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ABSTRACT

This paper presents a novel method for training hiddenMarkov mod-
els (HMMs) for use in HMM-based speech synthesis. The primary
goal of HMM parameter optimization is to ensure that parameters
generated from the trained models exhibit similar properties to natu-
ral speech. In this paper, two major problems in conventional train-
ing are addressed: 1) the inconsistency between the training and syn-
thesis optimization criterion; and 2) the over-smoothing caused by
the statistical modeling process. The proposed method integrates
the global variance (GV) criterion into a trajectory training method
to give a unified framework for both training and synthesis which
provides both a consistent optimization criterion and a closed form
solution for parameter generation. The experimental results demon-
strate that the proposed method yields a significant improvement in
the naturalness of synthetic speech.

Index Terms— speech synthesis, hidden Markov models, train-
ing criterion, trajectory likelihood, global variance

1. INTRODUCTION

The hidden Markov model (HMM) is an effective framework for
modeling the acoustics of speech and its introduction has enabled
significant progress in speech and language technologies. Recently,
HMM-based speech synthesis [1] has attracted attention as a corpus-
based approach to Text-to-Speech (TTS) which has the potential for
realizing very flexible TTS systems.

A basic framework of HMM-based speech synthesis consists of
training and synthesis processes. In the training process, speech pa-
rameters such as spectral envelope and F0 are extracted from speech
waveforms and then their time sequences are modeled by context-
dependent HMMs. A joint vector of static and dynamic features is
usually used as an observation vector to model the dynamic charac-
teristics of speech acoustics. In the synthesis process, a smoothly
varying speech parameter trajectory is generated by maximizing the
likelihood of a composite sentence HMM subject to a constraint be-
tween static and dynamic features with respect to not the observation
vector sequence but the static feature vector sequence [2]. Finally
a vocoding technique is employed for generating a speech wave-
form from the generated speech parameters. Although HMM-based
speech synthesis has many attractive features such as completely
data-driven voice building, flexible voice quality control, speaker
adaptation, small footprint, and so on, it has the significant draw-
back that the quality of the synthetic speech is noticeably degraded
compared to the original spoken audio.

The main weakness of the basic framework for HMM-based
speech synthesis is the inconsistency between the training and syn-
thesis criteria, i.e., likelihoods for the joint static and dynamic fea-
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ture vectors in the training process compared to likelihoods for only
the static feature vectors in the synthesis process. Consequently, the
trained model parameters are not optimum for parameter generation.
To address this problem, Zen et al. [3] have proposed a training
method based on the trajectory HMM, which is derived by impos-
ing an explicit relationship between static and dynamic features on
the traditional HMM. This method allows the utilization of a unified
criterion, i.e., trajectory likelihood, in both training and synthesis
processes. In a similar spirit, Wu and Wang [4] have proposed min-
imum generation error (MGE) training. This method optimizes the
HMM parameters so that an error between the generated and natural
parameters is minimized.

In a different approach to improving the synthetic speech quality,
Toda and Tokuda [5] have introduced a new criterion on a higher-
order moment called the global variance (GV), which is the vari-
ance of the static feature vectors calculated over a time sequence
(e.g., over an utterance) in the parameter generation process. The
static feature vectors generated from the HMMs in the traditional
generation process are usually over-smoothed and this is one of the
main factors causing the muffled effect in HMM-synthesized speech.
Since the GV is inversely correlated with these smoothing effects, a
metric on the GV of the generated parameters effectively works as
a penalty term in the parameter generation process. It has been re-
ported that synthetic speech quality can be significantly improved by
generating the parameter trajectory while keeping its GV close to the
natural one.

In an attempt to apply the idea of considering the GV in the
HMM training process, Wu et al. [6] have proposed MGE training
which considers the error in the GV between natural and generated
parameters as well as the generation error as mentioned above. The
HMM parameters are optimized so that both the generated param-
eters and their GV are similar to the natural ones. It is clear that
this idea can also be applied to the ML-based training process, i.e.,
the trajectory training, in which not only frame-by-frame generation
errors but also a correlation of the errors over a time sequence is
considered.

In this paper, we propose a trajectory training method which in-
corporates the GV. The HMM parameters are optimized in the sense
of maximum likelihood subject to a constraint on the GV of the
generated parameter trajectory. Consequently, we obtain a unified
framework which consistently uses the same criterion in both train-
ing and synthesis. A similar method has been proposed in [7], but its
effectiveness has never been reported. We show that our proposed
method yields significant improvements to the naturalness of syn-
thetic speech. Moreover, trajectory training has hitherto only been
applied to the spectral component of the speech signal [3]. Here we
extend the framework to include multi-space probability distribution
HMMs (MSD-HMMs) [8] to enable trajectory training to be applied
to the F0 component as well as the spectral component.



2. BASIC FRAMEWORK

2.1. HMM Training

Let us assume a D-dimensional static feature vector ct = [ct(1),
· · · , ct(D)]

� at frame t. We use a speech parameter vector ot =

[c�
t , Δ(1)c�

t , Δ(2)c�
t ]

� consisting of not only the static feature
vector but also dynamic feature vectors Δ(1)ct, Δ(2)ct as the ob-
servation vector. The sequences of vectors ot and ct are written as
o = [o�

1 , · · · , o�
t , · · · , o�

T ]
� and c = [c�

1 , · · · , c�
t , · · · , c�

T ]
�,

respectively.
In the traditional HMM, the probability density of o given an

HMM state sequence q = [q1, · · · , qt, · · · , qT ] is written as

P (o|q, –) = N (o;—q , Uq) =

TY
t=1

N (ot;—qt
, U qt) (1)

where N (·;—, U) denotes the Gaussian distribution with a mean
vector — and a covariance matrix U . The mean vector sequence —q
and the covariance matrix sequence Uq are given by

—q =
h
—�

q1
, · · · , —�

qt
, · · · , —�

qT

i�
(2)

Uq = diag [Uq1 , · · · , Uqt , · · · , U qT ] . (3)

In the training process, the HMM parameter set – is optimized
in the sense of maximum likelihood as follows:

–̂ = argmax
–

X
all q

P (o|q, –)P (q|–). (4)

2.2. Parameter Generation [2]

Given the HMM state sequence q,1 the static feature vector sequence
is determined by

ĉ = argmax
c

P (o|q, –) = cq subject to o = W c (5)

where W is a window matrix extending the static feature vector se-
quence to the observation vector sequence consisting of static and
dynamic features. The ML estimate cq is given by

cq = P qrq (6)

P −1
q = W �U−1

q W (7)

rq = W �U−1
q —q . (8)

3. IMPLEMENTING TRAJECTORY TRAINING FOR
BOTH SPECTRAL AND F0 COMPONENTS

3.1. Trajectory HMM [3]

The traditional HMM is reformulated as a trajectory HMM by im-
posing an explicit relationship between static and dynamic features,
which is given by o = W c. The probability density of c in the
trajectory HMM given the state sequence q is then written as

P (c|q, –) = N (c; cq , P q) =
1

Zq
P (o|q, –) (9)

where

Zq =

p
(2π)DT |P q |p
(2π)3DT |Uq |

exp

„
−1
2
(—�

q U−1
q —q − r�

q P qrq)

«
. (10)

1We usually use the suboptimum HMM state sequence determined by
maximizing only a likelihood of the duration model.

The mean vector cq varies within states and inter-frame correlation
is modeled by the temporal covariance matrix P q that is generally
full even if using the same number of model parameters as in the
traditional HMM. Note that the mean vector of the trajectory HMM
is equivalent to the ML estimate of the generated static feature se-
quence shown by Eq. (6) because the parameter generation process
in Eq. (5) is reformed as the maximization process of the trajectory
likelihood P (c|q, –).

3.2. Estimation of Model Parameters [3]

The HMM parameter set – is estimated by maximizing the trajec-
tory likelihood Lq(= P (c|q, –)) given the HMM state sequence
q.2 The mean vectors and diagonal covariance matrices at all HMM
states (from 1 to N ), which are given by

m =
h
—�

1 , —�
2 , · · · , —�

N

i�
(11)

Σ−1 =
ˆ
U−1

1 , U−1
2 , · · · , U−1

N

˜�
, (12)

are simultaneously updated. The mean vectorsm are iteratively up-
dated using the following gradient,

∂Lq

∂m
= A�

q U−1
q W (c − cq) (13)

whereAq is a 3MT × 3MN matrix whose elements are 0 or 1 de-
termined according to the state sequence q. The covariance matrices
Σ are iteratively updated using the following gradient,

∂Lq

∂Σ−1 =
1

2
A�

q on-diag
h
W (P q + cqc�

q − cc�)W �

−2—q(cq − c)�W �
i

(14)

where on-diag[·] denotes the extraction of only diagonal elements
from a square matrix. Note that a closed form solution also exists
for the estimation of the mean vectors but a very large set of linear
equations needs to be solved.

3.3. Trajectory Training for F0 modeling

The MSD-HMM for the F0 component usually models each of the
static and dynamic features separately with different streams because
the dynamic features at voiced/unvoiced boundaries are not easily
calculated. The probability density of o given q is written as

P (o|q, –) =
2Y

n=0

Y
t∈U(n)

(1− w(n)
qt
)

Y
t∈V (n)

w(n)
qt

N (Δ(n)ct;μ
(n)
qt

, U (n)
qt
) (15)

where Δ(0)ct = ct, and w
(n)
qt is a weight for a continuous space on

which static or dynamic features are modeled. The unvoiced and
voiced frames for each stream are denoted as t∈ U (n) and t∈ V (n),
respectively.

To derive the trajectory MSD-HMM in the similar manner as
mentioned above, we first approximate Eq. (15) with a single stream
as follows:

P (o|q, –) =
Y

t∈U(0)

(1− w(0)
qt
)

Y
t∈V (0)

w(0)
qt

N (ct;—qt
, Uqt)

= P (oV |qV , –)
Y

t∈U(0)

(1− w(0)
qt
)

Y
t∈V (0)

w(0)
qt

(16)

2This paper uses the suboptimum HMM state sequence determined by the
Viterbi algorithm and the traditional likelihood, i.e., P (q|–)P (o|q, –).



where oV is a time sequence of static and dynamic features and qV

is a state sequence of only the voiced frames. In order to ignore the
dynamic features at voiced/unvoiced boundary frames, precisions
for the dynamic features U

(1)
qt

−1
and U

(2)
qt

−1
are set to zeros at the

boundaries. Note that the same modification is usually performed in
the speech parameter generation for the F0 component. The MSD-
HMM is reformulated as the trajectory MSD-HMM by imposing oV

= W V cV on P (oV |qV , –). Consequently, the probability density
of c given q is given by

P (c|q, –) = P (cV |qV , –)
Y

t∈U(0)

(1− w(0)
qt
)

Y
t∈V (0)

w(0)
qt

. (17)

4. GV-CONSTRAINED TRAJECTORY TRAINING

In order to integrate parameter generation considering the GV [5]
into an ML-based training framework, we propose using trajectory
training subject to a constraint on the GV. This approach is quite
different from the method described in [7] since it uses a different
definition of the GV probability density function, it updates both
means and covariances, and it is applied to both spectral and F0

components.

4.1. Objective Function

The proposed objective function L′
q is given by

L′
q = P (c|q, –)P (v(c)|q, –, –v)

ωT (18)

where v(c) = [v(1), · · · , v(D)]� is a GV vector of the static fea-
ture vector sequence c, which is calculated by

v(d) =
1

T

TX
t=1

(ct(d)− 〈c(d)〉)2 (19)

〈c(d)〉 =
1

T

TX
τ=1

cτ (d). (20)

The GV is calculated utterance by utterance and the probability den-
sity of the GV is modeled by

P (v(c)|q, –, –v) = N (v(c);v(cq),Σv). (21)

Note that the mean vector of the GV probability density is defined as
the GV of the mean vector of the trajectory HMM, which is equiv-
alent to the GV of the generated parameters from the HMM shown
by Eq. (6). Hence, the GV likelihood P (v(c)|q, –, –v) works as a
penalty term to make the GV of the generated parameters close to
that of the natural ones. The balance between the two likelihoods
P (c|q, –) and P (v(c)|q, –, –v) is controlled by the GV weight ω.

4.2. Estimation of model parameters

Given the HMM state sequence q, the GV weight ω, and the GV
covariance matrixΣv , the HMM parameter set is estimated by max-
imizing the proposed objective function L′

q . The mean vectors and
the covariance matrices are iteratively updated using the following
gradients,

∂L′
q

∂m
= A�

q U−1
q W (c − cq + ωP qxq) (22)

∂L′
q

∂Σ−1 =
1

2
A�

q on-diag
h
W (P q + cqc�

q − cc�)W �

−2—q(cq − cq)
�W � + 2ωW P qxq(—q − W cq)

�
i
(23)

where

x
(d)
q = −2

“
c
(d)
q −

D
c
(d)
q

E”
(v(cq)− v(c))� p(d)

v . (24)

4.3. Parameter generation

It is not necessary to consider the GV in parameter generation be-
cause the HMM parameters are optimized so that the GV of the
generated trajectory is close to the natural one. Consequently, the
basic parameter generation algorithm shown by Eq. (5) is employed.
Note that the basic algorithm is computationally much more efficient
compared to the parameter generation algorithm considering the GV
[5] that needs an iterative process.

If the proposed objective function L′
q is used in the parameter

generation, the static feature vector sequence is determined by

ĉ = argmax
c

N (c; cq , P q)N (v(c);v(cq),Σv) = cq . (25)

Note that this estimate is equivalent to the ML estimate by the basic
algorithm. Therefore, the proposed framework can also be regarded
as a unified framework using the same objective function in both the
training process and the synthesis process.

5. EXPERIMENTAL EVALUATIONS

5.1. Experimental conditions

For the evaluation, voices were built for each of 4 English speakers
(2 males: bdl and rms, and 2 females: clb and slt) in the CMU ARC-
TIC database [10]. For each speaker, we used sub-set A consisting
of about 600 sentences as training data and the remaining sub-set B
consisting of about 500 sentences for evaluation. Context-dependent
labels were automatically generated from texts using a text analyzer
derived from Flite [11].

The 0th through 24th mel-cepstral coefficients were used as
spectral parameters and log-scaled F0 plus aperiodic components
for the excitation. STRAIGHT [12] was employed for the analysis-
synthesis method. Each speech parameter vector included the static
features and their delta and delta-deltas. The frame shift was set to
5 ms.

Context-dependent HMMs were trained for each of the spectral,
F0, and aperiodic components using a decision-tree based context
clustering technique. We also trained context-dependent duration
models for modeling the state duration probabilities. After initial-
izing using the basic training process, trajectory training was per-
formed for the spectral and F0 components. Finally, trajectory train-
ing was performed subject to a constraint on the GV for the both
components. The covariance matrix of the GV probability density
function was trained using the GVs calculated from individual utter-
ances in the training data. We set the GV weight ω to 0.5. Trajectory
training was not applied to the aperiodic components.

For synthesis, the speech parameter sequences were generated
from sentence HMMs for given input contexts. The basic speech pa-
rameter generation algorithm shown by Eq. (5) was employed and
then, a speech waveform was synthesized by filtering the mixed ex-
citation, which was designed by the generated excitation parameters,
based on the generated spectral parameters.

5.2. Objective Evaluation

Table 1 shows the log-scaled trajectory, GV, and proposed likeli-
hoods for mel-cepstrum and log-scaled F0 in the training data and
the evaluation data, respectively. The trajectory training causes



Table 1. Log-scaled trajectory likelihood shown by Eq. (9), GV
likelihood shown by Eq. (21), and proposed likelihood shown by
Eq. (18) (when ω = 1.0) of each model

a) Training data
Likelihoods for mel-cep Trajectory GV Proposed
Basic HMM (Basic) 16.97 -69.22 -52.25
Trajectory HMM (Trj) 28.52 -34.22 -5.70
GV-Trajectory HMM (GV-Trj) 28.11 92.43 120.54
Likelihoods for log F0 Trajectory GV Proposed
Basic HMM (Basic) 2.09 1.59 3.68
Trajectory HMM (Trj) 2.26 1.87 4.13
GV-Trajectory HMM (GV-Trj) 2.25 2.55 4.80

b) Evaluation data
Likelihoods for mel-cep Trajectory GV Proposed
Basic HMM (Basic) 14.49 -69.13 -54.64
Trajectory HMM (Trj) 27.28 -34.87 -7.59
GV-Trajectory HMM (GV-Trj) 26.87 80.34 107.21
Likelihoods for log F0 Trajectory GV Proposed
Basic HMM (Basic) 1.77 1.27 3.04
Trajectory HMM (Trj) 2.02 1.54 3.56
GV-trajectory HMM (GV-Trj) 2.02 2.17 4.19

significant improvements in the trajectory likelihoods because the
HMM parameters are optimized so as to directly maximize the
trajectory likelihoods. It is interesting to note that the trajectory
training also causes improvements in the GV likelihood although
the improvement gains are not large. These results suggest that the
trajectory training yields better generated parameter trajectories than
the basic training. The GV likelihoods are dramatically improved
by the GV-constrained trajectory training. Note that this training
method does not cause significant reductions to the trajectory like-
lihoods. This can be observed for both the mel-cepstrum and F0

components and in both the training and the evaluation data.
Overall these results suggest that the proposed training method

does lead to parameter trajectories which more closely resemble the
various feature characteristics of real speech.

5.3. Subjective Evaluation

An opinion test was conducted on the naturalness of the syn-
thetic speech to demonstrate the effectiveness of the proposed
method. Eight kinds of voices were evaluated: seven combina-
tions of basic/trajectory/GV-constrained trajectory training methods
for F0/mel-cepstrum components and one analysis-synthesis, as
shown in Figure 1. Ten listeners participated in the test. Each
listener evaluated 32 samples consisting of four sentences for each
speaker, i.e., 128 samples in total. These sentences were randomly
selected for each speaker and each listener from the evaluation data.3

Figure 1 shows the result of the test. The trajectory training
yields significant quality improvements compared to the basic train-
ing and the GV-constrained trajectory training provides further im-
provements. It can be seen that the largest improvements are ob-
tained by applying these methods to the mel-cepstrum components.
This tendency is similar to that observed when considering the GV
in the parameter generation process [5].

3Several samples are available from
http://spalab.naist.jp/˜tomoki/ICASSP/GV-TrjHMM/index.html
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Fig. 1. Result of opinion test on naturalness.

6. CONCLUSIONS
This paper has described a new trajectory training method under a
constraint on a global variance (GV) for HMM-based speech synthe-
sis. The proposed method provides a unified framework for training
and synthesizing speech using a common criterion, it yields very sig-
nificant improvements in naturalness, and it allows a more efficient
parameter generation process considering the GV based on a closed
form solution. Our next step is to investigate whether the proposed
method causes significant quality improvements in synthetic speech
compared with the conventional GV-based parameter generation.
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