a handcrafted policy and a policy learned with a com-
peting baseline simulator. The simulation runs also demonstrate
the advantage of training policies in noisy conditions. An ex-
tensive user study involving 216 dialogues with 36 different
participants confirms the competitive performance of the policy
learned with the trained agenda user model. The results show an
actual task completion rate of 87.5% and a perceived task com-
pletion rate of 97.2%, outperforming the policy learned with a
handcrafted simulator by more than 10%. User satisfaction with
the agenda-based system is also significantly higher than with
the baseline.

To extend the user model to more complex dialogue sce-
narios, future work will address the shortcomings of the
current goal update model implementation. As pointed out in
Section III-E of this paper, the deterministic implementation
presented here is not trainable and places restrictions on the
user goal transitions which limit the behavior of the simulated
user. Covering a broader range of user behavior may also
require an extension to the set of agenda model summary con-
ditions and summary push actions. This unfortunately requires
detailed knowledge of the dialogue act format and familiarity
with the agenda model. An interesting research question is
thus whether the process of selecting summary conditions and
actions can be automated. A possible starting point for research
in this direction may be to cluster user states and user outputs

based on their similarity. Finding a suitable distance metric for
measuring the similarity between different agendas, goals, and
dialogue acts, however, is unlikely to be trivial.

While the simulation-based experiments presented in this
paper demonstrate the potential benefits of training under more
realistic noise conditions, it has not been possible to confirm
this result with real users. Future work should thus revisit the
error model to improve the accuracy of its predictions. At a later
stage, it would also be interesting to conduct policy training
and testing experiments with real users in a noisier setting or
with a mix of native and non-native speakers.
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