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Abstract This work shows how a spoken dialogue system can be represented as a Par-
tially Observable Markov Decision Process (POMDP) with composite obser-
vations consisting of discrete elements representing dialogue acts and continu-
ous components representing confidence scores. Using a testbed simulated dia-
logue management problem and recently developed optimisation techniques, we
demonstrate that this continuous POMDP can outperform traditional approaches
in which confidence score is tracked discretely. Further, wepresent a method
for automatically improving handcrafted dialogue managers by incorporating
POMDP belief state monitoring, including confidence score information. Exper-
iments on the testbed system show significant improvements for several example
handcrafted dialogue managers across a range of operating conditions.
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1. Introduction

Dialogue management is a difficult problem for several reasons. First, speech
recognition errors are common, corrupting the evidence available to the ma-
chine about a user’s intentions. Second, users may change their intentions at
any point - as a result, the machine must decide whether conflicting evidence
has been introduced by a speech recognition error, or by a newuser intention.
Finally, the machine must make tradeoffs between the “cost”of gathering ad-
ditional information (increasing its certainty of the user’s goal, but prolonging
the conversation) and the “cost” of committing to an incorrect user goal. That
is, the system must perform planning to decide what sequenceof actions to
take to best achieve the user’s goal despite having imperfect information about
that goal. For all these reasons, dialogue management can becast as planning
under uncertainty.

In this context, making use of available information about speech recogni-
tion accuracy ought to improve the performance of a dialoguemanager. One
key piece of information typically provided by the automatic speech recogni-
tion process is a confidence score, which provides a real-valued estimate of the
probability that the recognition hypothesis is correct. Ina traditional spoken di-
alogue system, a confidence score is used to decide whether toaccept or reject
a speech recognition hypothesis: if a hypothesis has a high confidence score,
it is accepted; otherwise it is rejected. More nuanced approaches create confi-
dence buckets which sub-categorise the accept category into N “buckets” such
as low, medium and high. Confidence bucket information can then be incorpo-
rated into the dialogue state, and the dialogue manager can subsequently use
this information when choosing actions, for example when deciding whether
or not to confirm an element of the dialogue state.

This process is illustrated in the first two columns of Figure1, which shows
a conversation with a spoken dialogue system in the pizza-ordering domain.
The first column indicates the words spoken by the user and themachine; the
bracketed text shows the (possibly erroneous) results fromthe speech recogni-
tion process, followed by the confidence score. The second column shows how
a typical spoken dialogue system might track dialogue state. In the last turn, a
speech recognition error is made, and it is unclear how this evidence should be
incorporated into the form in column 2 - should the new information replace
the old information, or should it be ignored?

In this chapter we consider a different model for dialogue management:
a partially observable Markov decision process (POMDP, pronounced “pom-
dp”). Rather than tracking one explicit dialogue state, a POMDP maintains a
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S: How can I help you?
U: A small pepperoni pizza

[a small pepperoni pizza]
Confidence score: 0.83

Sml Med Lrg

b

Sml Med

b

Lrg

size: {
value: <empty>
confidence: <empty>

}

size: {
value: small
confidence: high

}

S: And what type of crust?
U: Uh just normal

[large normal]
Confidence score: 0.35

Sml Med

b

Lrg

order: {
size: large [?]
confidence: low [?]

}

Prior to start of dialogue

System / User / ASR POMDP belief stateTraditional dialogue state

Figure 1. Example conversation with a spoken dialogue system in the pizza-ordering domain.
The first column shows the words spoken by the user and the machine. The text in brackets
shows the results from the speech recognition process, and the following line shows the resulting
confidence score provided by the speech recognition engine.The second column shows how
a typical dialogue manager might track a dialogue state, including a “confidence bucket” for
the “size” field. The third column shows how the “POMDP beliefstate” would track the same
conversation. Note how the traditional method struggles toaccount for the conflicting evidence
in the last turn, whereas in the POMDP, the confidence score simply scales the magnitude of the
update.

probability distribution over all possible dialogue states, called a belief state.
As the dialogue progresses, the belief state is updated. This belief state update
provides a principled method for interpreting confidence score: intuitively, the
confidence score simply scales the magnitude of the update. This process is il-
lustrated in the third column of Figure 1 - note how the (first)higher-confidence
recognition causes a large movement of belief mass, whereasthe (second)
lower-confidence recognition causes a smaller movement of belief mass.

The goal of this chapter is to explain this process in detail and show it repre-
sents significant gains over a traditional “confidence bucket” approach through
two central contributions. First, we show how a confidence score can be ac-
counted for exactly in a POMDP-based dialogue manager by treating confi-
dence score as a continuous observation. Using a test-bed simulated dialogue
management problem, we show that recent optimisation techniques produce
policies which outperform traditional MDP-based approaches across a range
of operating conditions.

Second, we show how a hand-crafted dialogue manager can be improved au-
tomatically by treating it as a POMDP policy. We then show howa confidence
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score metric can be easily included in this improvement process. We illustrate
the method by creating three hand-crafted controllers for the test-bed dialogue
manager, and show that our technique improves the performance of each con-
troller significantly across a variety of operating conditions. This chapter is
organised as follows. Section 2 briefly reviews background on POMDPs. Sec-
tion 3 casts the dialogue management problem as a POMDP, showing how
to incorporate a confidence score, and reviewing previous work. Section 4
outlines our test-bed dialogue management simulation, andcompares policies
produced by our method to a baseline on the test-bed problem which uses the
traditional “confidence-bucket” approach. Section 5 showshow a handcrafted
policy can be improved using confidence score, and provides an illustration,
again using the test-bed problem. Section 6 briefly concludes.

2. Overview of POMDPs

Formally, a POMDP is defined as a tuple{S,Am, T,R,O,Z}, whereS is
a set of states,Am is a set of actions that an agent may take1, T defines a tran-
sition probabilityp(s′|s, am), R defines the expected (immediate, real-valued)
rewardr(s, am), O is a set of observations, andZ defines an observation prob-
ability, p(o′|s′, am). In this chapter, we will consider POMDPs with discrete
S and continuousO. The POMDP operates as follows. At each time-step,
the machine is in some unobserved states. The machine selects an actionam,
receives a rewardr, and transitions to (unobserved) states′ , wheres′ depends
only ons andam. The machine receives an observationO′ which is dependent
ons′ andam. Although the observation gives the system someevidenceabout
the current states, s is not known exactly, so we maintain a distribution over
states called a “belief state”, b. We writeb(s) to indicate the probability of
being in a particular states. At each time-step, we updateb as follows:

b′(s′) = p(s′|o′, am, b) (8.1)

=
p(o′|s′, am, b)p(s′|am, b)

p(o′|am, b)

=
p(o′|s′, am)

∑

s∈S p(s′|am, b, s)p(s|am, b)

p(o′|am, b)

=
p(o′|s′, am)

∑

s∈S p(s′|am, s)b(s)

p(o′|am, b)

The numerator consists of the observation function, transition matrix, and
current belief state. The denominator is independent ofs′, and can be regarded

1In the literature, the system action set is often written as an un-subscriptedA. In this work, we will model
both machine and user actions, and have chosen to write the machine action set asAm for clarity.
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as a normalisation factor; hence:

b′(s′) = k · p(o′|s′, am)
∑

s∈S

p(s′|am, s)b(s) (8.2)

We refer to maintaining the value ofb at each time-step as “belief monitor-
ing”. The immediate reward is computed as the expected reward over belief
states:

ρ(b, am) =
∑

s∈S

b(s)r(s, am) (8.3)

A POMDP policy specifies which action should be taken given a belief
state2. The goal of policy learning is then to find a policy which maximises
the cumulative, infinite-horizon, discounted reward called the return:

∞
∑

t=0

λtρ(bt, amt) =
∞
∑

t=0

λt
∞
∑

t=0

r(s, amt) (8.4)

wherebt indicates the distribution over all states at timet, bt(s) indicates the
probability of being in states at time-stept, andλ is a geometric discount fac-
tor,0 < λ < 1. Because belief space is real-valued, an optimal infinite-horizon
policy may consist of an arbitrary partitioning of S-dimensional space in which
each partition maps to an action. In fact, the size of the policy space grows
exponentially with the size of the (discrete) observation set and doubly expo-
nentially with the distance (in time-steps) from the horizon (Kaelbling et al.,
1998). A continuous observation space compounds this further. Nevertheless,
real-world problems often possess small policies of high quality.

In this work, we make use of approximate solution methods. The first, a
point-based value iteration algorithm called Perseus (Spaan and Vlassis, 2004),
operates on problems with discrete observation sets and is capable of rapidly
finding good yet compact policies (when they exist). Perseusheuristically se-
lects a small set of representative belief points, and then iteratively applies
value updates to just those points, instead of all of the belief space, achieving
a significant speed-up. Perseus has been tested on a range of problems, and
found to outperform a variety of other methods, including grid-based methods
(Spaan and Vlassis, 2004).

Perseus (like all value-iteration optimisation algorithms) produces a value
function represented as a set of N vectors each of dimensionality |S|. We write
vn(s) to indicate thesth component of thenth vector. Each vector represents
the value, at all points in the belief space, of executing some “policy tree”
which starts with an action associated with that vector. We write π̂(n) ∈ A to

2We will assume the planning horizon for a policy is infinite unless otherwise stated.
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indicate the action associated with thenth vector. If we assume that the policy
trees have an infinite horizon, then we can express the optimal policy at all
time-steps as:

π(b) = π̂(argmax
n

|S|
∑

s=1

vn(s)b(s)) (8.5)

In simple terms, a value function provides both a partitioning of the belief
space (where each region corresponds to an action which is optimal in that re-
gion), as well as the expected return of taking that action. In this chapter we
will also make use of an extension to Perseus proposed by Hoeyand Poupart
(2005) which operates on POMDPs with continuous or very large discrete ob-
servation sets. This method exploits the fact that different observations may
lead to identical courses of action to discretise continuous observations with-
out any loss of information. In the context of dialogue management with a
continuous confidence score, it implicitly and adaptively finds optimal loss-
less buckets of confidence that are equivalent to using the original continuous
confidence score3.

3. Casting Dialogue Management as a POMDP

Williams et al. (2005) cast a spoken dialogue system as a factored POMDP,
and this model will be used as the general framework for the techniques pre-
sented here. In this model, the POMDP state variables ∈ S is separated into
three components: (1) the user’s goal,su ∈ Su ; (2) the user’s action,au ∈ Au;
and (3) the history of the dialogue,sd ∈ Sd. The POMDP state s is given by
the tuple(su, au, sd). We note that, from the machine’s perspective, all of these
components are unobservable.

The user’s goal,su, gives the current goal or intention of the user. Examples
of a complete user goal include a complete travel itinerary,a desired appoint-
ment to make in a calendar, or a product the user would like to purchase. The
user’s goal persists over the course of the dialogue, and in general it will re-
main static although it is possible for it to change (for example, if the machine
indicates that there are no direct flights, the user’s goal might change to include
indirect flights).

The user’s action,au, gives the user’s most recent actual action. Examples
of user actions include specifying a place the user would like to travel to, re-
sponding to a yes/no question, or a “null” response indicating the user took
no action. User actions may convey a portion of the user’s goal (such as re-

3The actual implementation used in this chapter approximates some integrals by Monte Carlo sampling,
which means that the confidence buckets are not exactly lossless.
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questing a flight “to London”), or may serve a communicative role (such as
answering a yes/no question).

The history of the dialoguesd indicates any relevant dialogue history infor-
mation. For example,sd might indicate that a particular slot has not yet been
stated, has been stated but not grounded, or has been grounded. sd enables a
policy to make decisions about the appropriateness of behaviours in a dialogue
- for example, if there are ungrounded items, a dialogue designer might wish
to penalise asking an open question (vs. grounding an item).

Note that we do not include a state component forconfidenceassociated
with a particular user goal. The concept of confidence is naturally captured
by the distribution of probability mass assigned to a particular user goal in the
belief state.

The POMDP actionam ∈ Am is the action the machine takes in the dia-
logue. For example, machine actions might include greetingthe user, asking
the user where he or she wants to go “to”, or confirming that theuser wants to
leave “from” a specific place.

To factor the model, we decompose the POMDP transition function as fol-
lows:

p(s′|s, am) = p(s′u, s′d, a
′
u|su, sd, au, am) (8.6)

= p(s′u|su, sd, au, am) ·

p(a′u|s
′
u, su, sd, au, am) ·

p(s′d|a
′
u, s′u, su, sd, au, am)

We then assume conditional independence as follows. The first term - which
we call the user goal model - indicates how the user’s goal changes (or does not
change) at each time step. We assume the user’s goal at a time step depends
only on the previous goal and the machine’s action:

p(s′u|su, sd, au, am) = p(s′u|su, am) (8.7)

The second term - which we call theuser action model- indicates what
actions the user is likely to take at each time step. We assumethe user’s action
depends on his/her (current) goal and the preceding machineaction:

p(a′u|s
′
u, su, sd, au, am) = p(a′u|s

′
u, am) (8.8)

The third term - which we call thedialogue history model- indicates how
the user and machine actions affect the dialogue history. The current history
of the dialogue depends on the previous history combined with the most recent
user and machine actions:

p(s′d|a
′
u, s′u, su, sd, au, am) = p(s′d|a

′
u, s′u, am) (8.9)
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In sum, our transition function is given by:

p(s′|s, am) = p(s′u|su, am) · p(a′u|s
′
u, am) · p(s′d|a

′
u, sd, am) (8.10)

This factored representation reduces the number of parameters required for
the transition function, and allows groups of parameters tobe estimated sepa-
rately. For example, we could estimate theuser action modelfrom a corpus by
counting user dialogue acts given a machine dialogue act anda user goal, or
use a “generic” distribution and adapt it to a particular problem once data be-
comes available4. We could then separately specify the dialogue history model
using a handcrafted function such as “Information State” update rules as in for
example (Larsson and Traum, 2000).

The POMDP observationo is decomposed into two elements: the speech
recognition hypothesis̃au ∈ Au and the confidence scorec ∈ R. The obser-
vation function is given by:

p(o′|s′, am) = p(ã′u, c′|s′u, s′d, a
′
u, am) (8.11)

The observation function accounts for the corruption introduced by the
speech recognition engine, so we assume the observation depends only on
the action taken by the user, and by the grammarg selected by the dialogue
manager:

p(ã′u, c′|s′u, s′d, a
′
u, am) = p(ã′u, c′|a′u, g) (8.12)

The observation function can be estimated from a corpus or derived analyt-
ically using a phonetic confusion matrix, language model, etc. This distribu-
tion expresses the probability density of observing recognition hypothesis̃a′u
with confidence score c when the user actually took actionau and recognition
grammarg was activated. As such, the observation function can be viewed as
a model of the errors introduced by the speech recognition channel.

Together equations 8.10 and 8.12 represent a statistical model of a dialogue.
The transition function allows future behaviour to be predicted and the obser-
vation function provides the means for inferring a distribution over hidden user
states from observations. The factoring is general-purpose in that the user goal
componentsu allows the user to have a hidden, persistent state which emits
unobserved actionsau that are corrupted into observationsãu by the speech re-
cognition process. Further, the dialogue history component sd enables actions
to be selected with an awareness of dialogue history. Figure2 summarizes the
factored model, depicted as an influence diagram.

4To appropriately cover all of the conditions, the corpus would need to include variability in the strategy
employed by the machine - for example, using a Wizard-of-Oz framework with a simulated ASR channel
(Stuttle et al., 2004).
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Figure 2. Influence diagram for the factored model. The dotted box indicates the composite
state s is comprised of three components,su, sd, andau. Shading indicates a component is
unobservable. Arcs into circular chance nodes and diamond-shaped utility nodes show influ-
ence, whereas arcs into square decision nodes are informational, as in (Jensen, 2001, p140).
The arc from the dotted box toam indicates thatam is chosen based on the belief state - i.e., a
distribution oversu, sd, andau.

The reward function is not specified explicitly in this proposal since it de-
pends on the design objectives of the target system. We note that the re-
ward measure could contain incentives for dialogue speed (by using a per-turn
penalty), appropriateness (through rewards conditioned on dialogue state), and
successful task completion (through rewards conditioned on the user’s goal).
Weights between these incentives could be estimated through formalisms like
PARADISE (Walker et al., 2000), and then adapted to the needsof a partic-
ular domain - for example, accuracy in performing a financialtransaction is
arguably more important than accuracy when obtaining weather information.
As described in the previous section, actions are selected based on the belief
state to maximise cumulative long-term reward.

Finally, we update the belief state at each time step by substituting equations
8.10 and 8.12 into 8.2 and simplifying:

b′(s′u, s′d, a
′
u) = k · p(ã′u, c′|a′u, g)p(a′u|s

′
u, am) ·

∑

su∈Su

p(s′u|su, am) · (8.13)

∑

su∈Su

p(s′u|su, am) ·
∑

sd∈Sd

p(s′d|a
′
u, sd, am) ·

∑

au∈Au

b(su, sd, au)
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The belief monitoring update equation 8.13 exemplifies the key difference
between conventional approaches to dialogue management and the POMDP
approach. In conventional approaches, a single state vector is maintained
which encodes the system’s “best guess” about all of the information needed
to determine the next system action. For example, a state vector might include
a record of all of the informational items supplied by the user, their grounding
state, dialogue history, etc. Both the user’s input and the subsequent system
output are dependent on this state vector, but since there can be errors in this
state vector, the system will often make mistakes and must then enter some
form of recovery procedure. This is essentially a depth-first greedy search
with back-tracking.

In the POMDP approach, all possible states are maintained rather than the
single most likely state. Each user input (i.e., the observation) is then in-
terpreted in the context of each possible new state via the observation term
p(ã′u, c′|a′u, g). If the new observation is likely givens′, then the subsequent
belief in s′ will be high and vice versa. The new states′ itself will only be
plausible if there is a non-zero likelihood of making a transition from some
previous states to the new state, and since the previous state is unknown, all
possible transitions are considered, weighted by the beliefs at the previous turn.
In search terms, this is breadth-first search. It has the advantage over depth-
first that both inputs and outputs can be determined from a knowledge of all of
the alternative interpretations.

In practice the observation functionp(ã′u, c′|a′u, g) will be difficult to esti-
mate directly from data, so we will decompose the distribution by assuming
that confidence scores are drawn from just two distributions- one for “correct”
recognitions and another for “incorrect” recognitions:

p(ã′u, c′|a′u, g) ≈

{

pcorrect(c
′) · p(ã′u|a

′
u, g), if ã′u = a′u

pincorrect(c
′) · p(ã′u|a

′
u, g) if ã′u 6= a′u

(8.14)

wherep(ã′u|a
′
u, g) expresses theconfusion matrix- i.e., probability of observ-

ing hypothesis̃a′u given that the user took actiona′u and grammarg was active;
andpcorrect(c

′) andpincorrect(c
′) express the probability density function of

the confidence scores associated with correct and incorrectrecognitions. To
perform policy improvement on this POMDP we have two options. First, we
can use an optimisation method which accounts for the continuous observa-
tions, such as that by Hoey and Poupart (2005). This method creates a policy
which takes the expected additional information in the confidence score into
account, and we call this thecontinuous-POMDPsolution. Alternatively, there
is still benefit to using the confidence score information forbelief state moni-
toring (as in 8.13) even if it was not used during policy optimisation. Thus a
second option for performing policy improvement is to marginalise the confi-
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dence score, i.e.:

p(ã′u|a
′
u, g) =

∫

c′
p(ã′u, c′|a′u, g) (8.15)

and to then optimise the resulting POMDP using a technique such asPerseus.
At runtime, the full observation functionp(ã′u, c|a′u, g) is used for belief state
monitoring. We call this thediscrete-POMDPsolution.

Stated alternatively, thecontinuous-POMDPtechnique uses infinitely many
confidence buckets during planning and belief monitoring, whereas thediscrete-
POMDP technique uses no confidence information during planning, but infi-
nitely many confidence buckets during belief monitoring. Bycontrast, MDP
methods (in the literature, and our baseline, presented below) use a handful of
confidence buckets for planning, but do not perform any belief monitoring5.

In the literature, casting dialogue management as planningunder uncertainty
has been attempted using both (fully observable) Markov decision processes
(MDPs) and POMDPs. The application of MDPs was first exploredby Levin
and Pieraccini (1997). Levin et al. (2000) provide a formal treatment of how
an MDP may be applied to dialogue management, and Singh et al.(2002)
show application to real systems. However, MDPs assume the current state of
the environment (i.e., the conversation) is known exactly,and thus they do not
naturally capture the uncertainty introduced by the speechrecognition channel.

Partially observable MDPs (POMDPs) extend MDPs by providing a prin-
cipled account of noisy observations. Roy et al. (2000) compare an MDP
and a POMDP version of the same spoken dialogue system, and find that the
POMDP version gains more reward per unit time than the MDP version. Fur-
ther, the authors show a trend that as speech recognition accuracy degrades,
the margin by which the POMDP outperforms the MDP increases.Zhang et
al. (2001) extend this work in several ways. First, the authors add “hidden”
system states to account for various types of dialogue trouble, such as different
sources of speech recognition errors. Second, the authors use Bayesian net-
works to combine observations from a variety of sources (including confidence
score). The authors again show that the POMDP-based methodsoutperform
MDP-based methods. In all previous work (using both MDPs andPOMDPs),
confidence score has been incorporated by dividing the confidence score metric
into discrete confidence “buckets”. For example, in the MDP literature, Singh
et al. (2002) track the confidence bucket for each field as “high, medium, or
low” confidence. The authors do not address how to determine an “optimal”

5In theory, one could create an MDP with continuous components in its state space, and use these com-
ponents to track confidence score. While this avoids “binning” the confidence score, it does not aggregate
evidence over time: in order to do this in an MDP, state components for “most recent confidence score”,
“2nd more recent confidence score”, etc. would be required, causing rapid growth in the state space. By
contrast, a POMDP frames a sequence of confidence scores as observations and naturally accumulates evi-
dence over time through belief monitoring.
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number of confidence buckets, nor how to determine the “optimal” thresholds
of the confidence score metric that divide each bucket. In thePOMDP litera-
ture, Zhang et al. (2001) use Bayesian networks to combine information from
many continuous and discrete sources, including confidencescore, to com-
pute probabilities for two metrics called “Channel Status”and “Signal Status”.
Thresholds are then applied to these probabilities to form discrete, binary ob-
servations for the POMDP. Again, it is not clear how to set these thresholds
to maximise POMDP return. Looking outside the (PO)MDP framework, Paek
and Horvitz (2003) suggest using an influence diagram to model user and dia-
logue state, and selecting actions based on “Maximum Expected [immediate]
Utility”. This proposal can be viewed as a POMDP with continuous observa-
tions that greedily selects actions - i.e., which selects actions based only on
immediate reward. By choosing appropriate utilities, the authors show how
local grounding actions can be automatically selected in a principled manner.
In this work, we are interested in POMDPs as they enable planning over any
horizon.

4. Comparison with Traditional Approach

To assess the benefits of the POMDP approach versus traditional “confi-
dence bucket” approaches, we created a test-bed dialogue management prob-
lem in the travel domain. This test-bed problem enables direct comparisons be-
tween dialogue managers produced by casting the problem as aPOMDP with
continuous observations, and dialogue managers produced by adding “confi-
dence buckets” and casting the problem as an MDP. In both the POMDP and
MDP, dialogue managers are produced automatically. Assuming that these rep-
resent optimal solutions, then this comparison gives a quantitative indication
of the value of the POMDP approach.

4.1 POMDP Test-Bed Dialogue Management
Problem

In the test-bed dialogue management problem, the user is trying to buy a
ticket to travel from one city to another city. The machine asks the user a series
of questions, and then “submits” a ticket purchase request,ending the dialogue.
The machine may also choose to “fail”. In the test-bed problem, there are three
cities, {a, b, c}. The machine has 16 actions available, includinggreet, ask-
from/ask-to, conf-to-x/conf-from-x, submit-x-y, andfail, wherex, y ∈ {a, b, c}.
As above, the POMDP state is given by the tuple(su, au, sd). The user’s goal
su ∈ Su specifies the user’s desired itinerary. There are a total of 6user goals,
given bysu = (x, y) : x, y ∈ {a, b, c}, x 6= y. The dialogue statesd contains
three components. Two of these indicate (from the user’s perspective) whether
the from place and to place have not been specified (n), are unconfirmed (u),
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or are confirmed (c). A third componentz specifies whether the current turn is
the first turn (1) or not (0). There are a total of 18 values ofsd, given by:

sd = (xd, yd, z); xd, yd ∈ {n, u, c}; z ∈ 1, 0 (8.16)

The user’s actionau ∈ Au and the observatioñau ∈ Au are drawn from the
setx, from-x, to-x, from-x-to-y, yes, no, andnull, wherex, y ∈ {a, b, c}, x 6=
y. These state components yield a total of 1944 states, to which we add one
additional, absorbing end state. When the machine takes thefail action or a
submit-x-yaction, control transitions to this end state, and the dialogue ends.
The initial (prior) probability of the user’s goal is distributed uniformly over the
6 user goals. In the test-bed problem the user has a fixed goal for the duration
of the dialogue, and we define theuser goal modelaccordingly.

We define theuser action modelp(a′u|s
′
u, am) to include a variable set of

responses - for example: the user may respond toask-to/ask-fromwith x, to-
x/from-x, or from-x-to-y; the user may respond togreet with to-y, from-x, or
from-x-to-y; the user may respond toconfirm-to-x/confirm-from-xwith yes/no,
x, or to/from-x; and at any point the user might not respond (i.e., respond with
null). The probabilities in the user action model were chosen such that the user
usually provides cooperative but varied responses, and sometimes doesn’t re-
spond at all. The probabilities were handcrafted, selectedbased on experience
performing usability testing with slot-filling dialogue systems.

We define thedialogue modelp(s′d|a
′
u, sd, am) to deterministically imple-

ment the notions of dialogue state above - i.e., a field which has not been ref-
erenced by the user takes the valuen; a field which has been referenced by the
user exactly once takes the valueu; and a field which has been referenced by
the user more than once takes the valuec. For example, at the beginning of the
dialogue, the dialogue statesd is (n, n, 1). If the user were to say “I’d like to go
to b” in his/her first utterance, the resulting dialogue state would be(n, u, 0).
If the system were to reply “To b - is that right?”, and the userreplied “Yes,
from a to b”, then the resulting dialogue state would be(u, c, 0). We define
the confusion matrixp(ã′u|a

′
u, g) to encode the probability of making a speech

recognition error to beperr. Further, we assume that one recognition grammar
is always used:

p(ã′u, c′|a′u, g) = p(ã′u, c′|a′u) (8.17)

=

{

pcorrect(c
′) · (1 − perr) if ãu = au

pincorrect(c
′) perr

|Au|−1 if ãu 6= au

Below we will varyperr to explore the effects of speech recognition errors.
Past work has found the distribution of confidence scores to be exponen-

tial (Pietquin, 2004), and here we define the confidence scoreprobability den-
sity functionspcorrect(c

′) andpincorrect(c
′) to be exponential probability den-

sity functions normalised to the region [0,1], i.e.:
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pcorrect(c) =

{

acorrecte
c·acorrect

eacorrect − 1
, acorrect 6= 0

1, acorrect = 0

pincorrect(c) =

{

aincorrecte
(1−c)·aincorrect

eaincorrect − 1
, aincorrect 6= 0

1, aincorrect = 0
(8.18)

whereacorrect andaincorrect are constants defined on(−∞,∞). We note that
as ax approaches positive or negative infinity,px(c) becomes deterministic
and conveys complete information; whenax = 0, px(c) is a uniform density
and conveys no information. Since we expect the confidence value for correct
recognition hypotheses to tend to 1, and for incorrect recognition hypotheses
to tend to 0, we would expectax > 0. To illustrate the meaning ofacorrect and
aincorrect, a small classification task was created in which a confidencescore is
used as a decision variable to classifyãu as eithercorrector incorrect. Various
concept error rates (values ofperr) andax were considered and for each pair of
values, the confidence threshold which minimised classification error rate was
used. Table 1 shows the results. Whenax = 0, all hypotheses are classified as
correctand the classification error rate is the same asperr. As ax is increased,
the classification error rate decreases. Intuitively, Table 1 shows the minimum
possible classification error rate achievable with a givenax, and comparing
this with the prior error rateperr gives an indication of theinformativenessof
ax.

Table 1. Minimum classification error rate possible for various concept error rates (Perr) and
levels of confidence score informativeness (ax).

Concept error rate(Perr)
ax 0.10 0.30 0.50

0 10% 30% 50%
1 10% 30% 38%
2 9% 23% 27%
3 9% 16% 18%
4 6% 11% 12%
5 4% 7% 8%
∞ 0% 0% 0%

The reward measure for the test-bed dialogue problem includes components
for both task completion and dialogue “appropriateness”, including: a reward
of -3 for confirming a field before it has been referenced by theuser; a reward
of -5 for taking thefail action; a reward of +10 or -10 for taking thesubmit-
x-y action when the user’s goal is(x,y) or not, respectively; and a reward of
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-1 otherwise. The reward measure reflects the intuition thatbehaving inappro-
priately or even abandoning a hopeless conversation early are both less severe
than getting the user’s goal wrong. The per-turn penalty of -1 expresses the in-
tuition that, all else being equal, short dialogues are better than long dialogues.
The reward measure also assigned -100 for taking thegreetaction when not in
the first turn of the dialogue. This portion of the reward function effectively
expresses a design decision: the greet action may only be taken in the first turn.
A discount ofγ = 0.95 was used for all experiments.

Both thePerseusand theHoey-Poupartalgorithms required parameters for
the number of belief points and number of iterations. Through experimen-
tation, we found that 500 belief points and 30 iterations attained asymptotic
performance for all values ofPerr. In addition, theHoey-Poupartalgorithm
required a parameter specifying the number of observationsto sample at each
belief point. Through experimentation, we found that 300 samples produced
acceptable results and reasonable running times.

4.2 MDP Baseline

To test whether the method for incorporating confidence score outperforms
current methods, an MDP was constructed to assess performance of a model
which does not track multiple dialogue states, and which does not make use
of an explicit user model. The MDP was patterned on systems inthe literature
(Pietquin, 2004). The MDP state contains components for each field which
reflect whether, from the standpoint of the machine, (a) a value has not been
observed, (b) a value has been observed but not confirmed, or (c) a value has
been confirmed. The MDP state also tracks which confidence bucket was ob-
served for each field, as well as for the confirmation. Finally, two additional
states -dialogue-startanddialogue-end- are included in the MDP state space.

The “confidence bucket” is determined by dividing the confidence score
into M buckets. Ideally the confidence score bucket sizes would be selected
so that they maximise average return. However, it is not obvious how to per-
form this selection - indeed, this is one of the weaknesses ofthe “confidence
bucket” method. Instead, a variety of techniques for setting the confidence
score threshold were explored. It was found that dividing the probability mass
of the confidence scorec evenly between buckets produced the largest average
returns among the techniques explored6. That is, we define

6The other techniques included dividing therange of confidencescores equally (e.g., for two buckets, using
a threshold of 0.5), and dividing therange of error ratesequally (e.g., for two buckets, setting a threshold
such that p(observation is correct| confidence score) = 0.5 ).
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cThresh0 = 0 < cThresh1 < · · · < cThreshM−1 < cThreshM = 1
(8.19)

and then find the values ofcThreshm such that:

∫ cThreshm

cThreshm−1

p(c)dc =

∫ cThreshm+1

cThreshm

p(c)dc, m ∈ 1, 2, · · · ,M − 1 (8.20)

wherep(c) is the prior probability of a confidence score. We find this prior for
our test-bed problem as follows. We first find the distribution p(c|au) as:

p(c|au) =
∑

h∈A

p(h, c|au) (8.21)

= pcorrect(c|au)(1 − perr) + pincorrect(c|au)(perr) (8.22)

In the MDP context, we assume the confidence score buckets areformed
without access to a priorp(au). From this assumption, we find:

p(c) = pcorrect(c)(1 − perr) + pincorrect(c)(perr) (8.23)

from which the values ofcThreshm can be derived.
Because the confidence bucket for each field (including its value and its

confirmation) is tracked in the MDP state, the size of the MDP state space
grows with the number of confidence buckets. ForM = 2 confidence buckets,
the resulting MDP calledMDP-2has 51 states7.

Given the current MDP state, the MDP policy selects an MDP action, and
the MDP state estimator then maps the MDP action back to a POMDP action.
Because the MDP learns through experience with a simulated environment,
an on-line learning technique, (Watkins, 1989) Q-learning, was used to train
the MDP baseline. A variety of learning parameters were explored, and the
best-performing parameter set was selected: initialQ values set to 0, explo-
ration parameterε = 0.2 , and the learning rateα set to1/k (wherek is the
number of visits to theQ(s, a) being updated).MDP-2 was trained with ap-
proximately 125,000 dialogue turns. To evaluate the resulting MDP policy,
10,000 dialogues were simulated using the learned policy.

4.3 Results

Figure 3 shows the average returns for thecontinuous-POMDP, discrete-
POMDP, andMDP-2solutions vs.perr ranging from 0.00 to 0.65 foracorrect =

7For reference,M = 1 produces an MDP with 11 states, andM = 3 produces an MDP with 171 states.
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aincorrect = a = 1 . (At each data point, an error rateperr was set, and errors
and confidence scores were generated synthetically according to equations 8.17
and 8.18.). Figure 3 also shows curves fornoconf-POMDPa POMDP which
ignores confidence score information andMDP, an MDP which ignores confi-
dence score information (i.e., an MDP with just one confidence score bucket).
The error bars show the 95% confidence interval for return assuming a normal
distribution. Note that return decreases consistently asperr increases for all so-
lution methods, but the POMDP solutions attain larger returns than the MDP
method at all values ofperr

8. From this plot it can be seen that the addition of
confidence score information improves both the POMDP and MDPsolutions.
This plot shows that, ata = 1, the addition of confidence score information has
a large improvement in performance for the MDP, and a modest but significant
improvement on the POMDP.
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Figure 3. Average returnfor continuous-POMDP, discrete-POMDP, noconf-POMDP, MDP-2
and MDP methods fora = 1.

As the informativeness of the confidence score increases, itwould be ex-
pected that the performance of both the MDP and POMDP would continue
to improve. This is confirmed in Figures 4, 5, and 6 which show average re-
turns for thediscrete-POMDPandcontinuous-POMDPmethods andMDP-2
method vs.a for perr = 0.3, 0.4, and0.5, respectively. The error bars show

8TheMDP-3 system was also created but we were unable to obtain better performance from it than we did
from theMDP-2 system.
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the 95% confidence interval for return assuming a normal distribution. In these
figures, we again defineacorrect = aincorrect = a. The POMDP methods
outperform the baseline MDP method consistently. Note thatincreasinga in-
creases average return for all methods, and that the greatest improvements are
for perr = 0.5 - i.e., the information in the confidence score has more impact
as speech recognition accuracy degrades. These figures alsoprovide a quan-
titative illustration of the benefit of belief monitoring vs. the benefit of the
confidence score information. For example, in Figure 6 (in which perr = 0.5),
at a = 0, the POMDP achieves an average of 0.7 units of reward/dialogue
whereas the MDP achieves an average of -3.1 units of reward/dialogue. In
other words, ignoring confidence score altogether, the belief monitoring pro-
vided by the POMDP results in an increase from -3.1 to 0.7. Theaddition of
a very informative confidence score (i.e.,a = 5) to the POMDP results in an
increase from 0.7 units of reward/dialogue to 3.2 units of reward/dialogue.
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Figure 4. Average returnvs. a (informativeness of confidence score)at perr = 0.30 for
continuous-POMDP, discrete-POMDP, and MDP-2 methods.

In Figures 3 through 6, the discrete-POMDP and continuous-POMDP meth-
ods performed similarly9. In this task, use of the confidence scoreduring
planning does not improve performance of the POMDP. This could be due
to the relatively short horizon in the test-bed problem, as most of the dialogues

9Additional experiments were performed (not shown here) which performed POMDP optimisation with 2,
4, and 8 “buckets” and continuous belief monitoring during evaluation, and these produced very similar
results.
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Figure 6. Average returnvs. a (informativeness of confidence score)at perr = 0.50 for
continuous-POMDP, discrete-POMDP, and MDP-2 methods.

spanned only a handful of turns. We intend to explore this issue with larger
dialogue management problems in future work.
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5. Improving Handcrafted Policies

In the previous section, a designer specified a reward function, and actions
were selected to maximise reward using automated planning.In traditional
approaches to dialogue management, the designer specifies actions directly, a
process often calledhandcrafting10.

Automated planning is appealing because adding confidence score informa-
tion to the dialogue state space increases its size dramatically, complicating
the work of a human designer. This section presents an alternative approach in
which a human designer produces a handcrafted dialogue manager whichdoes
not include confidence score information. Rather, the spoken dialogue system
is viewed as a POMDP, belief monitoring (which takes confidence score into
account) is performed, and the handcrafted controller is executed in conjunc-
tion with the belief state. Concretely, the handcrafted policy is evaluated by
constructing its value function, and is then executed in thestyle of thediscrete-
POMDPabove.

Intuitively, a policy specifies what action to take in a givensituation. In the
previous section, we relied on the representation of a POMDPpolicy produced
by value iteration - i.e., a value function, represented as aset ofN vectors each
of dimensionality|S|. We writevn(s) to indicate thesth component of the
nth vector.

A second way of representing a POMDP policy is as a “policy graph” - a
finite state controller consisting ofN nodes and some number of directed arcs.
Each controller node is assigned a POMDP action, and we will again write
π̂(n) to indicate the action associated with thenth node. Each arc is labelled
with a POMDP observation, such that all controller nodes have exactly one
outward arc for each observation.l(n, o) denotes the successor node for node
n and observationo. A policy graph is a general and common way of rep-
resenting handcrafted dialogue management policies (Pieracinni and Huerta,
2005). More complex handcrafted policies - for example, those created with
rules - can usually be compiled into a (possibly very large) policy graph. That
said, a policy graph does not make the expected return associated with each
controller node explicit, but as pointed out by Hansen (1998), we can find the
expected return associated with each controller node by solving this system of
linear equations inv:

vn(s) = r(s, π̂(n)) + γ
∑

s′∈S

∑

o∈O

p(s′|s, π̂(n))p(o|s′, π̂(n))vl(n,o)(s
′) (8.24)

10In both POMDP and traditional approaches, the designer creates a dialogue model; the focus here is how
actions are selected given a dialogue model.
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Solving this set of linear equations yields a set of vectors -one vectorv(s)
for each controller node,vn(s). To find the expected value of starting the
controller in noden and belief stateb we compute:

|S|
∑

s=1

vn(s)b(s) (8.25)

To improve the performance of the controller, we usevn(s) at run-time, as
follows. At the beginning of the dialogue, we find the node with the highest
expected return forb0 and execute its action. Throughout the dialogue, we per-
form belief state monitoring - i.e., we maintain the currentbelief state at each
time-step as given in equation 8.13. At each time-step, rather than following
the policy specified by the finite state controller, were-evaluatewhich node
has the highest expected return for the currentb. We then take the action spec-
ified by that node. Because the node-value function and belief state are exact,
this style of execution is guaranteed to perform at least as well as the original
handcrafted controller. Note that, in this style of execution, transitions may
occur which are not arcs in the handcrafted policy.

This style of execution is distinct frompolicy iteration, in which the nodes
and links of the controller are changed and the controller isre-evaluated (using
e.g., equation 8.24) to iteratively improve the controller’s expected return. We
do not explore policy iteration in this chapter; however, wenote that a hand-
crafted controller could be used to bootstrap a policy iteration process. Since
a finite state controller is more intuitive for a (human) designer to understand,
we intend to explore policy iteration in future work.

Three handcrafted policies were created for the test-bed dialogue manage-
ment problem, called HC1, HC2, and HC3. All of the handcrafted policies
first take the actiongreet. HC1 takes theask-fromandask-toactions to fill the
from andto fields, performing no confirmation. If the user does not respond, it
re-tries the same action. If it receives an observation which is inconsistent or
nonsensical, it re-tries the same action. If it fills both fields without receiving
any inconsistent information, it takes the correspondingsubmit-x-yaction. A
logical diagram showingHC1 is shown in Figure 711.

HC2 is identical to HC1 except that if the machine receives an observation
which is inconsistent or nonsensical, it immediately takesthefail action. Once
it fills both fields, it takes the correspondingsubmit-x-yaction.

HC3 employs a similar strategy to HC1 but extends HC1 by confirming
each field as it is collected. If the user responds with “no” toa confirmation,
it re-asks the field. If the user provides inconsistent information, it treats the

11A logical diagram is shown for clarity: the actual controller uses the real values a, b, and c, instead of the
variables X and Y, resulting in a controller with 15 states.
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Y
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from X to Y

from X to Y

else else else

Figure 7. HC1 handcrafted controller.

new information as “correct” and confirms the new information. If the user
does not respond, or if the machine receives any nonsensicalinput, it re-tries
the same action. Once it has successfully filled and confirmedboth fields, it
takes the correspondingsubmit-x-yaction.

We first studied the operation of the greedy improvement method without
access to confidence score information. We executed 10,000 dialogues for
each handcrafted policy at values ofperr ranging from 0.05 to 0.65. Figure 8
gives results forHC1. To make the gain of the greedy improvement method
explicit, Figure 8 shows the difference between the proposed method and the
expected value of executing the handcrafted policy directly. For reference,
Figure 8 also includes the difference between the handcrafted policies executed
normally and the POMDP policy, which we take to be a practicalupper bound
for the test-bed problem. Error bars show the 95% confidence interval for the
true expected return assuming normal distribution. We notethat in almost all
cases, the greedy improvement method results in a significant improvement. In
many cases, the improved handcraft controller is close to the POMDP policy -
our assumed practical upper bound. Results forHC2 andHC3 are shown in
Figures 9 and 10.

We next studied the operation of the greedy improvement method when
confidence score information is present. Figures 11, 12, and13 show average
returns for thediscrete-POMDPand improved handcraft methods vs.a for
perr = 0.3, 0.4, and0.5, respectively. a is defined as in Section 4.2 - i.e.,
a = acorrect = aincorrect. Error bars are negligible and are not shown. For
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each of the three handcrafted controllers in each of the three values ofperr,
increasinga consistently increases average return.
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Figure 8. Gain in average/expected return for HC1 executed using belief state monitoring vs.
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perr for a = 0.
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vs. perr for a = 0.

0

1

2

3

4

5

6

0 1 2 5

a  (Informativeness of confidence score)

A
ve

ra
ge

 r
et

ur
n

disc-POMDP
HC2
HC1
HC3

Figure 11. Average returnvs. a (informativeness of confidence score) forperr = 0.30 for
discrete-POMDP and handcrafted policies executed with belief state monitoring.

6. Conclusions

This chapter has shown how a confidence score can be directly incorpo-
rated into the dialogue model represented as a Partially Observable Markov
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Figure 12. Average returnvs. a (informativeness of confidence score) forperr = 0.40 for
discrete-POMDP and handcrafted policies executed with belief state monitoring.
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Figure 13. Average returnvs. a (informativeness of confidence score) forperr = 0.50 for
discrete-POMDP and handcrafted policies executed with belief state monitoring.

Decision Process (POMDP) used for dialogue management. Unlike traditional
approaches which maintain a single dialogue state at each time-step, in effect
a POMDP considers all possible dialogue states, and maintains a probability
distribution over these called abelief state. This representation allows a con-
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fidence score to be tracked in the dialogue state in a principled fashion, and
optimising the POMDP produces a dialogue manager which exploits this rep-
resentation when selecting actions. In evaluation, the POMDP significantly
outperforms a baseline MDP, which tracks only one hypothesis for the dia-
logue state.

This chapter has also presented a second approach to policy production in
which a handcrafted controller which does not account for confidence score
information can be improved to automatically account for confidence score
information.

The problems considered here were unrealistically small for real-world de-
ployment, and recent work has shown how to scale POMDPs to slot-filling
problems of a realistic size (Williams and Young, 2005). Also, this chapter has
considered only the top recognition hypothesis and confidence score. A natural
extension would to be consider more complex hypothesis representations such
asN-Bestlists or word lattices, and more recognition features such as prosodic
information, parse scores, or acoustic metrics.
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