
Training a real-world POMDP-based Dialogue System

Blaise Thomson, Jost Schatzmann, Karl Weilhammer, Hui Ye and Steve Young
Cambridge University Engineering Department

Trumpington Street, Cambridge, CB21PZ, United Kingdom
{brmt2, js532, kw278, hy216, sjy}@eng.cam.ac.uk

Abstract

Partially Observable Markov Decision Pro-
cesses provide a principled way to model un-
certainty in dialogues. However, traditional al-
gorithms for optimising policies are intractable
except for cases with very few states. This pa-
per discusses a new approach to policy optimi-
sation based on grid-based Q-learning with a
summary of belief space. We also present a
technique for bootstrapping the system using
a novel agenda-based user model. An imple-
mentation of a policy trained using this system
was tested with human subjects in an extensive
trial. The policy gave highly competitive re-
sults, with a 90.6% task completion rate.

1 Introduction
Recent work on statistical models for dialogue systems
has argued that Partially Observable Markov Decision
Processes (POMDPs) provide a principled mathemati-
cal framework for modeling the uncertainty inherent in
human-machine dialogue (Young, 2006). Briefly speak-
ing, POMDPs extend the traditional (fully-observable)
Markov Decision Process (MDP) framework by main-
taining a belief state, ie. a probability distribution over
dialogue states. This enables the dialogue manager to
avoid and recover from recognition errors by sharing and
shifting probability mass between multiple hypotheses of
the current dialogue state. The framework also naturally
incorporates n-best lists of multiple recognition hypothe-
ses coming from the speech recogniser.

Due to the vast space of possible belief states, however,
the use of POMDPs for any practical system is far from
straightforward. Exact algorithms for solving POMDPs
do exist, but have been shown to be intractable except for
domains limited to a few states (Kaelbling et al., 1998).
In a practical dialogue system the minimum number of

dialogue states is typically determined by the number of
possible user goals, and this number usually far exceeds
the limits of exact solution algorithms.

Approximate algorithms have been developed to over-
come the intractibility of exact algorithms but even the
most efficient of these techniques such as Point Based
Value Iteration (PBVI) cannot scale to the many thou-
sand states required by a statistical dialogue manager
(Williams, 2006; Pineau et al., 2003). Previous work
by Williams and Young (2006) on Composite Summary
Point Based Value Iteration (CSPBVI) has suggested the
use of a small summary space for each slot where PBVI
policy optimisation can be applied. This has shown to
give good results on synthetic data but remains untested
within real dialogue systems.

One potential problem with the CSPBVI technique is
that policy learning can only be performed offline, ie. at
design time, because policy training requires an existing
accurate model of user behaviour. In this paper, an alter-
native technique for online training based on Q-learning
is presented. Online training allows the system to adapt
to real users as new dialogues are recorded.

The learning algorithm presented here does not require
any model of user behaviour so initial dialogues may well
be incoherent. In fact, the system requires several thou-
sand dialogues before convergence to a suitable policy
begins. This means that in practice the model needs to
be bootstrapped via a user simulator. Further adapatation
can then be done with real users.

The paper is organised as follows. Section 2 provides
an introduction to the POMDP model and explains the
Summary POMDP framework that is used in the remain-
der of the paper. A new online method for policy opti-
misation is presented in Section 3 and a novel agenda-
based user model for bootstrapping the system is intro-
duced in Section 4. Section 5 discusses an evaluation of
a sample implementation built for a Tourist Information
System and tested with human subjects. The system per-

formed competitively with 90.6% of tasks successfully
completed despite a mix of native and non-native speak-
ers. The paper concludes with a summary and some di-
rections for future work.

2 Background
2.1 POMDP Basics
A POMDP is defined in much the same way as an MDP,
except that the states are not observable and instead have
to be estimated from observations. Formally, a POMDP
is a tuple {Sm, Am, T, R, O, Z, λ, b0} where:
• Sm is a set of machine states
• Am is a set of actions that the machine may take
• O is a set of possible observations
• T defines the transition probability such that

T (sm, am, s′m) = P (s′m|sm, am)
• R defines the immediate reward obtained from tak-

ing a particular action in a particular state to be
r(sm, am)

• Z defines the probability of a particular observation
given the state and machine action P (o′|s′m, am)

• λ is a geometric discount factor 0 ≤ λ ≤ 1
• b0 is an initial belief state.

When the POMDP operates, it also makes use of a pol-
icy π : Π(S) −→ Am that chooses an action given a
point in belief space. Here Π(S) is the set of all possible
probability distributions over Sm (an |Sm| − 1 dimen-
sional simplex). π(b) gives the action to take when the
POMDP is in belief state b.

The sequence of events in the POMDP follows a cycle.
At each time step, the machine is in some unobserved
state sm ∈ Sm. Since the true state is unknown, the ma-
chine maintains a probability distribution over the states
b, which is called the belief state. Based on this belief
state and the policy π being followed, the system takes
an action am = π(b). The machine is rewarded with
r(sm, am) and the state transtitions to a new unobserved
state s′m with probability T (sm, am, s′m). The machine
then receives an observation o′ ∈ O, with probability de-
pendent only on the new state s′m and the machine action
am. The belief state is updated based on the events of
the turn and the cycle repeats. The belief state update is
computed as

b′(s′m) = k · P (o′|s′m, am)
∑

sm∈Sm

P (s′m|am, sm)b(sm)

(1)
where k is a normalisation constant(Kaelbling et al.,
1998). Maintaining this belief state as the dialog evolves
is called belief monitoring.

Figure 1 shows a graphical representation of a POMDP
based dialogue system. When the user utters a user act au

Belief
Estimator

Dialogue
Policy

)(msb

POMDP

=
N

u

u

a

a

o
~
...

~

'

1

Noisy
Channel

Real user /
Simulator

ua

us

ma

Reinforcement
Learning

),()(mm
s

m asrsb

m

′′∑
′

∑

Optimise

expected reward

Figure 1: Training a POMDP with a simulated user

it is transmitted via speech to the dialogue system. From
the machine’s point of view, the speech acts as a noisy
channel so that the observation received, o, is not neces-
sarily the true dialogue act. Instead it typically describes
an n-best list of hypothesised user acts. Based on this, the
POMDP belief state is updated and a machine dialogue
act, am, is selected. As can be seen from the diagram, it
is quite trivial to replace a real user with a simulated one
so that training can be performed less laboriously.

Given a particular policy, the infinite horizon expected
reward as a function of belief state is called the value
function. It is calculated as:

V π(b) =
∞∑

t=0

λtr(bt, am,t) (2)

=
∞∑

t=0

λt
∑

sm∈Sm

bt(sm)r(sm, am,t) (3)

=
∞∑

t=0

λt
∑

sm∈Sm

bt(sm)r(sm, π(bt)) (4)

The goal of POMDP policy optimisation is to find the
policy that maximises the value function at every point b.
It can be shown that such a function always exists and is
both continuous and convex.

In the context of policy optimisation it is also useful
to define the concept of a Q function(Sutton and Barto,
1998). This is a function of both belief state b and action
am and is simply the expected reward obtained by first
taking action am and then following the policy π.

The Bellman Optimality Equation states that a policy
is optimal if and only if

π(b) = arg max
a∈Sm

Qπ(a, b) (5)

2.2 The Summary POMDP

As discussed in the introduction, directly optimising
POMDPs for dialogue systems is completely impractical.
Instead, the belief state and actions are mapped down to a
summarised form where optimisation becomes tractable.
In this context, the original belief space and actions are

Figure 2: The Summary POMDP framework

called master space and master actions, while the sum-
marised versions are called summary space and summary
actions.

Action selection in the full model would be a mapping
from a belief state b ∈ Π(Sm) to an action am ∈ Am.
The summary POMDP splits this up as follows. The
model initially extends the standard POMDP with a set
of summary actions Ām and a mapping from summary
actions to master actions F . This function should be al-
lowed access to the master belief space so that the sum-
mary can be as brief as possible (formally, F : Ām ×
Π(Sm) −→ Am). Next, a summarising function f is
defined from master belief space Π(Sm) to summary be-
lief space Rk. Finally, a summary policy π̄ is defined
as a mapping from summary space Rk to summary ac-
tions Ām. A policy in master space is composed from
the above three functions by first mapping to summary
space via f , using policy π̄ to find an appropriate sum-
mary action ām and then obtaining a master action with
F . The full process is shown graphically in Figure 2. Al-
gebraically the master policy is defined by:

π(b) = F (π̄(f(b)), b) (6)

Further explanation of the Summary POMDP method
can be found in (Williams and Young, 2005). Note that
the formalism introduced above may be used for both the
summary methods previously used for dialogue systems
as well as belief compression techniques used in a more
general setting (Roy et al., 2005)

At the summary level, policies may not have enough
information to act truly optimally. Hence defining an op-
timal summary policy is not so obvious. If f is chosen
well, however, then one could hope that the optimal ac-
tion is dependent only on f(b). If this is true then a sum-
mary policy is called optimal when the following equa-
tion holds for every b such that f(b) = (x):

π̄(x) = arg max
ā∈Ām

Q(F (ā, b), b) (7)

3 Summarised Q-learning

Q-learning is a technique for online learning traditionally
used in an MDP framework. It is an iterative Monte-Carlo
style algorithm where a sequence of sample dialogues are
used to estimate the Q functions for each state and ac-
tion. Inspired by grid-based methods, the summarised Q-
learning algorithm discretises summary space and uses
Q-learning on the resulting MDP-like grid.

Operation of the algorithm proceeds by simply engag-
ing the dialogue manager with either a real user or a user
model. At each point where the system must choose an
action, the master belief space is mapped down to the
summary level as described in Section 2.2. The nearest
summary point in the grid is found and the optimal sum-
mary action given by that point is chosen.

At the end of the dialogue, the discounted future re-
ward is known for each stage where a choice was taken.
This value is recorded along with the grid point where
the decision was made, and the action chosen. This is a
sample of the discounted future reward obtained by tak-
ing the particular action and then following the current
policy - i.e. the Q-function evaluated at this grid point.
If sufficient dialogues are done the mean of these values
will give a good estimate of the true Q-value.

In order to enable learning, an exploration paramater ε
is selected so that a random summary act will be chosen
with probability ε. After a batch of dialogues have been
completed, the estimates of the Q-functions are updated
with the new dialogue scores. The optimal action is then
chosen for each point p by

āp = argmax
ā

Q̂(a, p) (8)

The selection of which points to put into the grid is a
crucial part of the algorithm as one would like the most
accuracy at points that will be visited often. As a re-
sult, this algorithm uses a variable grid method (Brafman,
1997; Bonet, 2002). During operation, when a point is
reached that is further away from any other point than
some threshold paramater, the point is added to the grid.
This ensures that points are only included in the grid if
needed.

Grid-based methods are often criticised because they
do not scale well to large state spaces (Pineau et al.,
2003). However, when using the Summary POMDP
method the state space is reduced significantly before
the grid is applied. Although there are no convergence
guarantees for this method in the context of Summary
POMDPs, Q-learning does guarantee convergence to the
optimal policy for standard MDPs. As can be seen from
Figure 4, in practice the method does converge to a high
performing policy after several thousand dialogues.

4 Agenda-Based Simulation
4.1 User Simulation-Based Training
As described in the introduction to this paper, online
methods for training statistical dialogue managers allow
the dialogue policy to be adapted and improved at run-
time, ie. through interaction with real users. During the
initial development phase however, many thousand train-
ing dialogues are needed to bootstrap the dialogue policy,
and this is generally too time-consuming and expensive
to be done with real users.

A number of research groups (Levin et al., 2000;
Scheffler and Young, 2002; Pietquin and Dutoit, 2005;
Georgila et al., 2005; Rieser and Lemon, 2006) have thus
investigated the use of user simulation tools for training
the dialogue manager (DM). The simulation-based ap-
proach typically involves two steps. Firstly, a statistical
user model (such as an n-gram or a graphical model) is
trained on a limited amount of dialogue data. The model
is then used to simulate dialogues with the interactively
learning DM (see Schatzmann et al. (2006) for a liter-
ature review). Simulation is usually done at a semantic
dialogue act level to avoid having to reproduce the vari-
ety of user utterances at the word- or acoustic level.

The simulation-based approach assumes the presence
of a small corpus of suitably annotated in-domain dia-
logues (Lemon et al., 2006). For the experiments pre-
sented in this paper, no such data was available for train-
ing the user model. Hence, it was necessary to develop
a model which was simple enough for the model pa-
rameters to be handcrafted and yet capable of producing
user behaviour realistic enough for training a prototype
system. A similar approach has been previously taken
by (Levin et al., 2000; Pietquin and Dutoit, 2005) but
the performance of the learned dialogue policies was not
evaluated using real users.

4.2 User Simulation at a Semantic Level
Human-machine dialogue can be formalised on a seman-
tic level as a sequence of state transitions and dialogue
acts1. At any time t, the user is in a state su, takes ac-
tion au, transitions into the intermediate state s′u, receives
machine action am, and transitions into the next state s′′u
where the cycle restarts.

su → au → s′u → am → s′′u → · · · (9)

Assuming a Markovian state representation, user be-
haviour can be decomposed into three models: P (au|su)
for action selection, P (s′u|au, su) for the state transition
into s′u, and P (s′′u|am, s′u) for the transition into s′′u.

1In this paper, the terms dialogue act and dialogue action
are used interchangeably. The notation act(a=x, b=y,...) is used
to represent a dialogue act of a given type act (such as inform
or request with items a = x, b = y, etc.

4.3 Goal- and Agenda-Based State Representation
Inspired by agenda-based methods to dialogue manage-
ment (Wei and Rudnicky, 1999) the approach described
here factors the user state into an agenda A and a goal G.

su = (A, G) and G = (C,R) (10)

During the course of the dialogue, the goal G ensures that
the user behaves in a consistent, goal-directed manner.
G consists of constraints C which specify the required
venue, eg. a centrally located bar serving beer, and re-
quests R which specify the desired pieces of information,
eg. the name, address and phone number (cf. Fig. 3).

The user agenda A is a stack-like structure containing
the pending user dialogue acts that are needed to elicit
the information specified in the goal. At the start of the
dialogue a new goal is randomly generated using the sys-
tem database and the agenda is populated by converting
all goal constraints into inform acts and all goal requests
into request acts. A bye act is added at the bottom of the
agenda to close the dialogue.

As the dialogue progresses the agenda is dynamically
updated and acts are selected from the top of the agenda
to form user acts au. In response to incoming machine
acts am, new user acts are pushed onto the agenda and no
longer relevant ones are removed. The agenda thus serves
as a convenient way of tracking the progress of the dia-
logue as well as encoding the relevant dialogue history.
As can be seen in Fig. 3 (turns 1-3), user acts can also be
temporarily stored when actions of higher priority need
to be issued first, hence providing the simulator with a
simple model of user memory.

4.4 Action Selection
At any time during the dialogue, the updated agenda of
length N contains all dialogue acts the user intends to
convey to the system. Since the agenda is ordered ac-
cording to priority, with A[N] denoting the top and A[1]
denoting the bottom item, selecting the next user act sim-
plifies to popping n items off the top of the stack. Hence,
letting au[i] denote the ith item in the user act au

au[i] := A[N − n + i] ∀i ∈ [1..n], 1 ≤ n ≤ N. (11)

and the action selection model becomes a Dirac delta
function

P (au|su) = P (au|A,G) = δ(au, A[N−n+1..N]) (12)

where A[N − n + 1..N] is a Matlab-like shorthand no-
tation for the top n items on A and the random variable
n corresponds to the level of initiative taken by the sim-
ulated user. In a statistical model the probability distri-
bution over integer values for n should be conditioned on
A and learned from dialogue data. For the purposes of

C0 =

type = bar
drinks = beer
area = central

R0 =

name =
addr =
phone =

Sys 0 Hello, how may I help you?

A1 =

inform(type = bar)
inform(drinks = beer)
inform(area = central)
request(name)
request(addr)
request(phone)
bye()

Usr 1 I’m looking for a fine beer bar.
Sys 1 Ok, a wine bar. What pricerange?

A2 =

negate(drinks = beer)
inform(price = cheap)
inform(area = central)
request(name)
request(addr)
request(phone)
bye()

Usr 2 No, beer please!
Sys 2 You are looking for a beer bar, correct?

A3 =

affirm()
inform(price = cheap)
inform(area = central)
request(name)
request(addr)
request(phone)
bye()

Usr 3 Yeah something cheap in the town centre.
Sys 3 Murphy’s on Main Square serves cheap beer.

A4 =

[
request(phone)
bye()

]

Usr 4 Ok, and what’s the phone number?
Sys 4 The number is 796 69 94.

A5 =
[

bye()
]

Usr 5 Thanks, goodbye!

Figure 3: Sample dialogue and agenda sequence

bootstrapping the system, n can be assumed independent
of A and any distribution P (n) that places the majority
of its probability mass on small values of n can be used.

4.5 State Transition Model

The factorisation of su into A and G can now be ap-
plied to the state transition models P (s′u|au, su) and
P (s′′u|am, s′u). Letting A′ denote the agenda after select-
ing au (as explained in the previous subsection) and using

N ′ = N − n to denote the size of A′, we have

A′[i] := A[i] ∀i ∈ [1..N ′]. (13)

Using this definition of A′ and assuming that the goal
remains constant when the user executes au, the first state
transition depending on au simplifies to

P (s′u|au, su) = P (A′, G′|au, A, G)
= δ(A′, A[1..N ′])δ(G′, G). (14)

Using su = (A,G), the chain rule of probability, and rea-
sonable conditional independence assumptions, the sec-
ond state transition based on am can be decomposed into
goal update and agenda update modules:

P (s′′u|am, s′u)
= P (A′′|am, A′, G′′)︸ ︷︷ ︸

agenda update

P (G′′|am, G′)︸ ︷︷ ︸
goal update

. (15)

When no restrictions are placed on A′′ and G′′, the space
of possible state transitions is vast. The model parame-
ter set is too large to be handcrafted and even substantial
amounts of training data would be insufficient to obtain
reliable estimates. It can however be assumed that A′′ is
derived from A′ and that G′′ is derived from G′ and that
in each case the transition entails only a limited number
of well-defined atomic operations.

4.6 Agenda Update Model

The agenda transition from A′ to A′′ can be viewed as a
sequence of push-operations in which dialogue acts are
added to the top of the agenda. In a second ”clean-up”
step, duplicate dialogue acts, null() acts, and unnecessary
request() acts for already filled goal request slots must
be removed but this is a deterministic procedure so that it
can be excluded in the following derivation for simplicity.
Considering only the push-operations, the items 1 to N ′

at the bottom of the agenda remain fixed and the update
model can be rewritten as follows:

P (A′′|am, A′, G′′)
= P (A′′[1..N ′′]|am, A′[1..N ′], G′′) (16)
= P (A′′[N ′+1..N ′′]|am, G′′)

· δ(A′′[1..N ′], A′[1..N ′]). (17)

The first term on the RHS of Eq. 17 can now be further
simplified by assuming that every dialogue act item in
am triggers one push-operation. This assumption can be
made without loss of generality, because it is possible to
push a null() act (which is later removed) or to push an
act with more than one item. The advantage of this as-
sumption is that the known number M of items in am

now determines the number of push-operations. Hence
N ′′ = N ′ + M and

P (A′′[N ′+1..N ′′]|am, G′′)
= P (A′′[N ′+1..N ′+M]|am[1..M], G′′) (18)

=
M∏

i=1

P (A′′[N ′+i]|am[i], G′′) (19)

The expression in Eq. 19 shows that each item am[i] in
the system act triggers one push operation, and that this
operation is conditioned on the goal. This model is now
simple enough to be handcrafted using heuristics. For ex-
ample, the model parameters can be set so that when the
item x=y in am[i] violates the constraints in G′′, one of
the following is pushed onto A′′: negate(), inform(x=z),
deny(x=y, x=z), etc.

4.7 Goal Update Model
The goal update model P (G′′|am, G′) describes how the
user constraints C ′ and requests R′ change with a given
machine action am. Assuming that R′′ is conditionally
independent of C ′ given C ′′ it can be shown that

P (G′′|am, G′)
= P (R′′|am, R′, C ′′)P (C ′′|am, R′, C ′). (20)

To restrict the space of transitions from R′ to R′′ it can
be assumed that each request slot (ag. addr,phone,etc.) is
either filled using information in am or left unchanged.
One can further assume that the value of any slot depends
on its value at the previous time step, the value provided
by am and that the transition needs to be conditioned on
whether the information given in am matches the goal
constraints. Using R[k] to denote the k’th request slot we
can approximate

P (R′′|am, R′, C ′′)
=

∏
k P (R′′[k]|am, R′[k],M(am, C ′′)). (21)

To simplify P (C ′′|am, R′, C ′) we assume that C ′′ is
derived from C ′ by either adding a new constraint, set-
ting an existing constraint slot to a different value (eg.
drinks=dontcare), or by simply changing nothing. The
choice of transition does not need to be conditioned on
the full space of possible am, R′ and C ′. Instead it can
be conditioned on simple boolean flags such as ”Does am

ask for a slot in the constraint set?”, ”Does am signal that
no item in the database matches the given constraints?”,
etc. The model parameter set is then sufficiently small for
handcrafted values to be assigned to the probabilities.

5 Evaluation
5.1 A scalable POMDP-based system
The summary Q-learning algorithm and agenda-based
user model were tested by implementing a POMDP-

based dialogue system for a Tourist Information Domain.
Users are assumed to have arrived in a town unknown to
them and must find a bar, a hotel or a restaurant in the
town subject to some constraints (eg. a cheap, Chinese
restaurant in the centre of town). The town used was fic-
titious so that users could not know any of the venues.

The speech recognition was implemented using the
Application Toolkit for HTK (ATK) with a vocabulary
of about 2000 words. A simple keyword-spotting seman-
tic decoder was used to extract meaning representations
(dialogue acts) from the output of the recogniser. The di-
alogue manager is based on the Hidden Information State
(HIS) model (Young et al., 2007), which gives an effi-
cient way of implementing the belief state update in a
POMDP-based dialogue system.

In the implementation used for testing, the town in-
cluded approximately 40 possible venues. Eight different
variables are used by the system in deciding which venue
to recommend: type of venue; pricerange; area; proxim-
ity to a particular place; stars; drinks; food and music.
Additionally, the user could ask for the average price, the
phone number, the address or a comment on a particular
venue.

The model allows for a rich structure in possible user
goals via simple ontology rules. For example, venues
can only have a food concept if their type is restaurant.
Hence, one would expect that most information retrieval
type dialogues could be modeled in a similar manner.

5.2 System Training

The HIS manager factors the machine state of the
POMDP into three parts: the user’s goal, the dialogue
state and the last machine act. An important feature of the
system is that indistinguishable user goals are grouped to-
gether into partitions. For example, if the user is trying
to obtain information about restaurants and has not men-
tioned what type of food they would like, then restaurants
will be grouped together regardless of the type of food
they serve. In the HIS model, a hypothesis refers to the
grouping of a partition with a dialog state.

The splitting of the machine state into separate hy-
potheses provides for a simple mapping to summary state
for the Q-learning algorithm, where only information
from the top two hypotheses is included. The summary
state used has five components: the probabilities of the
two most probable hypotheses along with three summary
features. These enumerate the possibilities for how many
database items fall into the partition, a summary of the
dialog state and the type of the last dialog act.

Rewards were given based on task completion and the
number of turns in the dialogue. The system was given 20
points for a successful dialogue and 0 for an unsuccessful
one. One point was subtracted for each dialogue turn.
This encourages the system to be sure of the user’s goal,

while penalising inefficient system behaviour.
Training was done using the agenda-based user model

described in Section 4. Initially, batches of 1000 dia-
logues were performed with no error-modeling, updating
Q-values and optimal actions at the end of each batch.
Figure 4 shows the average reward obtained from each
of these policies over 1000 sample dialogues. The pol-
icy score converged after approximately 25 000 dialogues
and reached an average score of around 14. This il-
lustrates that the Q-learning approach described above
does in fact converge in practice. Further training was
then done including simulated errors by changing random
concept words with a probability of 0.05.

Figure 4: Training a POMDP system

5.3 User testing
The prototype dialogue system described above was eval-
uated as part of the EU FP6 Talk Project. No online learn-
ing was performed during the evaluation. 40 human sub-
jects took part, each of whom completed 4 dialogues. In
total, 160 dialogues were recorded, with 6452 turns and
21667 words. Subjects were selected to include a mix
of native and non-native speakers and the average Word-
Error-Rate was 29.8%.

The performance of the system was measured based
on the recommendation of a correct venue, ie. a venue
matching all constraints specified in the given task (all
tasks were designed to have exactly one solution). Based
on this definition, 145 out of 160 dialogues (90.6%) were
completed successfully, and the average number of turns
to completion was 5.59 (if no correct venue was offered
the full number of turns was counted). An extract from
an example dialogue is given as an illustration in Fig. 5.

6 Summary and Future Work
This paper has investigated a new online method for train-
ing a real-world POMDP-based dialogue system. A novel
agenda-based user simulation technique was also pre-
sented for bootstrapping the dialogue manager without
access to training data. Although there is no guarantee of
convergence, evaluation results suggest that in practice
the training algorithm does converge to a suitable policy.
The results also show that the learned policy works well

Turn 1:
System: Hello and welcome to our dialogue system!

Are you looking for a hotel, a restaurant
or a bar?

User: I’m looking for a five star hotel, preferably
in the East side of town, near the park

ASR: I’m looking for a five star hotel preferably
use side of town near the park

DA: request(hotel,stars=5,near=Park)

Turn 2:
System: What part of town do you have in mind?

For example something in the centre of
town or in the north or on the riverside

User: In the East side of town
ASR: In the East side of town
DA: inform(area=east)

Turn 3:
System: Did you say you are looking for a hotel

in the east part of town?
User: Yes
ASR: Yes
DA: affirm()

Turn 4:
System: The Royal Hotel is a great hotel in the

east part of town
User: I was wondering whether I could get the

telephone number for that town...
for that hotel?

ASR: was wondering about could get the
telephone number of the town for a hotel

DA: request(phone,hotel)

Turn 5:
System: The Royal Hotel has 5 stars and is near

the Park
User: Could I have the phone number?
ASR: I have the phone number
DA: request (phone)

Turn 6:
System: No problem the phone number of the Royal

Hotel is 7027003

Figure 5: Sample test dialogue along with most likely
output from the automatic speech recognition (ASR) and
decoded dialogue act (DA). The dialogue act format is
described in (Young et al., 2005).

for human users. Future work will focus on finding bet-
ter mappings to summary space, on training the simulated

user with recorded data and on investigating the effective-
ness of online training with real users.

Acknowledgements

This research was partly funded by the EU FP6 TALK
Project (http://www.talk-project.org). The system evalu-
ation was conducted in collaboration with Oliver Lemon,
Kalliroi Georgila and Jamie Henderson at Edinburgh
University and their work is gratefully acknowledged.
We would also like to thank the anonymous referees for
their helpful comments.

References
B Bonet. 2002. An e-Optimal Grid-based Algorithm

for Partially Observable Markov Decision Processes.
In Proceedings of the Nineteenth International Con-
ference on Machine Learning(ICML 2002),, Sydney,
Australia.

RI Brafman. 1997. A Heuristic Variable Grid Solution
Method for POMDPs. In AAAI, Cambridge, MA.

K. Georgila, J. Henderson, and O. Lemon. 2005. Learn-
ing user simulations for information state update dia-
logue systems. Proc. of Eurospeech. Lisbon, Portugal.

LP Kaelbling, ML Littman, and AR Cassandra. 1998.
Planning and Acting in Partially Observable Stochastic
Domains. Artificial Intelligence, 101:99–134.

O. Lemon, K. Georgila, and J. Henderson. 2006. Eval-
uating Effectiveness and Portability of Reinforcement
Learned Dialogue Strategies with real users: the TALK
TownInfo Evaluation. In Proc. of IEEE/ACL SLT,
Palm Beach, Aruba.

E. Levin, R. Pieraccini, and W. Eckert. 2000. A Stochas-
tic Model of Human-Machine Interaction for Learning
Dialog Strategies. IEEE Trans Speech and Audio Pro-
cessing, 8(1):11–23.

O. Pietquin and T. Dutoit. 2005. A probabilistic frame-
work for dialog simulation and optimal strategy learn-
ing. IEEE Transactions on Speech and Audio Process-
ing, Special Issue on Data Mining of Speech, Audio
and Dialog.

Joelle Pineau, Geoffrey Gordon, and Sebastian Thrun.
2003. Point-based value iteration: An anytime algo-
rithm for pomdps. In International Joint Conference
on Artificial Intelligence (IJCAI), pages 1025 – 1032,
August.

V. Rieser and O. Lemon. 2006. Cluster-based User Sim-
ulations for Learning Dialogue Strategies. In Proc. of
ICSLP, Pittsburgh, PA.

Nicholas Roy, Geoffrey Gordon, and Sebastian Thrun.
2005. Finding approximate pomdp solutions through
belief compression. Journal of Artificial Intelligence
Research, 23:1–40.

J. Schatzmann, K. Weilhammer, M.N. Stuttle, and
S. Young. 2006. A Survey of Statistical User Simu-
lation Techniques for Reinforcement-Learning of Dia-
logue Management Strategies. Knowledge Engineer-
ing Review, Cambridge University Press, 21(2):97–
126.

K. Scheffler and S. J. Young. 2002. Automatic learning
of dialogue strategy using dialogue simulation and re-
inforcement learning. In Proc. of NAACL/HLT. San
Diego, CA.

RS Sutton and AG Barto. 1998. Reinforcement Learn-
ing: An Introduction. Adaptive Computation and Ma-
chine Learning. MIT Press, Cambridge, Mass.

X Wei and AI Rudnicky. 1999. An agenda-based dia-
log management architecture for spoken language sys-
tems. In Proc. of IEEE ASRU. Seattle, WA.

JD Williams and SJ Young. 2005. Scaling up POMDPs
for Dialogue Management: the Summary POMDP
Method. In IEEE workshop on Automatic Speech
Recognition and Understanding (ASRU2005), Puerto
Rico.

J. Williams and S. Young. 2006. Scaling pomdps for dia-
log management with composite summary point-based
value iteration (cspbvi). In AAAI Workshop on Statis-
tical and Empirical Approaches for Spoken Dialogue
Systems, Boston.

Jason D. Williams. 2006. Partially Observable Markov
Decision Processes for Spoken Dialogue Management.
Ph.D. thesis, University of Cambridge, April.

SJ Young, JD Williams, J Schatzmann, MN Stuttle, and
K Weilhammer. 2005. The hidden information state
approach to dialogue management. Technical report,
Cambridge Univ. Engineering Dept.

S. Young, J. Schatzmann, K. Weilhammer, and H. Ye.
2007. The Hidden Information State Approach to Di-
alog Management. In Proc. of ICASSP, Honolulu,
Hawaii.

S. Young. 2006. Using POMDPs for Dialog Manage-
ment. In Proc. of IEEE/ACL SLT, Palm Beach, Aruba.

