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Abstract

We describe a two-step approach for dialogue
management in task-oriented spoken dialogue
systems. A unified neural network framework
is proposed to enable the system to first learn
by supervision from a set of dialogue data
and then continuously improve its behaviour
via reinforcement learning, all using gradient-
based algorithms on one single model. The ex-
periments demonstrate the supervised model’s
effectiveness in the corpus-based evaluation,
with user simulation, and with paid human
subjects. The use of reinforcement learn-
ing further improves the model’s performance
in both interactive settings, especially under
higher-noise conditions.

1 Introduction

Developing a robust Spoken Dialogue System
(SDS) traditionally requires a substantial amount
of hand-crafted rules combined with various statis-
tical components. In a task-oriented SDS, teach-
ing a system how to respond appropriately is non-
trivial. More recently, this dialogue management
task has been formulated as a reinforcement learn-
ing (RL) problem which can be automatically opti-
mised through human interaction (Levin and Pierac-
cini, 1997; Roy et al., 2000; |Williams and Young,
2007}, Jurcicek et al., 2011} [Young et al., 2013). In
this framework, the system learns by a trial and er-
ror process governed by a potentially delayed learn-
ing objective, a reward function, that determines di-
alogue success (El Asri et al., 2014 |Su et al., 2015}
Vandyke et al., 2015} Su et al., 2016). To enable
the system to be trained on-line, sample-efficient

learning algorithms have been proposed (Gasi¢ and
Young, 2014} |Daubigney et al., 2014) which can
learn policies from a minimal number of dialogues.
However, even with such methods, performance is
still poor in the early training stages, and this can im-
pact negatively on the user experience. For these and
other reasons, most commercial systems still hand-
craft the dialogue management to ensure its stability.

Supervised learning (SL) has also been used
in dialogue research where a policy is trained to
produce an example response given the dialogue
state. Wizard-of-Oz (WoZ) methods (Kelley, 1984;
Dahlbick et al., 1993) have been widely used for
collecting domain-specific training corpora. Re-
cently an emerging line of research has focused on
training a network-based dialogue model, mostly in
text-input schemes (Vinyals and Le, 2015 Serban
et al., 2015} [Wen et al., 2016; Bordes and Weston,
2016). These systems were directly trained on past
dialogues without detailed specification of the inter-
nal dialogue state. However, there are two key lim-
itations of using the SL approach for SDS. Firstly,
the effects of selecting an action on the future course
of the dialogue are not considered. Secondly, there
may be a very large number of dialogue states for
which an appropriate response must be generated.
Hence, the SL training set may lack sufficient cover-
age. Another issue is that there is no reason to sup-
pose a human wizard is acting optimally, especially
at high noise levels. These problems exacerbate in
larger domains where multi-step planning is needed.
Thus, learning to mimic a human wizard does not
necessary lead to optimal behaviour.

To get the best of both SL- and RL-based dialogue



management, this paper describes a network-based
model which is initially trained with a supervised
spoken dialogue dataset. Since the training data may
be mismatched to the deployment environment, the
model is further improved by RL in interaction with
a simulated user or human users. The advantage of
the proposed framework is that a single model can
be trained using both SL and RL without modifying
the system architecture. This resembles the train-
ing process used in AlphaGo (Silver et al., 2016) for
the game of Go. In addition, unlike most of the-
state-of-the-art RL-based dialogue systems (Gasi¢
and Young, 2014; |Cuayahuitl et al., 2015) which
operate on a constrained set of summary actions to
limit the policy space and minimise expensive train-
ing costs, our model operates on a full action set.

2 Neural Dialogue Management

The proposed framework addresses the dialogue
management component in a modular SDS. As de-
picted in Figure [T} the input to the model is the be-
lief state s which encodes the understood user in-
tents along with the dialogue history (Henderson et
al., 2014b; Mrksi€ et al., 2015), and the output is
the master dialogue action a that decides the seman-
tic reply. This is subsequently passed to the natural
language generator (Wen et al., 2015).

Dialogue management is represented as a Policy
Network, a neural network with one hidden layer
exploiting tanh non-linearities, an output layer con-
sisting of two softmax partitions and six sigmoid
partitions. For the softmax outputs, one is for pre-
dicting DiaAct, a multi-class label over five dialogue
acts: {request, offer, confirm, select,
bye}, and the other for predicting Query, contain-
ing four options for the search constraint: {food,
pricerange, area, none}. Query options only
matter if the dialogue act in {request, confirm,
select} is used. The sigmoid partitions are for
Offer, each of which is used to determine a binary
prediction when making system offe

Given the system’s understanding of the user, the
model’s role is to determine what the intent of the
system response should be and which slor to talk
about. The exact value in each slot is decided by a

I'System-offer slots are slots the system can mention, such
as area, phone number and postcode.
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Figure 1: Network-based System Architecture.

separate database parser, where the query is the top
prediction of each user-informable slotE| from the di-
alogue state tracker and the output is a matched en-
tity. This output forms the system’s semantic reply,
the master dialogue action.

2.1 Phase I: Supervised Learning

In the first phase, the policy network is trained on
corpus data. This data may come from WoZ collec-
tion or from interactions between users and an al-
ready existing policy, such as a hand-crafted base-
line. The objective here is to ‘mimic’ the response
behaviour within the supervised data.

The training objective for each sample is to min-
imise a joint cross-entropy loss £(#) between model
action labels y defined in §2|and predictions p:

>

ke{d(hq:OS}

,C(H) - H(yk,pk>, (1)

where DiaAct d, and Query ¢ outputs are categor-
ical distributions, and the Offer set O, contains six
binary offer slots. ¢ are the network parameters.

2.2 Phase II: Reinforcement Learning

The policy trained in phase I on a fixed dataset
may not generalise well. In spoken dialogue, the
noise level may vary across conditions and thus
can significantly affect performance. Hence, the
second phase of the training pipeline aims at im-
proving the SL trained policy network by further
training using policy-gradient based RL. The model
is given the freedom to select any combination of

User-informable slots are slots used by the user to constrain
the search, such as area and price range.



master action. The training objective is to find a
parametrised policy 7y that maximises the expected
reward J(0) of a dialogue with T turns: J(0) =
E Zthlﬁytr(st,at)’m], where 7 is the discount
factor and r(s¢, ay) is the reward when taking master
action ay in dialogue state s;. Note that the struc-
ture and initial weights of 7y are fixed by the SL
pre-training phase, since the RL training aims to im-
prove the SL trained model.

Here a batch algorithm is adopted, and all tran-
sitions are sampled under the current policy. At
each update iteration, NV episodes were generated,
where the ith episode consists of a set of transition
tuples {(si,ai,7i)}11,. The estimated gradient is
estimated using the likelihood ratio trick:

1 ML o A
Vo (0) = 77 D D Vologm(ailsi: 0) i, (2)
1

i=1 t=0

where R = Z?:t 'yt/*trff is the cumulative return
from time-step ¢ to T;. Gradient descent is, however,
slow and has poor convergence properties.

Natural gradient (Amari, 1998)) improves upon
the above ’vanilla’ gradient method by computing an
ascent direction that approximately ensures a small
change in the policy distribution. This direction is
w = F(0)"1VyJ(#), where F(0) is the Fisher in-
formation matrix (FIM). Based on this, [Peters and
Schaal (2006) developed the Natural Actor-Critic
(NAQ). In its episodic case (eNAC), the FIM does
not need to be explicitly computed to obtain the nat-
ural gradient w. eNAC uses a least square method:

T
Ry = |> Vglogn(ajls;0)" | -w+C, ()
t=0
where C'is a constant and Vn € {1,..., N} an ana-
lytical solution can be obtained. For larger models
with more parameters, a truncated variant (Schul-
man et al., 2015) can also be used to practically cal-
culate the natural gradient.

Experience replay (Lin, 1992) is utilised to ran-
domly sample mini-batches of experiences from a
reply pool P. This increases data efficiency by re-
using experience samples in multiple updates and re-
duces the data correlation. As the gradient is highly
correlated with the return R, to ensure stable train-
ing, a unity-based reward normalisation is adopted
to normalise the total return R,, between O and 1.

3 Experimental Results

The target application is a live telephone-based SDS
providing restaurant information for the Cambridge
(UK) area. The domain consists of approximately
150 venues, each having 6 slots out of which 3 can
be used by the system to constrain the search (food-
type, area and price-range) and 3 are informable
properties (phone-number, address and postcode)
available once a database entity has been found.
The model was implemented using the Theano li-
brary (Theano Development Team, 2016). The size
of the hidden layer was set to 32 and all the weights
were randomly initialised between -0.1 and 0.1.

3.1 Supervised Learning on Corpus Data

A corpus consisting of 720 user dialogues in the
Cambridge restaurant domain was split into 4:1:1 for
training, validation and testing. This corpus was col-
lected via the Amazon Mechanical Turk (AMT) ser-
vice, where paid subjects interacted through speech
with a well-behaved dialogue system as proposed in
(Su et al., 2016). The raw data contains the top N
speech recognition (ASR) results which were passed
to a rule-based semantic decoder and the focus be-
lief state tracker (Henderson et al., 2014a) to ob-
tain the belief state that serves as the input feature
to the proposed policy network. The turn-level la-
bels were tagged according to Adagrad (Duchi
et al., 2011) per dialogue was used during backprop-
agation to train each model based on the objective in
Equation [I| To prevent over-fitting, early stopping
was applied based on the held-out validation set.
Table |1| shows the weighted F-1 scores computed
on the test set for each label. We can clearly see that
the model accurately determines the type of reply
(DiaAct) and generally provides the right informa-
tion (Offer). The hypothesised reason for the lower
accuracy of Query is that the SL training data con-
tains robust ASR results and thus the system exam-
ples contain more offers and less queries. This can
be mitigated with a larger dataset covering more di-
verse situations, or improved via an RL approach.

Table 1: Model performance based on F-measure.

DiaAct
97.73

Output
F-1

Query Offer
87.39 9251




3.2 Policy Network in Simulation

The policy network was tested with a simulated
user (Schatzmann et al., 2006) which provides the
interaction at the semantic level. As shown in Figure
the first grid points labelled ‘SL:0’ represent the
performance of the SL. model under various seman-
tic error rates (SER), averaged over 500 dialogues.
The SL model was then further trained using RL
at different SERs. As the SL model is already per-
forming well, the exploration parameter ¢ was set
to 0.1. The size of the experience replay pool £
was 2,000, and the mini-batch size was set to 32.
For each update, natural gradient was calculated by
eNAC to update the model weights of size ~2600.
The total return given to each dialogue was set to
20 x 1(D) — T, where T is the dialogue turn num-
ber and 1(D) is the success indicator for dialogue
D. Maximum dialogue length was set to 30 turns.
Return normalisation was used to stabilise training.
The success rate of the SL model can be seen
to increase for all SERs during 6,000 training di-
alogues, spreading between 1-8% improvement.
Generally speaking, the greatest improvement oc-
curs when the SER is most different to the SL train-
ing set, which are the higher SER conditions here.
In this case, as the semantic hypotheses were more
corrupted, the model learned to double-check more
on what the user really wanted. This indicates the
model’s ability to refine its own behaviour via RL.

3.3 Policy Network with Real Users

Starting from the same SL policy network as in
the model was improved via RL using human sub-
jects recruited via AMT. The policy network was
plugged-in to a modular SDS, comprising the Mi-
crosoft’s Bing speech recogniser E], a rule-based se-
mantic decoder, the focus belief state tracker, and a
template-based natural language generator.

To ensure the dialogue quality, only those dia-
logues whose objective system check matched with
the user rating were considered (Gasic€ et al., 2013)).
Based on this, two parallel policies were trained with
200 dialogues. To evaluate the resulting policies,
policy learning was disabled and a further 110 di-
alogues were collected with both the SL only and
SL+RL models. The AMT users were asked to rate

3 www.microsoft.com/cognitive-services/en-us/speech-api.
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Figure 2: The success rate of the policy network in
user simulation under various semantic error rates
trained with SL and further improved via RL.

the dialogue quality by answering the question “Do
you think this dialogue was successful?” on a 6-point
Likert scale and also providing a binary rating on di-
alogue success. The average quality rating (scaled
from O to 5) is shown in Table [2] with one standard
error. The results indicate that the SL-model could
work quite well with humans, but was improved by
RL on the 200 training dialogues. This demonstrates
that on-line RL is a viable approach to adapt a dia-
logue system to changing environmental conditions.

Table 2: User evaluation on the policies. Quality:
6-point Likert scale, Success: binary rating.

policy SL SL+RL

Quality (0-5) 397 +£0.12 4.04 +£0.12
Success (%) 945+£22 982+1.2

4 Conclusion

This paper has presented a two-step development
for the dialogue management in SDS using a uni-
fied neural network framework, where the model can
be trained on a fixed dialogue dataset using SL and
subsequently improved via RL through simulated or
spoken interactions. The experiments demonstrated
the efficiency of the proposed model with only a few
hundred supervised dialogue examples. The model
was further tested in simulated and real user settings.
In a mismatched environment, the model was capa-
ble of modifying its behaviour via a delayed reward
signal and achieved better success rate.
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