
Learning Domain-Independent Dialogue Policies via Ontology
Parameterisation

Zhuoran Wang1, Yannis Stylianou1, Tsung-Hsien Wen2, Pei-Hao Su2, Steve Young2

1Toshiba Research Europe Ltd., Cambridge, UK
2Engineering Department, University of Cambridge, UK

Abstract

This paper introduces a novel approach
to eliminate the domain dependence of
dialogue state and action representations,
such that dialogue policies trained based
on proposed representations can be trans-
ferred across different domains. The ex-
perimental results show that the policy op-
timised in a restaurant search domain us-
ing our domain-independent representa-
tions can be deployed to a laptop sale do-
main, achieving a performance very close
to that of the policy optimised directly us-
ing in-domain dialogues.

1 Introduction

Statistical approaches to Spoken Dialogue Sys-
tems (SDS), particularly Partially Observable
Markov Decision Processes (POMDPs) (Lemon
and Pietquin, 2012; Young et al., 2013), have
demonstrated great success in improving the ro-
bustness of dialogue policies to error-prone Auto-
matic Speech Recognition (ASR). However, build-
ing statistical SDS (SSDS) for different applica-
tion domains is time consuming. Traditionally,
each component of such SSDS needs to be trained
based on domain-specific data, which are not al-
ways easy to obtain. Moreover, in many cases,
one will need a basic (e.g. rule-based) working
SDS to be built before starting the data collection
procedure, whereas developing the initial system
for a new domain requires a significant amount of
human expertise.

It will be undoubtedly beneficial to SDS de-
velopment if one could either learn domain-
independent knowledge representations or trans-
fer the knowledge learnt previously in existing do-
mains to new domains. Existing works in this
respect include domain-independent intermediate
semantic extractors for Spoken Language Under-
standing (SLU), domain-general formulae (Wang

and Lemon, 2013; Sun et al., 2014) and domain-
extensible delexicalised deep classifiers (Hender-
son et al., 2014) for dialogue state tracking, and
domain-extensible/transferrable Gaussian Process
(GP) based dialogue policies (Gašić et al., 2013;
Gašić et al., 2015), to name but a few.

In this paper, we introduce a more effective ap-
proach to eliminate domain dependence of dia-
logue policies, by exploring the nature and com-
monness of the underlying tasks of SDS in dif-
ferent domains and parameterising different slots
defined in the domain ontologies into a common
feature space according to their relations and po-
tential contributions to the underlying tasks. For
the ease of access to the proposed technique (§3),
we start from a brief review of POMDP-SDS in
§2. Promising experimental results are achieved
based on both simulated users and human subjects
as shown in §4, followed by further discussions
and conclusions (§5).

2 POMDP-SDS: A Brief Overview

POMDP is a powerful tool for modelling sequen-
tial decision making problems under uncertainty,
by optimising the policy to maximise long-term
cumulative rewards. Concretely. at each turn
of a dialogue, a typical POMDP-SDS parses an
observed ASR n-best list with confidence scores
into semantic representations (again with associ-
ated confidence scores), and estimates a distribu-
tion over (unobservable) user goals, called a be-
lief state. After this, the dialogue policy selects
a semantic-level system action, which will be re-
alised by Natural Language Generation (NLG) be-
fore synthesising the speech response to the user.

The semantic representations in SDS normally
consist of two parts, a communication func-
tion (e.g. inform, deny, confirm, etc.)
and (optionally) a list of slot-value pairs (e.g.
food=pizza, area=centre, etc.). The prior
knowledge defining the slot-values in a particular

domain is called the domain ontology.
Dialogue policy optimisation can be solved via

Reinforcement Learning (RL), where the aim is
to estimate a quantity Q(b,a), for each b and a,
reflecting the expected cumulative rewards of the
system executing action a at belief state b, such
that the optimal action a∗ can be determined for
a given b according to a∗ = argmaxaQ(b,a).
Due the exponentially large state-action space an
SDS can incur, function approximation is nec-
essary, where it is assumed that Q(b,a) ≈
fθ(φ(b,a)), where θ is the model parameter to
learn, and φ(·) is a feature function that maps
(b,a) to a feature vector. To compute Q(b,a),
one can either use a low-dimensional summary be-
lief (Williams and Young, 2005) or the full be-
lief itself if kernel methods are applied (Gašić et
al., 2012). But in both cases, the action a will
be a summary action (see §3 for more details) to
achieve tractable computations.

3 Domain-Independent Featurisation

For the convenience of further discussion, we
firstly take a closer look at how summary actions
can be derived from their corresponding master
actions. Assume that according to its communi-
cation function, a system action a can take one
of the following forms: a() (e.g. reqmore()),
a(s) (e.g. request(food)), a(s = v)
(e.g. confirm(area=north)), a(s = v1,
s = v2) (e.g. select(food=noodle,
food=pizza)), and a(s1 = v1, . . . , sn =
vn) (e.g. offer(name="Chop Chop",
food=Chinese)), where a stands for the com-
munication function, s∗ and v∗ denote slots and
values respectively. Usually it is unnecessary for
the system to address a hypothesis less believable
than the top hypothesis in the belief (or the top
two hypotheses in the ‘select’ case). There-
fore, by abstracting the actual values, the sys-
tem actions can be represented as a

(
s = btop

s

)
,

a
(
s = btop

s , s = bsecond
s

)
and a

(
btop
joint

)
, where

bs denotes the marginal belief with respect to slot
s, bjoint stands for the joint belief, and btop

∗ and
bsecond
∗ denote the top and second hypotheses of

a given b∗, respectively. After this, summary ac-
tions can be defined as as (for actions depending
on s) and a (for those having no operands or only
taking joint hypotheses as operands, i.e. indepen-
dent of any particular slot). Furthermore, one can
uniquely map such summary actions back to their

master actions, by substituting the respective top
(and second if necessary) hypotheses in the belief
into the corresponding slots.

Based on the above definition, we can re-write
the master action a as as, where s denotes the
slot that a depends on when summarised. Here,
s is fully derived from a and can be null (when
the summary action of a is just a). A conven-
tional form of φ can be expressed as φ(b,as) =
δ(as) ⊗ ψ(b) where δ is the Kronecker delta, ⊗
is the tensor product, and generally speaking, ψ(·)
featurises the belief state, which can yield the sum-
mary belief in particular cases.

3.1 “Focus-aware” belief summarisation
Without losing generality, one can assume that
the communication functions a are domain-
independent. However, since the slots s are
domain-specific (defined by the ontology), both as
and b will be domain-dependent.

Making ψ(b) domain-independent can be triv-
ial. A commonly used representation of b con-
sists of a set of individual belief vectors, denoted
as {bjoint,b◦} ∪ {bs}s∈S , where b◦ stands for
the section of b independent of any slots (e.g.
the belief over communication methods, such as
“by constraint”, “by name”, etc. (Thomson and
Young, 2010)) and S stands for the set of (in-
formable) slots defined in the domain ontology.
One can construct a feature function ψ(b, s) =
ψ1(bjoint)⊕ψ2(b◦)⊕ψ3(bs) for a given s and let
φ(b,as) = δ(as) ⊗ ψ(b, s), where ⊕ stands for
the operator to concatenate two vectors. (In other
words, the belief summarisation here only focuses
on the slot being addressed by the proposed action,
regardless of the beliefs for other slots.) As the
mechanism in each ψ∗ to featurise its operand b∗
can be domain-independent (see Section 3.3 for an
example), the resulting overall feature vector will
be domain-general.

3.2 Ontology (slot) parameterisation
If we could further parameterise each slot s in a
domain-general way (as ϕ(s)), and define

φ(b,as) = δ(a)⊗ [ϕa(s)⊕ ψa(b, s)] (1)

the domain dependence of the overall feature func-
tion φ will be eliminated1. Note here, to make the

1An alternative featurisation can be φ(b,as) = δ(a) ⊗
ϕa(s)⊗ψa(b, s), but our preliminary experiments show that
⊗ results in similar but slightly worse policies. Therefore, we
stick on ⊕ in this paper.

definition more general, we assume that the fea-
ture functions ϕa and ψa depend on a, such that a
different featurisation can be applied for each a.

To achieve a meaningful parameterisation
ϕa(s), we need to investigate how each slot s is
related to completing the underlying task. More
concretely, for example, if the underlying task is
to obtain user’s constraint on each slot so that the
system can conduct a database (DB) search to find
suitable entities (e.g. venues, products, etc.), then
the slot features should describe the potentiality
of the slot to refine the search results (reduce the
number of matching entities) if that slot is filled.
For another example, if the task is to gather neces-
sary (plus optional) information to execute a sys-
tem command (e.g. setting a reminder or planning
a route), where the number of values of each slot
can be unbounded, then the slots features should
indicate whether the slot is required or optional.
In addition, the slots may have some specific char-
acteristics causing people addressing them differ-
ently in a dialogue. For example, when buying a
laptop, more likely one would talk about the price
first than the battery rating. Therefore, features de-
scribing the priority of each slot are also necessary
to yield natural dialogues. We give a complete list
of features in next subsection for a working ex-
ample, to demonstrate how two irrelevant domains
can share a common ontology parameterisation.

3.3 A Working Example

We use restaurant search and laptop sale as two
example domains to explain the above idea. The
underlying tasks of the both problems can be re-
garded as DB search. Appendix A gives the de-
tailed ontology definitions of the two domains.

Firstly, the following notations are introduced
for the convenience of discussion. Let Vs denote
the set of the values that a slot s can take, and |·| be
the size of a set. Assume that h = (s1 = v1 . . . ∧
sn = vn) is a user goal hypothesis consisting a set
of slot-value pairs. We use DB(h) to denote the set
of the entities in the DB satisfying h. In addition,
we define bxc to be the largest integer less than
and equal to x. After this, for each informable slot
s defined in Table ??, the following quantities are
used for its parameterisation.

• Number of values

– a continuous feature2, 1/|Vs|;
2The normalised quantity is used here to make this fea-

– discrete features mapping |Vs| into N bins,
indexed by min{blog2 |Vs|c, N}.

• Importance: two features describing, respec-
tively, how likely a slot will and will not oc-
cur in a dialogue.

• Priority: three features denoting, respectively,
how likely a slot will be the first, the second,
and a later attribute to address in a dialogue.

• Value distribution in the DB: the en-
tropy of the normalised histogram,
(|DB(s = v)|/|DB|)v∈Vs .

• Potential contribution to DB search: given
the current top user goal hypothesis h∗ and a
pre-defined threshold τ

– how likely filling s will reduce the number
of matching DB records to below τ , i.e.
|{v : v ∈ Vs, |DB(h∗ ∧ s = v)| ≤ τ}| /|Vs|;

– how likely filling swill not reduce the num-
ber of matching DB records to below τ , i.e.
|{v : v ∈ Vs, |DB(h∗ ∧ s = v)| > τ}| /|Vs|;

– how likely filling s will result in no
matching records found in the DB, i.e.
|{v : v ∈ Vs,DB(h∗ ∧ s = v) = ∅}| /|Vs|.

The importance and priority features used in this
work are manually assigned binary values, but ide-
ally, if one has some in-domain human dialogue
examples (e.g. from Wizard-of-Oz experiments),
such feature values can be derived from simple
statistics on the corpus. In addition, we make the
last set of features only applicable to those slots
not observed in the top joint hypothesis.

The summary belief features used in this work
are sketched as follows. For each informable slot s
and each of its applicable action types a, ψa(b, s)
extracts the probability of btop

s , the entropy of
bs, the probability difference between the top two
marginal hypotheses (discretised into 5 bins with
interval size 0.2) and the non-zero rate (|{v : v ∈
Vs,bs(v) > 0}|/|Vs|). In addition, if the slot is
requestable, the probability of it being requested
by the user (Thomson and Young, 2010) is used as
an extra feature. A similar featurisation procedure
(except the “requested” probability) is applied to
the joint belief as well, from which the obtained
features are used for all communication functions.
To capture the nature of the underlying task (DB

ture have a similar value range to the others, for numerical
stability purposes in GP-based policy learning (see §4).

of dialogues
0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

Su
cc

es
s

ra
te

0.8

0.9

1

BUDS GP-SARSA
DIP GP-SARSA

of dialogues
0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

Av
er

ag
e

re
w

ar
d

6

7

8

9

10

11

12

13

BUDS GP-SARSA
DIP GP-SARSA

Figure 1: Training GP-SARSA policies for BUDS
(full belief) and DIP in the restaurant search do-
main. Each point is averaged over 5 policies each
evaluated on 1000 simulated dialogues.

search), we define two additional features for the
joint belief, an indicator [[|DB(btop

joint)| ≤ τ]] and
a real-valued feature |DB(btop

joint)|/τ if the former
is false, where τ is the same pre-defined threshold
used for slot parameterisation as introduced above.
There are also a number of slot-indepedent fea-
tures applied to all action types, including the be-
lief over communication methods (Thomson and
Young, 2010) and the marginal confidence scores
of user dialogue act types in the current turn.

4 Experimental Results

In the following experiments, we integrate the
proposed domain-independent parameterisation
(DIP) method with a generic dialogue state tracker
(Wang and Lemon, 2013) to yield an overall
domain-independent dialogue manager. Firstly,
we train DIP dialogue policies in the restau-
rant search domain using GP-SARSA based on
a state-of-the-art agenda-based user simulator3

(Schatzmann et al., 2007), in comparison with
the GP-SARSA learning process for the well-
known BUDS system (Thomson and Young,
2010) (where full beliefs are used (Gašić and
Young, 2014)), as shown in Figure 1. It can be
found that the proposed method results in faster
convergence and can even achieve slightly better
performance than the conventional approach.

After this, we directly deployed the DIP poli-
cies trained in the restaurant domain to the lap-
top search domain, and compare its performance

3For all the experiments in this work, the confusion rate
of the simulator is set to 15% and linear kernels are used for
GP-SARSA.

System Reward Success (%) #Turns
DIPin-domain 12.5±0.3 98.3±1.2 7.2±0.3
DIPtransferred 12.2±0.4 97.8±0.9 7.4±0.3

Table 1: Policy evaluations in the laptop sale do-
main based on simulated dialogues.

System #Dials Success (%) Score
DIPin-domain 118 87.3 4.53
DIPtransferred 132 86.4 4.92

Table 2: Policy evaluations using human subjects.

with an in-domain policy trained using the simu-
lator (configured to the laptop search domain). Ta-
ble 1 shows that the performance of the transferred
policy is almost identical to the in-domain policy.

Finally, we choose the best in-domain and trans-
ferred DIP policies and deploy them into respec-
tive end-to-end laptop sale SDS, for human sub-
ject experiments based on MTurk. After each di-
alogue, the user was also asked to provide a sub-
jective score for the naturalness of the interaction,
ranging from 1 (very unnatural) to 6 (very natu-
ral). The results are summarised in Table 2, where
the transferred policy has an objective task success
rate only about 1% lower than the in-domain pol-
icy. Moreover, very interestingly, the crowdsourc-
ing users on average regard the transferred policy
as slightly more natural than the in-domain policy.

5 Discussion and Conclusion

This paper proposed a domain-independent ontol-
ogy parameterision framework to enable domain-
transfer of optimised dialogue policies. When
compared to a closely related method introduced
in (Gašić et al., 2013; Gašić et al., 2015), the pro-
posed DIP mechanism directly addresses the na-
ture of the underlying tasks and provides a more
flexible way to parametrically measure the sim-
ilarity between different domain ontologies, in-
stead of manually tying slots in different domains.
Experimental results show that when transferred
to a new domain, dialogue policies trained based
on the DIP representations can achieve compara-
ble performance to those policies optimised using
in-domain dialogues. Bridging the (very small)
performance gap here should also be simple, if
one takes the transferred policy as the prior and
conducts domain-adaption similar to (Gašić et al.,
2015). This will be addressed in our future work.

References
Milica Gašić and Steve Young. 2014. Gaussian pro-

cesses for pomdp-based dialogue manager optimiza-
tion. IEEE/ACM Transactions on Audio, Speech and
Language Processing, 22(1):28–40.

Milica Gašić, Matthew Henderson, Blaise Thomson,
Pirros Tsiakoulis, and Steve J. Young. 2012. Pol-
icy optimisation of POMDP-based dialogue systems
without state space compression. In IEEE Spoken
Language Technology Workshop (SLT), pages 31–
36.

Milica Gašić, Catherine Breslin, Matthew Hender-
son, Dongho Kim, Martin Szummer, Blaise Thom-
son, Pirros Tsiakoulis, and Steve Young. 2013.
POMDP-based dialogue manager adaptation to ex-
tended domains. In Proceedings of the SIGDIAL
2013 Conference, pages 214–222.

Milica Gašić, Dongho Kim, Pirros Tsiakoulis, and
Steve Young. 2015. Distributed dialogue policies
for multi-domain statistical dialogue management.
In Proceedings of the 40th IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP).

Matthew Henderson, Blaise Thomson, and Steve J.
Young. 2014. Robust dialog state tracking us-
ing delexicalised recurrent neural networks and un-
supervised adaptation. In IEEE Spoken Language
Technology Workshop (SLT), pages 360–365.

Oliver Lemon and Olivier Pietquin, editors. 2012.
Data-Driven Methods for Adaptive Spoken Dia-
logue Systems: Computational Learning for Conver-
sational Interfaces. Springer.

Jost Schatzmann, Blaise Thomson, Karl Weilhammer,
Hui Ye, and Steve Young. 2007. Agenda-based
user simulation for bootstrapping a POMDP dia-
logue system. In Proceedings of Human Language
Technologies 2007: The Conference of the North
American Chapter of the Association for Compu-
tational Linguistics; Companion Volume, Short Pa-
pers, pages 149–152.

Kai Sun, Lu Chen, Su Zhu, and Kai Yu. 2014. A gen-
eralized rule based tracker for dialogue state track-
ing. In IEEE Spoken Language Technology Work-
shop (SLT), pages 330–335.

Blaise Thomson and Steve Young. 2010. Bayesian
update of dialogue state: A POMDP framework for
spoken dialogue systems. Computer Speech and
Language, 24(4):562–588.

Zhuoran Wang and Oliver Lemon. 2013. A simple
and generic belief tracking mechanism for the Dia-
log State Tracking Challenge: On the believability
of observed information. In Proceedings of the SIG-
DIAL 2013 Conference, pages 423–432.

Jason D. Williams and Steve Young. 2005. Scaling up
POMDPs for dialog management: The “Summary
POMDP” method. In ASRU.

Steve Young, Milica Gašić, Blaise Thomson, and Ja-
son D. Williams. 2013. POMDP-based statistical
spoken dialogue systems: a review. Proceedings of
the IEEE, PP(99):1–20.

A Ontology Definitions for the Example
Domains

Slot #Values Info. Req.
food 91 yes yes
area 5 yes yes

pricerange 3 yes yes
name 111 yes yes
phone – no yes

R
es

ta
ur

an
t

postcode – no yes
signature – no yes

description – no yes
family 5 yes no

purpose 2 yes yes
pricerange 3 yes no

weightrange 3 yes no
batteryrating 3 yes yes

L
ap

to
p

driverange 3 yes no
name 123 yes no
price – no yes

hard drive – no yes
dimension – no yes

Table A.1: Ontologies for the restaurant search
and laptop sale domains. “Info.” denotes in-
formable slots, for which user can provide values;
“Req.” denotes requestable slots, for which user
can ask information.

