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Abstract— Voice morphing is a technique for modifying a
source speaker’s speech to sound as if it was spoken by some
designated target speaker. The core process in a voice morphing
system is the transformation of the spectral envelope of the
source speaker to match that of the target speaker and linear
transformations estimated from time-aligned parallel training
data are commonly used to achieve this. However, the naive
application of envelope transformation combined with the nec-
essary pitch and duration modifications will result in noticeable
artifacts. This paper studies the linear transformation approach
to voice morphing and investigates these two specific issues.
Firstly, a general maximum likelihood framework is proposed for
transform estimation which avoids the need for parallel training
data inherent in conventional least mean square approaches. Sec-
ondly, the main causes of artifacts are identified as being due to
glottal coupling, unnatural phase dispersion and the high spectral
variance of unvoiced sounds, and compensation techniques are
developed to mitigate these. The resulting voice morphing system
is evaluated using both subjective and objective measures.These
tests show that the proposed approaches are capable of effectively
transforming speaker identity whilst maintaining high quality.
Furthermore, they do not require carefully prepared parallel
training data.

Index Terms— Voice morphing, voice conversion, linear trans-
formation, phase dispersion

I. I NTRODUCTION

Voice morphing which is also referred to as voice trans-
formation and voice conversion is a technique for modifying
a source speaker’s speech to sound as if it was spoken by
some designated target speaker. There are many applications
of voice morphing including customising voices for TTS
systems, transforming voice-overs in adverts and films to
sound like that of a well-known celebrity, and enhancing the
speech of impaired speakers such as laryngectomees. Two key
requirements of many of these applications are that firstly
they should not rely on large amounts of parallel training data
where both speakers recite identical texts, and secondly, the
high audio quality of the source should be preserved in the
transformed speech.

The core process in a voice morphing system is the transfor-
mation of the spectral envelope of the source speaker to match
that of the target speaker and various approaches have been
proposed for doing this such as codebook mapping [1], [2],
formant mapping [3] and linear transformations [4], [5], [6].
Codebook mapping, however, typically leads to discontinuities
in the transformed speech. Although some discontinuities
can be resolved by some form of interpolation technique
[2], the conversion approach can still suffer from a lack of
robustness as well as degraded quality. On the other hand,
formant mapping is prone to formant tracking errors. Hence,

transformation-based approaches are now the most popular.
In particular, the continuous probabilistic transformation ap-
proach introduced by Stylianou et al. [4] provides the baseline
for modern systems. In this approach, a Gaussian mixture
model (GMM) is used to classify each incoming speech
frame, and a set of linear transformations weighted by the
continuous GMM probabilities are applied to give a smoothly
varying target output. The linear transformations are typically
estimated from time-aligned parallel training data using least
mean squares. More recently, Kain has proposed a variant of
this method in which the GMM classification is based on a
joint density model[5]. However, like the original Stylianou
approach, it still relies on parallel training data. Although the
requirement for parallel training data is often acceptable, there
are applications which require voice transformation for non-
parallel training data. Examples can be found in the enter-
tainment and media industries where recordings of unknown
speakers need to be transformed to sound like well-known
personalities. Further uses are envisaged in applicationswhere
the provision of parallel data is impossible such as when the
source and target speaker speak different languages.

This paper begins by expressing the continuous probabilis-
tic transform of Stylianou as a simple interpolated linear
transform. Expressed in a compact form, this representation
then leads straightforwardly to the realisation of the con-
ventional training and conversion algorithms. In analogy to
the transform-based adaptation methods used in recognition
[7], [8], the estimation of the interpolated transform is then
extended to a maximum likelihood formulation which does
not require that the source and training data be parallel.

Although interpolated linear transforms are effective in
transforming speaker identity, the direct transformationof
successive source speech frames to yield the required target
speech will result in a number artifacts. The reasons for
this are as follows. Firstly, the reduced dimensionality of
the spectral vector used to represent the spectral envelope
and the averaging effect of the linear transformation result
in formant broadening and a loss of spectral detail. Secondly,
unnatural phase dispersion in the target speech can lead to
audible artifacts and this effect is aggravated when pitch and
duration are modified. Thirdly, unvoiced sounds have very
high variance and are typically not transformed. However,
in that case, residual voicing from the source is carried over
to the target speech resulting in a disconcerting background
whispering effect.

To achieve high quality of voice conversion, all these issues
have to be taken into account and in this paper, we identify and
present solutions for each of them. These include a spectral
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refinement approach to compensate the spectral distortion,a
phase prediction method for natural phase coupling and an
unvoiced sounds transformation scheme. Each of these tech-
niques is assessed individually and the overall performance of
the complete solution evaluated using listening tests. Overall it
is found that the enhancements significantly improve speaker
identification scores and perceived audio quality.

The remainder of the paper is organised as follows. First,
the transform-based voice morphing framework is outlined in
Section II, followed by a description of the interpolated linear
transform and its estimation under different training condi-
tions. In Section III, the various problems discussed aboveand
their corresponding solutions are presented. The performance
of the enhanced system with these new techniques integrated
is evaluated in Section IV and finally, overall conclusions are
presented in Section V.

II. T RANSFORMBASED VOICE MORPHING SYSTEM

A. Overall Framework

Transform-based voice morphing technology converts the
speaker identity by modifying the parameters of an acoustic
representation of the speech signal. It normally includes two
parts, the training procedure and the transformation procedure.
The training procedure operates on examples of speech from
the source and the target speakers. The input speech examples
are first analyzed to extract the spectral parameters that repre-
sent the speaker identity. Usually these parameters encodethe
short-term acoustic features, such as the spectrum shape and
the formant structure. After the feature extraction, a conversion
function is trained to capture the relationship between the
source parameters and the corresponding target parameters. In
the transformation procedure, the new spectral parametersare
obtained by applying the trained conversion functions to the
source parameters. Finally, the morphed speech is synthesized
from the converted parameters.

Although it is outside the scope of this paper, mapping the
prosody of the source speaker to be like the target speaker isan
equally important and challenging problem. In all of the work
reported in this paper, the source pitch is simply shifted and
scaled to match the mean and variance of the target speaker.
This is just about adequate for similar speakers such as those
used in the evaluations reported later in the paper but it is
clearly not a general solution.

There are three inter-dependent issues that must be decided
before building a voice morphing system. Firstly, a mathe-
matical model must be chosen which allows the speech signal
to be manipulated and regenerated with minimum distortion.
Previous research [9], [4], [5] suggests that the sinusoidal
model is a good candidate since, in principle at least, this
model can support modifications to both the prosody and the
spectral characteristics of the source signal without induc-
ing significant artifacts[10]. However, in practice, conversion
quality is always compromised by phase incoherency in the
regenerated signal, and to minimise this problem, a pitch
synchronous sinusoidal model is used in our system [5],
[11]. Secondly, the acoustic features which enable humans to
identify speakers must be extracted and coded. These features

should be independent of the message and the environment so
that whatever and wherever the source speaker speaks, his/her
voice characteristics can be successfully transformed to sound
like the target speaker. Clearly the changes applied to these
features must be capable of straightforward realization bythe
speech model. Thirdly, the type of conversion function and
the method of training and applying the conversion function
must be decided. More details on these two latter issues are
presented below.

B. Spectral Parameters

As indicated above, the overall shape of the spectral en-
velope provides an effective representation of the vocal tract
characteristics of the speaker and the formant structure of
voiced sounds. Generally, there are several ways to estimate
the spectral envelope, such as using LPC [12], cepstral co-
efficients [13] and line spectral frequencies (LSF) [15]. In
Stylianou’s system [4], a set of discrete MFCC coefficients
is used to represent the spectral envelope. They concluded
that this method provides a better envelope fit at the specified
frequency points than LPC-based methods. Whilst Kain in [5]
used line spectral frequencies (LSF) converted from the LPC
filter parameters for the reason that LSFs have better linear
interpolation attributes. Both methods have been studied in
our previous research in [6] and [11]. LSF is the final choice
for our system as it requires less coefficients to efficiently
capture the formant structure. For cases with limited training
data, this is rather crucial. Furthermore the robust interpola-
tion properties of LSF are advantageous when using linear
transformations for the conversion function.

The main steps in estimating the LSF envelope for each
speech frame are as follows,

1) Use the amplitudes of the harmonicsak(k = 1, · · · , K)
determined by the pitch synchronous sinusoidal model
to represent the magnitude spectrum.K is determined
by the fundamental frequencyF0, its value can typically
range from 50 to 200.

2) Resample the magnitude spectrum non-uniformly ac-
cording to the bark scale frequency warping using cubic
spline interpolation [14].

3) Compute the LPC coefficients by applying the Levinson-
Durbin algorithm to the autocorrelation sequence of the
warped power spectrum.

4) Convert the LPC coefficients to LSF.

In order to maintain adequate encoding of the formant
structure, LSF spectral vectors with an order ofp = 15 were
used throughout our voice conversion experiments.

C. Linear Transforms

We now turn to the key problem of finding an appropri-
ate conversion function to transform the spectral parameters.
Assume that the training data contains two sets of spectral
vectorsX andY which respectively encode the speech of the
source speaker and the target speaker,

X = [x1,x2, · · · ,xτ ]; Y = [y1,y2, · · · ,yT]; (1)
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where each vectorxi (or yj ) is of dimensionp.
A straightforward method to convert the source vectors

is to use a linear transform. In the general case, the linear
transformation of ap-dimensional vectorx is represented by
a p × (p + 1) dimensional matrixW applied to the extended
vector x̄ = [x′, 1]′. Since there are a wide variety speech
sounds, a single global transform is not sufficient to capture
the variability in human speech. Therefore, a commonly used
technique is to classify the speech sounds into classes using a
statistical classifier such as a Gaussian Mixture Model (GMM)
and then apply a class-specific transform. Thus, in this case,
the source data setX would be first grouped intoN classes
using a GMM, and then a class-specific transformWn would
be estimated for each speech classCn for n = 1, · · · , N .

However, in practice, the selection of a single transform
from a finite set ofN transformations can lead to discontinu-
ities in the output signal. In addition, the selected transform
may not be appropriate for source vectors that fall in the
overlap area between classes. Hence, in order to generate
more robust transformations, a soft classification is preferred in
which allN transformations contribute to the conversion of the
source vector. The contribution degree of each transformation
matrix depends on the degree to which that source vector
belongs to the corresponding speech class. Thus the conversion
function applied to each source vector has the following
general interpolation form,

F(x) = (
N

∑

n=1

λn(x)Wn)x̄ (2)

whereλn is the interpolation weight of transformation matrix
Wn, and its value is given by the probability of vectorx falling
in speech classCn, i.e.

λn(x) = P (Cn|x) =
αnN(x; µn, Σn)

∑N

i=1 αiN(x; µi, Σi)
(3)

where {αn}, {µn} and {Σn} are the weights, means and
covariances of the GMM model respectively, andN() denotes
the normal distribution. It should be noted that ifλn(x) is set
as

λn(x) =

{

1 for n = argmax
(

P (Cn|x)
)

0 otherwise
(4)

then a hard classification is applied to the conversion function
in equation (2).

The conversion functionF is entirely defined by thep×(p+
1) dimensional matricesWn, for n = 1, · · · , N . Two different
estimation methods can be used to train these transformation
matrices.

1) Least Square Error Estimation:When parallel training
data is available, the transformation matrices can be estimated
directly using the least square error (LSE) criterion. In this
case, the source and target vectors are time aligned such that
each source training vectorxi corresponds to a target training
vectoryi. For ease of manipulation, the general form of the
interpolated transformation in (2) can be rewritten compactly
as,

F(x) =
[

W1

...W2

... · · ·
...WN

]
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W =
[

W1

...W2

... · · ·
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(
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)
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(7)

Gathering all the training vectors into single matricesX and
Y as above gives the following set of simultaneous equations
for estimatingW,

Y = WΛ(X) (8)

The standard least-squares solution to equation (8) is then

W = YΛ(X)′
(

Λ(X)Λ(X)′
)

−1

(9)

In practice, we use the pseudo inverse in equation (9), since
for many cases where the number of mixtures is large and
the amount of training data is limited,Λ(X)Λ(X)′ will
become non-positive definite due to numerical errors. This
LSE training approach is essentially equivalent to Stylianou’s
approach in [4] but with a more interpretable and flexible
formulation.

The accurate alignment of source and target vectors in
the training set is crucial for a robust estimation of the
transformation matrices. Normally a Dynamic Time Warping
(DTW) algorithm is used to obtain the required time alignment
where the local cost function is the spectral distance between
source and target vectors. However, the alignment obtained
using this method will sometimes be distorted when the source
and target speakers are very different, this is especially a
problem in cross gender transformation.

Where the orthography of the training data is available, a
more robust approach is to use a speech recogniser in “forced
alignment mode” to find corresponding phone or sub-phone
boundaries. A DTW algorithm can then be employed to align
the corresponding segments between the source and target
utterances. In the work described here, the HTK recogniser
is used [18] with a set of speaker independent monophone
HMMs. The recogniser is used to force align both the source
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and the corresponding target utterance, after which the utter-
ances can be labelled into time-marked segments where each
segment corresponds to one HMM state.

2) Maximum Likelihood Estimation:As noted in the intro-
duction, the provision of parallel training data is not always
feasible and hence it would be useful if the required trans-
formation matrices could be estimated from non-parallel data.
The form of equation (5) suggests that, analogous to the use
of transforms for adaptation in speech recognition [7], [8],
maximum likelihood (ML) should provide a framework for
doing this.

First consider the simple case of one global linear transform
W and assume that there is a statistical modelM that has been
trained to well-represent the target speaker’s speech. Then
the optimal linear transform̂W applied to the source vectors
X = {xt} would be the one that results in the converted
vectors having maximum log likelihood with respect to the
target speech model, i.e.

Ŵ =
argmax

W

T
∑

t=1

logP (W x̄t|M) (10)

=
argmax

W
L(W X̄|M) (11)

where, in our case, the statistical modelM is a Hidden
Markov Model (HMM).

There is no closed-form solution for̂W , but an efficient
iterative solution is possible using Expectation-Maximisation
(EM). Consider the source data setX transformed at each
iteration stepk by W (k) to give a converted data set̃X(k) =

{x̃
(k)
t }, wherex̃

(k)
t = W (k)x̄t, (note thatk > 0 and x̃

(0)
t =

xt), the log likelihood can then be decomposed as,

L(X̃(k)|M) =

T
∑

t=1

logP (W (k)x̄t|M)

=

T
∑

t=1

∑

m

P (qm(t)|x̃
(k−1)
t ,M) logP (W (k)x̄t|M) (12)

=

T
∑

t=1

∑

m

P (qm(t)|x̃
(k−1)
t ,M) log

P (x̃
(k)
t , qm(t)|M)

P (qm(t)|x̃
(k)
t ,M)

= Q(X̃(k−1), X̃(k)) −K(X̃(k−1), X̃(k)) (13)

where

Q(X̃(k−1), X̃(k)) =

T
∑

t=1

∑

m

P (qm(t)|x̃
(k−1)
t ,M)

logP (x̃
(k)
t , qm(t)|M) (14)

K(X̃(k−1), X̃(k)) =

T
∑

t=1

∑

m

P (qm(t)|x̃
(k−1)
t ,M)

logP (qm(t)|x̃
(k)
t ,M). (15)

Here qm(t) indicates Gaussian componentm of the tar-
get HMM M at time t, and the sum is taken over
all components which can be aligned withxt. Hence

∑

m P (qm(t)|x̃
(k−1)
t ,M) = 1 which justifies the expansion

in equation (12).
Noting that the likelihood in equation (13) only depends on

the second parameter ofQ andK, it follows that

L(X̃(k−1)|M)=Q(X̃(k−1), X̃(k−1)) −K(X̃(k−1), X̃(k−1)) (16)

and by Jensen’s Inequality,

K(X̃(k−1), X̃(k)) ≤ K(X̃(k−1), X̃(k−1)). (17)

Hence if the auxiliary functionQ(X̃(k−1), X̃(k)) is maximised
such thatQ(X̃(k−1), X̃(k)) ≥ Q(X̃(k−1), X̃(k−1)), then it
follows from equations (13), (16) and (17) thatL(X̃(k)|M) ≥
L(X̃(k−1)|M). Thus, repeated maximisation of equation (14)
to find W (k), each time updating the Gaussian component
occupation probabilities to use the previous transform, leads
eventually toŴ . In practice, it is found that convergence
occurs quickly and only a few iterations are required. Indeed,
often just one iteration is sufficient for similar speakers.

The required maximisation at each stepk proceeds by
rewriting the auxiliary function in (14) (with the constantterms
suppressed) as,

Q(X̃(k−1), X̃(k)) = −
1

2

T
∑

t=1

∑

m

βm(t) (18)

[

(W x̄t − µm)′Σ−1
m (W x̄t − µm)

]

where W = W (k) is the transform at stepk, and µm and
Σm are the mean vector and covariance matrix of Gaussian
componentm in M, andβm(t) is,

βm(t) = β(k−1)
m (t) = P (qm(t)|x̃

(k−1)
t ,M). (19)

Note that the initial value ofβ(0)
m (t) = P (qm(t)|xt,M).

DifferentiatingQ in equation (18) with respect toW and
equating to zero gives,

T
∑

t=1

∑

m

βm(t)Σ−1
m µmx̄′

t =

T
∑

t=1

∑

m

βm(t)Σ−1
m W x̄tx̄

′

t. (20)

The left-hand side of equation (20) is independent ofW so
call this Z. Introducing variables,

V(t) =
∑

m

βm(t)Σ−1
m (21)

D(t) = x̄tx̄
′

t (22)

equation (20) can then be rewritten as

Z =

T
∑

t=1

V(t)WD(t). (23)

Assuming thatM has diagonal covariance matrices, a
closed form solution can be derived by defining a new matrix
G(i) with elements[7],

g
(i)
jq =

T
∑

t=1

v
(t)
ii d

(t)
jq j, q = 1, · · · , (d + 1) (24)
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W is then calculated row by row using

w′

i = G(i)−1z′i (25)

wherewi andzi are thei-th row of W andZ, respectively.
To estimate multiple transforms using this scheme, a source

GMM is used to assign the source vectors to classes via
equation (4) as in the LSE estimation scheme. A transform
matrix is then estimated separately for each class using the
above ML scheme applied to just the data for that class.
Though it is theoretically possible to estimate multiple trans-
forms using soft classification, in practice, matricesD and
G will become too large to invert. Hence the simpler hard
classification approach is used here.

As with the least mean squares method using parallel
data, performance is greatly improved if sub-phone segment
boundaries can be accurately determined in the source data
using the target HMMM and “forced alignment” recognition
mode. This enables the set of Gaussians evaluated for each
source frame to be limited to just those associated with the
HMM state corresponding to the associated sub-phone. This
does, of course, require that the orthography of the source
utterances be known. Similarly, knowing the orthography of
the target training data makes training the target HMM simpler
and more effective. More details on implementation issues are
given in the following subsection.

D. Evaluation

1) Data: The VOICES database from OGI is used for
evaluation[5]. This corpus contains recorded speech from 12
different speakers reading 50 phonetically rich sentences. Each
sentence is spoken 3 times by each speaker. The speech data
was recorded at 22K Hz sampling rate using a 16 bit encoding
in a professional sound-booth with high quality headphones.
The recording procedure involved a “mimicking” approach
which resulted in a high degree of natural time-alignment
between different speakers. Pitch period information for each
utterance is also provided and this was used for our pitch
synchronous speech representation. In our experiments, four
different voice conversion tasks were investigated: male-to-
male, male-to-female, female-to-male and female-to-female
conversion. For each speaker-pair, the first 120 utterancesare
used as training data, and the remaining 30 utterances form
the test set.

2) Objective Measure:Objective measures seek to evalu-
ate the differences between two speech signals. Since many
perceived sound differences can be interpreted in terms of
differences of spectral features [16], spectral distortion is
considered to be a reasonable metric both mathematically and
subjectively. In speech processing, a log spectral measureis
often used to determine the distance between two spectra [17].
Similarly in this paper, the log spectral distortion between two
spectral envelopes was used to provide an objective measure
of the conversion performance

d(S1, S2) =
1

K

K
∑

k=1

(10log10a
1
k − 10log10a

2
k)2 (26)
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Fig. 1. Spectral distortion ratio for LSE and ML transforms, (a) within-
gender voice conversion, (b) cross-gender voice conversion.

where{ak} are the amplitudes resampled from the normalised
spectral envelopeS at K uniformly spread frequencies, and
K is set to 100 throughout our experiments. A distortion ratio
is then used to compare the converted-to-target distortionwith
the source-to-target distortion, which is defined as,

D =

∑L

t=1 d(Stgt(t), Sconv(t))
∑L

t=1 d(Stgt(t), Ssrc(t))
× 100% (27)

where Stgt(t), Ssrc(t) and Sconv(t) are the target spectral
envelope, source spectral envelope and the converted spectral
envelope at timet respectively. The summation in each case
is computed over time-aligned data andL is the total number
of test vectors after time alignment.

It should be noted that since the spectral distortion also
depends on the degree to which the time-alignment process
can align similar vectors, it is typically quite large, evenwhen
applied to the same speaker. For example, the average log
spectral distortiond between two utterances with identical
content and spoken by the same speaker can vary from 5 to 10
dB, whilst the distortion between two different speakers would
normally be in the range from 13 dB to 20 dB. So in practice,
a distortion ratio ofD = 50% would represent acceptable
conversion performance. Note also that a 100% distortion ratio
corresponds to the distortion between the source and target
spectrum.

3) LSE and ML Comparison:The training of LSE trans-
forms is straightforward. First, a GMM model is trained on
the source vectors and the interpolation weights are computed
according to equation (3). Second, a forced alignment of all
utterances is computed and sub-phone boundaries are marked.
Third, DTW-based time alignment is applied constrained by
these sub-phone boundaries to produce a set of aligned source-
target vector pairs. In the case of the OGI Voice corpus,
around 30,000 vector pairs are obtained for each speaker pair.
Once the training data has been extracted, the transformation
matrices can be computed using equation (9).

The ML training scheme is a little more complex. First,
the orthography of the target speaker’s training data is known
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and used to train a monophone HMM set with 4 Gaussian
mixture components per state. Since the data is sparse, a tied-
mixture technique is employed such that the HMM states
share Gaussian components but with different weights for
different states. The same source GMM as for LSE is used
to classify the source vectors so that multiple ML transforms
can be estimated. As suggested above, the source utterances
were force-aligned to map every source training vector to a
specific HMM sub-phone state, which therefore required that
the orthography of the source training data is also known. The
Gaussian component occupation probabilities were then com-
puted as per equation (19) and then the required transformation
matrices estimated using equation (25).

The number of iterations required depends on the source
and target data. One iteration is typically sufficient for within-
gender conversion. However, for cross-gender conversion,two
or more iterations are necessary.

Fig.1 shows the spectral distortion ratio using LSE and ML
transforms. For both methods, the distortion decreases as the
number of transforms is increased until data sparsity results
in over-training. For these experiments with approximately
30,000 training vectors per speaker, the results suggest that
around 10 transforms is optimal. This corresponds to10 ×
(15 × 16) = 2400 parameters. The difference between LSE
and ML transforms in the within gender voice conversion is
very small as shown by Fig.1(a), however the difference is
larger for the cross gender conversion case as shown in Fig.
1(b). However, defining the signal-to-noise ratio between the
LSE and ML transformed utterances as

SNR = 10 × log10

∑N

n=1 slse(n)2
∑N

n=1[slse(n) − sml(n)]2
(28)

Table I shows that the signal to noise ratio is actually very
high even in the cross-gender case and should be impercept-
able to human listeners. To test this further, a formal listening
test was conducted whereby listeners were presented with
pairs of utterances generated by the LSE and the ML method
respectively, and asked to select the one with the highest
perceived quality. Note that in this experiment only the quality
of the converted speech is of concern, not the transformation
accuracy of speaker identity. The latter aspect is evaluated in
section IV. Table II indicates that the listeners show almost
equal preference for the ML and LSE converted utterances
and a two tailed t-test indicates that the difference is indeed
insignificant (p=0.499 in support of the null hypothesis).

TABLE I

The SNR ratio in dB between LSE and ML transformed utterances.

within gender cross gender
SNR 30.4 24.1

Note that although the distortion ratio of the cross gender
conversion seems much lower than that of the within gender
conversion as shown in Fig. 1, the average log spectral
distortion value is actually higher (8.83 dB for cross gender
and 8.37 dB for within gender). This is simply because the

TABLE II

The result of a preference test to compare LSE and ML transformed

utterances.

ML LSE
preference 48.3% 51.7%
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Fig. 2. Spectral distortion ratio over different numbers of Gaussian
components in the target HMM. (10 ML transforms)

source to target distortion of cross gender conversion is much
larger than that of within gender conversion.

Although the differences are small and are subjectively
imperceptable, distortion is nevertheless consistently lower
in all cases for LSE derived transforms compared to ML
derived transforms. This may be because the use of time-
aligned parallel data in the LSE case allows the evolution
of the spectral vectors to be captured whereas in the ML
case, the spectral evolution is only approximately modelled
by the HMM state transitions. This suggests that improving
the modelling accuracy of the target HMM should improve
the ML transforms.

Fig. 2 shows that increasing the number of Gaussian com-
ponents in the target HMM can reduce the spectral distortion
ratio, however this is limited by data sparsity. Fig. 3 showsthat
when increasing the number of training vectors, the spectral
distortion ratio decreases for both the ML and LSE cases.
Thus, not surprisingly, both methods can benefit from more
training data but the ML method can benefit from having more
target training data even when the source data is limited. This
latter point can be important for applications where there is
a very large amount of data available for the target but only
limited data for the source [21].

TABLE III

The spectral distortion ratios of LSE, parallel ML and non-parallel ML

transforms.

LSE parallel ML non-parallel ML
within gender 65.1% 67.4% 68.0%
cross gender 57.1% 61.8% 61.1%

The above evaluation was conducted using entirely parallel
training data in order to be able to compare the LSE and
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Fig. 3. Spectral distortion ratio for single LSE and ML transforms over
different numbers of training vectors, (a) within gender voice conversion, (b)
cross gender voice conversion.

ML approaches. However, the use of parallel data for the ML
approach may flatter the results compared to what would have
been obtained with truly non-parallel training data. To test
this a further experiment was conducted in which the 120
training utterances for each speaker were divided into two
equal sets. For the LSE estimation, the first 60 utterances of
both source and target speaker were used for training. For
ML estimation, however, the first 60 utterances of the target
speaker were used to train the tied-mixture HMM. Then both
sets of source utterances were used to generate two different
ML transforms: the “parallel” ML transforms, and the “non-
parallel” ML transforms. Since the training data was only
half the size of the previous experiments, only 4 transforms
were estimated in each case. As shown in Table III, the
parallel ML and the non-parallel ML transforms gave very
similar performance, although both are worse than the LSE
transforms. The latter is almost certainly because the target
HMM was badly undertrained with only 60 utterances.

Finally, an example of spectral envelope conversion using
LSE and ML transforms is shown in Fig. 4. Both methods
have converted the source spectral envelope to match the
target, however many spectral details have been lost and this
is a major cause of the spectral distortion. Moreover, listeners
report that overall the converted speech is not high quality
with many artifacts including a muffled effect. In the following
section, these artifacts are analysed and solutions presented.

III. SYSTEM ENHANCEMENT

The converted speech produced by the baseline system
described above will often contain artifacts. This sectiondis-
cusses these artifacts in more detail and describes the solutions
developed to mitigate them.

A. Phase Prediction

As is well known, the spectral magnitude and phase of hu-
man speech are highly correlated. In the baseline system, when
only spectral magnitudes are modified and the original phase

0 5500 11000
−10

−8

−6

−4

−2

frequency (Hz)

lo
g 

sp
ec

tr
um

LSE conversion function

src
lse
tgt

0 5500 11000
−10

−8

−6

−4

−2

frequency (Hz)

lo
g 

sp
ec

tr
um

ML conversion function

src
ml
tgt

Fig. 4. Examples of spectral envelope conversion using ML and LSE
estimated linear transforms. (a) Spectral envelope conversion using LSE
estimated transforms. (b) Spectral envelope conversion using ML estimated
transforms. (dotted line: the source spectral envelope; lighter solid line: the
target spectrum; dark solid line: the converted spectral envelope.)

is preserved, a harsh quality is introduced into the converted
speech. However, to simultaneously model the magnitude and
phase and then convert them both via a single unified transform
is extremely difficult.

Since phase dispersion actually determines waveform shape,
if we can predict the waveform shape based on the spectral
envelope then we can also predict the phases. Inspired by
this idea, the following phase prediction approach has been
developed.

A GMM model is first trained to cluster the target spec-
tral envelopes coded via LSF coefficients intoM classes
(C1, · · · , CM ) such as in the ML estimation. Then for each
target envelopeyt we have a set of posterior probabilities
P (Cm|yt). The vectorP(yt) composed from these probabili-
ties can then be regarded as another form of representation of
the spectral shape,

P(yt) = [P (C1|yt), · · · , P (CM |yt)]
′ (29)

Each elementP (Ci|yt) of this vector can be regarded as
the weight of a codebook entrySi and the set ofM codebook
entries

T = [S1, · · · , SM ] (30)

can be chosen to minimise the coding error over the training
data. That is,T can be chosen to minimize the following least
square error criterion,

E =
N

∑

t=1

(s(t) − T P(yt))
′(s(t) − T P(yt)) (31)

wheres(t) is thet’th speech frame in the target training data
normalized to a certain pitch value, say 100Hz. The standard
solution to equation (31) is then

T =
(

N
∑

t=1

s(t)P(yt)
′

)(

N
∑

t=1

P(yt)P(yt)
′

)

−1

(32)
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Fig. 5. Example of the unwrapped phase spectra generated by minimum
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spectrum. Dark solid line:the phase spectrum generated by phase prediction.
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Having estimatedT from the training data, the waveform
shape of any converted spectral envelope can be predicted as

s̃(t) = T P(x̃t); (33)

The required phases can then be obtained from the predicted
waveform s̃(t) using the analysis routine and pitch-scale
modification algorithm of sinusoidal modelling.

This phase prediction method has been compared with two
other popular phase coding methods: the minimum phase
and the phase codebook approach[19]. The experiments were
conducted as follows. First the original signal was analyzed
using the pitch synchronous sinusoidal model, then the original
phase spectra were replaced by the synthetic phase spectra
generated respectively by the minimum phase method, the
phase codebook method and the phase prediction method.
In our experiments, the number of speech classesM for
each speaker is 64, depending on the number of training
vectors that can be obtained. Additionally, to reduce the
modelling error, the pitch synchronous sinusoidal model used
in our experiments has automatically adjusted the end points
of each pitch period to be positioned at the zero-crossing
points, and each speech frame was normalized by energy
before modelling the phases. Fig. 5 shows an example of the
unwrapped phase spectra generated by the minimum phase
method, phase codebook and the phase prediction method.
Clearly, the phase prediction spectra more closely fits the
target phase spectra. Table IV shows the signal to noise ratio
(SNR) using the above three different phase coding methods.
The phase prediction approach outperforms the other two
approaches and furthermore the improvement in audio quality
is noticeable in listening tests.

TABLE IV

The SNR ratio in dB of three different phase coding methods.

minimum phase codebook phase phase prediction
5.7 12.3 14.4

B. Spectral Refinement

As noted earlier in Fig.4, although the formant structure
of the source speech has been transformed to match the
target, the spectral detail has been lost as a result of reducing
the dimensionality of the envelope representation during the
transform. Another clearly visible effect is the broadening of
the spectral peaks caused, at least in part, by the averaging
effect of the estimation method. All these degradations lead
to muffled effects in the converted speech.

To solve this problem, a straightforward idea is to re-
introduce the lost spectral details to the converted envelopes.
A spectral residual prediction approach has been developedto
do this based on the residual codebook method proposed in
[5], where the codebook is trained using a GMM model.

The log magnitude spectrum of the spectral residualrt is
calculated via

rt = 20log10H(t)sin − 20log10H(t)env (34)

whereH(t)sin is the amplitude contour of the sinusoidal com-
ponents of speech framet andH(t)env is the spectral envelope
represented by the LSF coefficients. In our experiments,rt is
a 100 dimensional vector resampled from the residual contour.
Each spectral residualrt is associated with an LSF vectoryt,
and is therefore associated with a set of posterior probabilities
as in equation (29). Similar to the phase prediction approach,
a residual codebookR = [R1, R2, · · · , RM ] is trained. The
prediction error on the training data is defined as follows,

E =

T
∑

t=1

(rt −RP(yt))
′(rt −RP(yt)) (35)

and the solution toR is

R =
(

T
∑

t=1

rtP(yt)
′

)(

T
∑

t=1

P(yt)P(yt)
′

)

−1

(36)

After the residual codebookR is obtained, the spectral residual
needed to compensate each converted spectral envelope can be
predicted straightforwardly based on the posterior probabili-
ties.

TABLE V

Effect of residual prediction as measured by log spectral distortion ratios

computed over the real spectrum.

within gender cross gender
before RP 74.4% 73.0%
after RP 54.3% 53.8%

Table V shows the log spectral distortion ratio before and
after residual prediction (RP). Here the log spectral distortion
was computed over the real spectrum instead of the spectral
envelope. As can be seen, the use of residual prediction results
in a 20% absolute decrease in the spectral distortion ratio for
both cross and within gender conversions.

As mentioned earlier, transform-based voice conversion
systems have a tendency to broaden the formants in the
converted speech. To mitigate this effect and suppress noise in
the spectral valleys, a further spectral refinement is to apply
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a perceptual filter to the regenerated spectral envelope of all
voiced sounds. The perceptual filter is defined as,

H(ω) =
A(z/β)

A(z/γ)
, 0 < γ < β ≤ 1 (37)

where A(z) is the LPC filter and the choice of parameters
in our system isβ = 1.0 and γ = 0.94. This filter is
popular in speech coding [20] and its more general use in
voice conversion is discussed in [6].

C. Transforming Unvoiced Sounds

Unvoiced sounds contain very little vocal tract information
and their inclusion in the envelope transformation process
results in noticeable degradation. Hence, in common with
other transform-based systems, unvoiced sounds in the base-
line system are simply copied from the source. Many unvoiced
sounds do, however, have some vocal tract colouring and
simply copying the source to the target affects the converted
speech characteristics, especially in cross gender conversion. A
typical effect is the perception of another speaker whispering
behind the target speaker.

Since most unvoiced sounds have no obvious vocal tract
structure and cannot be regarded as short term stationary sig-
nals, their spectral envelopes show large variations. Therefore
it is not effective to convert them using the same solution as
for voiced sounds. However it can be shown empirically that
randomly deleting, replicating and concatenating segments of
the same unvoiced sound does not induce significant artifacts.
This observation suggests a possible solution based on unit
selection and concatenation to transform unvoiced sounds.

In this approach, the target training data is first labelled
using the forced alignment technique mentioned in the ML
estimation scheme, so that each speech frame is given an
HMM state label together with a voiced/unvoiced decision.
All these labels and the target speech frames are then gathered
together into a database.

When a segment of unvoiced speech from the source speaker
needs to be transformed, each frame in the segment is first
labelled with its corresponding HMM state using the same
forced alignment technique. According to the labels, target
unvoiced frames are then chosen from the database using a
criterion that encourages the selection of frames which were
adjacent in the original target data. This is done by succes-
sively selecting the longest matching HMM state sequence.
For example, if the sequence of source labels is “1 1 1 3 3 2
1” , and the longest matching sequence in the target database
is “1 1 1 3” then the speech frames corresponding to this
subsequence are extracted. The procedure then repeats looking
for a match for “3 2 1” and so on until the whole of the
source segment is matched. The extracted target frames are
then concatenated and their amplitudes are modified to match
the original source frames.

IV. EVALUATION OF ENHANCED SYSTEM

In order to test the overall subjective quality of the voice
morphing system, listening tests were conducted to assess both
the perceptual accuracy of the transformation, i.e. does the

transformed source sound like the target speaker, and the audio
quality.

For the former, an ABX-style preference test was performed
whereby a panel of 23 listeners were asked to judge whether
an utterance X sounded closer to utterance A or B in terms
of speaker identity, where X was the converted speech and
A and B were either the source speech or the target speech.
The source and target were chosen randomly from both male
and female speakers. There were 32 transformed utterances
in total, equally split between within-gender and cross-gender
transformations. Table VI gives the percentage of the converted
utterances that were labelled as closer to the target for each
case, where the “baseline system” refers to the system that
only transforms the spectral envelopes and “enhanced system”
refers to the system that integrates all of the refinements
described in section III. The results clearly show that the
enhanced system outperforms the baseline system in terms
of transforming the speaker identity. This is probably mostly
due to the inclusion of the spectral residual which contains
speaker specific information. It is also interesting but perhaps
not surprising to note that almost all the errors occurred inthe
within-gender transformations.

TABLE VI

Results from the ABX test.

baseline system enhanced system
ABX 86.4% 91.8%

To assess speech quality between the baseline system and
the enhanced system, a second preference test was conducted
whereby listeners were presented with pairs of utterances gen-
erated by the baseline system and the new system respectively,
and then listeners were asked to judge which one has the
better speech quality. Table VII indicates that most listeners
prefer the converted speech generated by the enhanced system.
Moreover, as the p-value of this t-test is 0.023, much lower
than the significance level 0.05, the difference between the
enhanced system and the baseline system in Table VII is
statistically significant. This is consistent with the previous ob-
jective evaluations. Although the relative contribution of each
individual refinement is very difficult to measure, informal
tests suggest that the spectral refinement described in Section
III B above contributes the most to quality enhancement.

TABLE VII

Results from the preference test.

baseline system enhanced system
preference 38.9% 61.1%

V. CONCLUSION

This paper has presented a study of voice morphing based
on interpolated linear transformations. The study has focussed
on two main issues. Firstly, a Maximum Likelihood method
of estimating the required transformation functions has been
developed which does not depend on the availability of parallel
training data. Comparative tests have shown that this method
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is equal in performance to least mean square estimators using
parallel data however it is much more flexible. Secondly, the
main causes of artifacts in the converted speech have been
identified as excessive spectral smoothing, unnatural phase
prediction and conversion of unvoiced speech. Solutions to
these problems have been proposed and shown to be effective
using a variety of objective and subjective measures.

Overall, the results show that transform-based voice con-
version can produce the required identity change whilst main-
taining acceptable quality. In particular, the flexibilityof the
ML training technique combined with the described quality
enhancements offer the promise of immediate application in
telephone-based applications such as customising voice output,
novelty voice-messaging, etc.

Nevertheless, there is still considerable scope for further
work. The most serious weakness in the current system is the
prosodic modelling. Shifting and scaling the pitch to match
the mean and variance of the target speaker is only adequate
when the speakers are similar. When the speakers are very
different (e.g. when converting a British English speaker to an
American English speaker), the resulting perception of identity
is ambiguous. Also, although the enhancements described in
this paper give a substantial improvement in overall audio
quality, there is still residual distortion making it unsuitable for
applications where “studio quality” is required in the converted
speech.
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