
USING POMDPS FOR DIALOG MANAGEMENT

Steve Young

Engineering Department, Cambridge University, CB2 1PZ, UK

ABSTRACT

This paper explains how partially observable Markov decision pro-
cesses (POMDPs) can provide a principled mathematical framework
for modelling the inherent uncertainty in spoken dialog systems. It
briefly summarises the basic mathematics and explains why exact
optimisation is intractable. It then describes a form of approxima-
tion called theHidden Information State modelwhich does scale and
which can be used to build practical systems.

Index Terms— statistical dialog modelling; partially observable
Markov decision processes (POMDPs); hidden information state
model

1. INTRODUCTION

The structure of a conventional dialog system is outlined inFig 1(a).
It contains three major components: speech understanding,speech
generation and dialogue management. The speech understanding
component maps user utterances into some abstract representation
of the user’s intended speech actau and the speech generation com-
ponent performs the inverse operation mapping the machine’s re-
sponseam into speech. The dialog manager is fundamentally differ-
ent to the other components in that rather than performing a mapping
function, it is concerned with decision-making with delayed rewards.
Thus, unlike the other components, conventional supervised learning
is not directly applicable to dialog management.

The core of the dialog manager is a data structure which repre-
sents the system’s view of the world in the form of a machine state
sm. This machine state typically encodes an estimate of three dis-
tinct sources of information: the user’s input actãu, an estimate of
the intended user goals̃u

1. and some record of the dialog historys̃d
2

Most conventional dialog managers rely on hand-crafted determinis-
tic rules for interpreting each (noisy) user dialog actãu and updating
the state (see for example theinformation state updateapproach [1]).
Based on each new state estimate, a dialog policy is used to select
an appropriate response in the form of a system speech actam. This
dialog cycle continues until either the user’s goal is satisfied or the
dialog fails.

The designers of such systems have to deal with a number of
problems. Since the user’s statesu is unknown and the decoded in-
putsãu are prone to errors, there is a significant chance thats̃m will
be incorrect. Hence, the dialog manager must include quite com-
plex error recovery procedures. Recognition confidence scores can
reduce the incidence of misunderstandings but these require thresh-
olds to be set which are themselves notoriously difficult to optimise.
Modern recognisers can produce alternative recognition hypotheses

1Examples of user goals are “the need for flight information between Lon-
don and New York”, “the need to find a Chinese restaurant near the centre of
town”, “the desire to order three Pepperoni pizza’s”, etc.

2Since bothau andsu are noisy, the record of dialog history is also noisy,
hence the tilde onsd.

but it is not clear in practice how these can be used effectively. Fi-
nally, the impact of decisons taken by the dialog manager do not
necessarily have an immediate effect, hence dialog optimisation re-
quires forward planning and this is extremely difficult in a determin-
istic framework.

As has been argued previously, taking a statistical approach to
spoken dialog system design provides the opportunity for solving
many of the above problems in a flexible and principled way[2].
Early attempts at using a statistical approach modelled thedialog
system as a Markov decision process (MDP)[3, 4, 5]. MDPs provide
a good statistical framework since they allow forward planning and
hence dialog policy optimisation through reinforcement learning [6].
However, MDPs assume that the entire state is observable. Hence,
they cannot account for either the uncertainty in the user states̃u and
dialog historys̃d, or the uncertainty in the decoded user’s dialog act
ãu.

Speech

Understanding

State

Estimator

Dialog

Policy

Speech

Generation

User

a
m

a
u

a
m

~

s
u

s
d

a
u

~

s
m
=
 <a
u
,
s
u
,
s
d
>
~
 ~
 ~
~

s
m

~

Belief

Estimator

Dialog

Policy

s
d

s
m

~
b()

(a) Conventional
 (b) Probabilistic

a
u

~
1

..

a
u

~
N

a
m

Fig. 1. Structure of a spoken dialog system. Part (a) shows a con-
ventional dialog manager which maintains a single state estimate;
(b) shows a dialog manager which maintains a distribution over all
states and accepts an N-best list of alternative user inputs.

Fig 1(b) shows an alternative model for the dialog management
component in which the uncertainty in the user’s dialog act and the
uncertainty in the machine state are shown explicitly. In this new
model, the state estimator maintains a distribution acrossall states
rather than a point-estimate of the most likely state. The dialog man-
ager therefore tracks all possible dialog paths rather thanjust the
most likely path. The ensuing dialog decision is then based on the
distribution over all dialog states rather than just a specific state. This
allows competing hypotheses to be considered in determining the
machine’s next move and simplifies error recovery since the dialog
manager can simply shift its attention to an alternative hypothesis
rather than trying to repair the existing one.

If the decoded user input act is regarded as an observation, then
the dialog model shown in Fig 1(b) is a Partially Observable MDP
(POMDP)[7]. The distribution over dialog states is called thebelief
stateb and dialog policies are based onb rather than the true un-
derlying state. The key advantage of the POMDP formalism is that

it provides a complete and principled framework for modelling the
inherent uncertainty in a spoken dialog system. Thus, it naturally
accommodates the implicit uncertainty in the estimate of the user’s
goal and the explicit uncertainty in the N-best list of decoded user
acts. Associated with each dialog state is a reward. The choice of
reward function is a dialog design issue, but it will typically provide
positive rewards for satisfying the user’s goal, and negative rewards
for failure and wasting time. As with regular MDPs, dialogueopti-
misation is equivalent to finding a decision policy which maximises
the total reward.

The use of POMDPs for any practical system is, however, far
from straightforward. Firstly, in common with MDPs, the state space
of a practical SDS is very large and if represented directly,it would
be intractable. Secondly, since a belief distributionb over a discrete
states of cardinalityn + 1 lies in a real-valuedn-dimensional sim-
plex, a POMDP is equivalent to an MDP with a continuous state
spaceb ∈ ℜn. Thus, a POMDP policy is a mapping from par-
titions in n-dimensional belief space to actions. Not surprisingly
these are extremely difficult to construct and whilst exact solution
algorithms do exist, they do not scale to problems with more than a
few states/actions.

This paper gives an overview of POMDPs for use in dialog man-
agement and then describes a form of POMDP which can support
very large hierarchical state spaces. This new model is inspired by
the information state approach to dialog system implementation, and
hence it is called the Hidden Information State (HIS) framework
for statistical dialog systems. The HIS model provides a compact
method of state representation based on partitioning, and it allows
efficient policy optimisation by mapping between the full state space
and a much reduced summary space.

2. POMDPS FOR DIALOGUE MANAGEMENT

2.1. POMDP Basics

Formally, a Partially Observable MDP is defined as a tuple
{Sm, Am, T, R, O, Z, λ, b0} whereSm is a set of machine states;
Am is a set of actions that the machine may take;T defines a transi-
tion probabilityP (s′m|sm, am); R defines the expected (immediate,
real-valued) rewardr(sm, am); O is a set of observations;Z defines
an observation probabilityP (o′|s′m, am); λ is a geometric discount
factor0 ≤ λ ≤ 1; andb0 is an initial belief state.

A POMDP operates as follows. At each time-step, the machine
is in some unobserved statesm ∈ Sm. Sincesm is not known
exactly, a distribution over states is maintained called a belief state
such that the probability of being in statesm given belief stateb is
b(sm) 3. Based on the current belief stateb, the machine selects an
actionam ∈ Am, receives a rewardr(sm, am), and transitions to
a new (unobserved) states′m, wheres′m depends only onsm and
am. The machine then receives an observationo′ ∈ O which is
dependent ons′m andam. Finally, the belief distributionb is updated
based ono′ andam as follows:

b
′(s′m) = P (s′m|o′, am, b)

=
P (o′|s′m, am, b)P (s′m|am, b)

P (o′|am, b)

=
P (o′|s′m, am)

P
sm∈Sm

P (s′m|am, b, sm)P (sm|am, b)

P (o′|am, b)

= k · P (o′|s′m, am)
X

sm∈Sm

P (s′m|am, sm)b(sm) (1)

3In other words, a belief state is a vector whose component values give
the probabilities of being in each machine state.

wherek = P (o′|am, b) is a normalisation constant[7]. Maintaining
this belief state as the dialog evolves is calledbelief monitoring.

At each time stept, the machine receives a rewardr(bt, am,t)
based on the current belief statebt and the selected actionam,t. The
cumulative, infinite horizon, discounted reward is called the return
and it is given by:

R =
∞X

t=0

λ
t
r(bt, am,t) =

∞X
t=0

λ
t
X

sm∈Sm

bt(sm)r(sm, am,t). (2)

Each actionam,t is determined by a policyπ(bt) and building a
POMDP system involves finding the policyπ∗ which maximises the
return. Unlike the case of MDPs, the policy is a function of a contin-
uous multi-dimensional variable and hence its representation is not
straightforward. However, it can be shown that the optimal policy
is always piecewise linear and convex in belief space[8]. Hence, it
can be represented by a set ofpolicy vectorswhere each vectorvi is
associated with an actiona(i) ∈ Am andvi(s) equals the expected
value of taking actiona(i) in states. Given a complete set of policy
vectors, the optimal value function and corresponding policy is

V
π∗

(b) = max
i

{vi.b} (3)

and
π
∗(b) = a(argmax

i
{vi.b}). (4)

This representation is illustrated in Fig 2(a) for the case of |Sm| = 2
and a value function requiring just 3 distinct linear segments. The
value function itself is the upper heavy line. The linear segments
divide belief space into 3 regions and the optimal action to take in
each region is the action associated with the uppermost vector in that
region. So for example, ifb < x in Fig. 2, then actiona(1) would
be chosen, ifx < b < y then actiona(2) would be chosen, and so
on.

s
m
=1
 s
m
=2

b

v
1

v
2

v
3

a
(1)

a
(2)
 a
(3)

x
 y

(a)
 s
m
=1
 s
m
=2

b

(b)

a(1)
 a(3)

a(2)

z

Fig. 2. POMDP Value function representation: (a) shows exact rep-
resentation; (b) shows grid-based representation.

The optimal exact value function can be found by working back-
wards from the terminal state in a process calledvalue iteration.
At each iterationt, policy vectors are generated for all possible ac-
tion/observation pairs and their corresponding values arecomputed
in terms of the policy vectors at stept − 1. As t increases, the es-
timated value function converges to the optimal value function from
which the optimal policy can be derived. Many spurious policy vec-
tors are generated during this process, and these can be pruned to
limit the combinatorial explosion in the total number of vectors[7, 9].
Unfortunately, this pruning is itself computationally expensive and
in practice, exact optimisation is not tractable. However,approx-
imate solutions can still provide useful policies. The simplest ap-
proach is to discretise belief space and then use standard MDP op-
timisation methods [6]. Since belief space is potentially very large,
grid points are concentrated on those regions which are likely to be
visited[10, 11]. This is illustrated in Fig 2(b). Each belief point rep-
resents the value function at that point and it will have associated

with it the corresponding optimal action to take. When an action
is required for an arbitrary belief pointb, the nearest belief point is
found and its action is used. This can lead to errors and hencethe
distribution of grid points in belief space is very important. For ex-
ample, in Fig. 2(b), ifb = z thena(3) would be selected although
from Fig. 2(a) it can be seen that the optimal action was actually
a(2).

Grid-based methods are often criticised because they do not
scale well to large state spaces[12]. The HIS model described be-
low avoids the scaling problem by mapping the full belief space into
a much reduced summary space where grid-based approximations
appear to work reasonably well. A popular approach which is inter-
mediate between exact and grid-based methods is to usePoint-based
Value Iteration (PBVI)[12, 13]. This is a hybrid method in which
only a small set of belief points are computed, but a full policy vec-
tor is computed at each point. This allows value functions tobe
interpolated between grid points allowing it to deal with larger state
spaces.

2.2. The SDS POMDP

As discussed in the introduction, when using a POMDP to modela
spoken dialog system, it is natural to factor the machine state into
three componentssm = (su, au, sd) [14]4 The belief stateb is then
a distribution over these three components. The observation o is
the estimate of the user dialog actãu. In the general case this will
be an N-best list of hypothesised user acts, each with an associated
probability, i.e.

o = [(ã1

u, p1), (ã
2

u, p2), . . . , (ã
N
u , pN)] (5)

such thatpn = P (ãn
u|o) for n = 1 . . . N .

The transition function for an SDS-POMDP follows directly by
substituting the factored state into the regular POMDP transition
function and making some reasonable independence assumptions,
i.e.

P (s′m|sm, am) = P (s′u, a
′

u, s
′

d|su, au, sd, am)

= P (s′u|su, am)P (a′

u|s
′

u, am)P (s′d|s
′

u, a
′

u, sd, am) (6)

This is thetransition model. Making similar reasonable indepen-
dence assumptions regarding the observation function gives,

P (o′|s′m, am) = P (o′|s′u, a
′

u, s
′

d, am) = P (o′|a′

u) (7)

This is theobservation model.
The above factoring simplifies the belief update equation since

substituting (6) and (7) into (1) gives

b
′(s′u, a

′

u, s
′

d) =

k · P (o′|a′

u)| {z }
observation

model

P (a′

u|s
′

u, am)| {z }
user action

model

X
su

P (s′u|su, am)| {z }
user goal

model

·
X
sd

P (s′d|s
′

u, a
′

u, sd, am)| {z }
dialog model

b(su, sd) (8)

As shown by the labelling in (8), the probability distribution for a′

u

is called theuser action model. It allows the observation probability
that is conditioned ona′

u to be scaled by the probability that the user

4Note that alternative POMDP formulations can also be used for SDS eg
[15, 16].

would speaka′

u given the goals′u and the last system promptam.
This enables a posterior ranking of N-best recognition output to be
made based on the dialog system’s current beliefs. Theuser goal
modeldetermines the probability of the user goal switching fromsu

to s′u following the system promptam. Finally, thedialog model
enables information relating to the dialog history to be maintained
such as grounding and focus. Fig 3 shows the SDS-POMDP in the
form of a dynamic Bayesian network influence diagram.

The detailed form of the statistical models needed in (8) will
depend on the detailed structure of the dialogue manager. The ob-
servation model will typically be derived directly from theN-best
list output by the recogniser and the associated posterior probabil-
ity of each hypothesis in the list. The user action model depends
on the representation of dialog acts and the user goal. However, it
will usually be some form of discrete distribution with parameters
estimated from dialog corpora. The user goal model is often of lim-
ited concern since for many dialog applications, it can be assumed
that the user will change his/her goal relatively infrequently. Finally,
the dialog model is usually a deterministic encoding based on some
form of grounding model (eg. [17]). It yields probability one when
the updated dialog hypothesis (ie a specific combination ofsu, au

andsd) is consistent with the history and zero otherwise.5 Actual
examples of these probabilistic models will be provided by the HIS
system described below.

s
u

s
d

a
u

n
a
u

~
[]

a
m

r

s
u

s
d

a
u

n
a
u

~
[]

a
m

r

t
 t
+1

Fig. 3. SDS-POMDP dialog framework as a Bayesian Network

2.3. Utilising a Summary Space

In most practical spoken dialog systems, the state space andthe set
of possible user dialog acts are very large. As a result, belief mon-
itoring as in (8) is computationally very expensive and direct policy
optimisation is intractable. In the description of the HIS model be-
low, a method of state partitioning will be described which allows
efficient belief monitoring for practical dialog systems. However,
something rather more aggressive is needed for policy optimisation.

As explained previously, modelling a dialog system as a
POMDP involves maintaining a probability distribution over all pos-
sible machine states. Although very unlikely states can be pruned
away, when performing belief monitoring it is important to maintain
a large spread of states so that the system can recover from misun-
derstandings caused by recognition errors. When performing policy
optimisation, however, the subsequent machine action is likely to
focus on just the most likely states. This suggests maintaining two
coupled state spaces: the full space called themaster state space
and a much simpler space called thesummary state space[18, 19].
The summary state space consists of the top N user goal states(su)
from master space (where N is typically 1 or 2) and a simplifieden-
coding of the user actionau and dialog historysd. The summary

5The dialog model provides a convenient place to incorporateheuristics.

action space consists of a list of high level abstractions ofpossible
machine responses. A dialog turn then consists of first updating the
belief state by evaluating (1) in master space. The updated belief
stateb is then mapped into a summary stateb̂ where an optimised
dialog policy is applied to compute a new summary machine action
âm. The summary machine action is then mapped back into master
space where it is converted to a specific machine dialog actam and
a response is output to the user.

Policy optimisation is also carried out using the coupled spaces.
As with conventional MDPs, there are two main approaches: model-
based and on-line. Model-based optimisation relies entirely on the
system dynamics defined by the models in (7) and (8). Hence, the
system dynamics of the summary POMDP must be first estimated
from the master POMDP using a random policy and sampling. Once
the summary space distributions are known, any grid-based optimi-
sation scheme can be used. In PBVI, for example, a representative
set of belief points is generated by simulating dialogs. Starting from
some initial beliefb0, PBVI stochastically simulates a single turn by
generating each possible machine action and then sampling acorre-
sponding state and observation from the probability models. Each
newly reached belief point is compared to the existing belief points
and if it is sufficiently different it is retained. This is repeated un-
til the desired set of belief points is obtained. Policy optimisation
then utilises a standard dp recursion to iteratively refine the single
policy vector associated with each belief point (see [12] for details).
The use of PBVI and other grid-based approaches to summary space
optimisation is described in more detail in [18, 19].

On-line approaches useQ-learningwhich is conceptually much
simpler. Starting from some initial policy, the system engages with
a user as in normal operation. As with PBVI described above, each
new belief point encountered in summary space is compared with all
existing belief points and if it is sufficiently different itis retained.
Associated with each retained summary space belief pointb̂i is a
function Q(b̂i, âm) whose value is the expected total reward ob-
tained by choosing summary actionâm from statêbi. This function
is estimated either by batch learning or sequentially usingexactly
the same methods as for MDPs (see [6, Ch6/7]). Once theQ values
have been estimated, the policy is found trivially by choosing the ac-
tion which maximises eachQ value. Since even the summary state
space is very large, several thousand dialogs are required for on-line
learning and this is rarely practicable with real users. Hence, user
simulation techniques are typically used instead [20, 21].

3. THE HIDDEN INFORMATION STATE MODEL

The remainder of this paper briefly describes the Hidden Information
State (HIS) model as a specific example of a POMDP-based dialog
framework which does scale to handle real-world applications.

3.1. State Partitioning

The key idea underlying the HIS model is that at any point in a
dialog, most of the possible user goal states have identicalbeliefs
simply because there has been no evidence offered by the userto
distinguish them. Significant computation can therefore besaved by
grouping these states into equivalence classes. The HIS model there-
fore assumes that at any timet, the space of all user goalsSu can be
divided into a number of equivalence classes where the members of
each class are tied together and are indistinguishable. These equiv-
alence classes are calledpartitions. Initially, all statessu ∈ Su are
in a single partitionp0. As the dialog progresses, this root partition

entity → venue(name,type,area) 1.0
type → bar(drinks,music) 0.4
type → restaurant(food,pricerange) 0.3
area = (central|east|west| . . .)
food = (Italian|Chinese| . . .)

Table 1. Example Ontology Rules for fictitious Tourist Information
domain.

is repeatedly split into smaller partitions. This splitting is binary i.e.
p → {p′, p − p′} with probability P (p′|p). Since multiple splits
can occur at each time step, this binary split assumption places no
restriction on the possible refinement of partitions from one turn to
the next. Given that user goal space is partitioned in this way, be-
liefs can be computed based on partitions ofSu rather than on the
individual states ofSu. Initially the belief state is justb0(p0) = 1.
Whenever a partitionp is split, its belief mass is reallocated as,

b(p′) = P (p′|p)b(p) and b(p − p
′) = (1 − P (p′|p))b(p) (9)

Note that this splitting of belief mass is simply a reallocation of ex-
isting mass, it is not a belief update, rather it isbelief refinement.

The space of all user goals is described by a set of simple onto-
logical rules of the form illustrated in Table 1 taken from a fictitious
Tourist Information domain. These rules describe the hierarchical
structure of the data and the specific values which can be assigned to
terminal nodes.6 Since non-terminal nodes can be expanded in dif-
ferent ways, node expansion rules (indicated by a→) have an associ-
ated prior probability corresponding to the partition split probability
p(p′|p) described above.

Partitions of user goal space are represented by a forest of trees
where each tree represents a single partition. This forest of trees
is stored in such a way that no partition is duplicated and thesum
of the probability of all partitions is always unity. At the start of a
dialog, there is just one partition represented by a single root node
with belief mass unity. Each incoming user act is matched against
each partition in turn. If there is no match, the ontology rules are
consulted and the system attempts to create a match by expanding
the tree. This expansion will result in partitions being split and their
belief mass redistributed. This is illustrated in Fig. 4 in which a
partition representing a generic “venue” is split as the result of the
user requesting a “bar”. The original “type” node had a probability
mass of 1.0 and this is redistributed according to the prior in the
corresponding ontology rule, 0.4 to the new partition and 0.6 remains
with the original. If the user subsequently mentioned a “restaurant”,
this remaining mass of 0.6 would be split again.

3.2. Belief Monitoring

Belief monitoring in the HIS model is based on the standard SDS-
POMDP update formula given in (8). However, a further simplifica-
tion can be obtained by defining the duration of a dialog as spanning
the interaction needed to satisfy a single goal. This results in the user
goal model simplifying trivially to a delta function

P (s′u|su) = δ(s′u, su). (10)

6It should be noted that apart from the database itself, thereis no other
application dependent data or code in a HIS dialog manager.

request(bar)

1.0

name
 type
 area

entity

venue

name
 area

entity

drinks
 music
bar

type

0.4

0.6

venue

Fig. 4. Illustration of Partition Splitting

Substituting (9) and (10) into (8) gives the belief update equation for
the HIS model

b
′(p′

, a
′

u, s
′

d) =

k · P (o′|a′

u)| {z }
observation

model

P (a′

u|p
′
, am)| {z }

user action
model

·
X
sd

P (s′d|p
′
, a

′

u, sd, am)| {z }
dialog model

P (p′|p)b(p, sd)| {z }
belief refinement

(11)

wherep is the parent ofp′. Thus, there is now just one summa-
tion required for each distinct belief point. Since many dialog hy-
potheses have very low probability and can therefore be pruned, it
is simplest to ignore this summation and just compute all possible
dialog hypotheses associated with eachp and then merge those with
a commonsd.

3.3. The HIS Model Dialogue Cycle

The overall operation of the prototype HIS system is summarised in
Fig. 5. Each user utterance is decoded into an N-best list of dialog
acts. Each incoming act plus the previous system act are matched
against the forest of user goals and partitions are split as needed.
Each user actau is then duplicated and bound to each partitionp.
Each partition will also have a set of dialog historiessd associated
with it. The combination of eachp, au and updatedsd forms a new
dialog hypothesishk whose beliefs are evaluated using (11).

Once all dialog hypotheses have been evaluated and any du-
plicates merged, the master belief stateb is mapped into summary
spacêb and the nearest policy belief point is found. The associated
summary space machine actionâm is then mapped back to master
space and the machine’s actual responseam is output. The cycle
then repeats until the user’s goal is satisfied.

3.4. Component Models

The current HIS system computes the required probabilitiesas fol-
lows. Firstly, since the observation is an N-best list of user acts, the
observation probabilityP (o|au) can be approximated bypi where
au = ãi

u (see (5)) i.e. the posterior probability of the N-best list
element corresponding toau.

1

Observation

From

User

Ontology Rules

2

N

u
a

m
a

~

From

System

1

1

2

2

2

1

d
s

2

d
s

1

d
s

2

d
s

3

d
s

1

u
p

2

u
p

3

u
p

POMDP

Policy

2
h

3
h

4
h

5
h

1
h

1

2

2

2

1
p

2
p

3
p

~
a
u

~
a
u

~
a
u

~
a
u

~
a
u

~
a
u

~
a
u

Belief

State

Application Database

Action

Refinement

(heuristic)

m
a
̂

Strategic

Action

Specific

Action

Map to

Summary

Space

m
a

b

b
^

Summary Space

Fig. 5. Overview of Prototype HIS Dialogue Manager

User dialog acts take the formact(a = v) whereact is the
dialog type,a is an attribute andv is its value [for example,re-
quest(food=chinese)], the user action model is then approximated
by

P (a′

u|p
′
, am) ≈ P (T (a′

u)|T (am))P (M(a′

u)|p′) (12)

whereT (·) denotes thetype of the dialog act andM(·) denotes
whether or not the dialog actmatchesthe current partitionp′. The
first term on the RHS of (12) is estimated from a dialog corpus,the
second term is set to1 if the act matches and zero otherwise. As
noted earlier, the dialog modelP (s′d|p

′, a′

u, sd, am) is set to 1 ifs′d
is consistent withp′, a′

u, sd, am and 0 otherwise.

3.5. Summary Space Mapping and Policy Optimisation

In the current HIS system, a belief point in summary state space is
a hybrid of continuous probability values and discrete variables. It
consists of the probability of the 1st and 2nd best dialog hypotheses;
the type of the user actau associated with the most likely state; a
summary status of the top partition (initial, partly expanded, unique
state, etc) and a summary of the dialog history of the top hypothesis
(initial, partly grounded, fully grounded, etc). The distance metric
to compare two dialog points strongly encourages discrete compo-
nents to match exactly by returning a large distance if any discrete
component differs, and a smaller Euclidean distance between the
continuous components. The summary action set consists of strate-
gic actions such asgreet, request, implicit confirm, explicit confirm,
submit, inform, hangup, etc. These are mapped back to master space
by assuming they operate on the most likely hypothesis and the de-
tailed dialog history maintained in master space enables the selec-
tion of appropriate attributes and values. For example, if the sum-
mary action isimplicit confirm, the system uses the dialog history
to identify an unconfirmed node and a required node from the top
hypothesis and then combines these to generate a response such as
impconfirm(venue=restaurant,food=?)(i.e. “You want a restaurant.
What kind of food would you like?”).

Policy optimisation currently utilises on-line batch Q-learning
using an external user simulator and anǫ-greedy policy (i.e. the
dialog manager follows its current best policy except that with prob-
ability ǫ it substitutes a random action). Learning follows classical
Monte Carlo policy iteration. The current policy is held constant for
5000 dialogues whilst the Q-values associated with each summary

space belief point are updated, the accumulated Q values arethen
used to generate a new policy, and the cycle repeats until theaverage
reward stabilises.

4. CONCLUSIONS

This paper has argued that partially observable Markov decision pro-
cesses (POMDPs) provide a principled mathematical framework for
modelling the inherent uncertainty in spoken dialog systems. The
three key ideas underlying this use of POMDPs are firstly thatby
maintaining a distribution over all possible machine states, it is pos-
sible to accumulate multiple tracks of possibly conflictingevidence.
Secondly, by treating the recognition output as an observation from
which the dialog state can be inferred, it is possible to weight the un-
derstanding component’s confidence in each recognised useract with
the probability of that act given the current dialog state. Thirdly, by
casting the system as a Markov process it is possible to defineand
optimise a control policy to automatically maximise a desired reward
function. Thus, the use of POMDPs for dialog offers, in principle at
least, more robust dialogs, reduced need for manual tuning,applica-
tion independence and the ability to adapt on-line.

The direct implementation of a POMDP leads to a system which
is computationally intractable. However, this can be overcome by
applying two simple refinements. Firstly, states can be grouped into
partitions and beliefs can be based on these partitions. As long as
partitions can be split on demand during the dialog, this causes no
loss of accuracy but greatly reduces the computational requirements
for belief monitoring. Secondly, the complex state/actionspace of a
practical real world dialog system can be mapped into a much sim-
pler summary space which focuses on just the top 1 or 2 machine
state hypotheses. Since the majority of machine responses would re-
fer to these hypotheses anyway, policy optimisation in thisreduced
summary space can be just as effective as optimisation in themaster
space whilst avoiding the complexity problems inherent in the latter.

Finally, a practical system based on these principles has been
briefly described called the Hidden Information State system. The
HIS system has been implemented for a tourist information domain
and apart from a set of ontology rules it has no application specific
code, and it was trained entirely from data. Having established a
viable framework, the challenge now is to demonstrate that the po-
tential of POMDPs can be translated into competitive spokendialog
systems.

5. ACKNOWLEDGEMENTS

Many of the ideas presented in this paper arose from discussions
with colleagues and students in the Machine Intelligence Laboratory
at the Cambridge University Engineering Department. In particu-
lar, Jason Williams contributed significantly to the development of
POMDPs and Jost Schatzmann to the development of User Models
and User Simulation. Some of the work described in this paperwas
supported by the EU Framework 6 TALK Project.

6. REFERENCES

[1] S Larsson and D Traum, “Information State and Dialogue Management
in the TRINDI Dialogue Move Engine Toolkit,”Natural Language
Engineering, pp. 323–340, 2000.

[2] SJ Young, “Talking to Machines (Statistically Speaking),” in Int Conf
Spoken Language Processing, Denver, Colorado, 2002.

[3] E Levin, R Pieraccini, and W Eckert, “Using Markov Decision Pro-
cesses For Learning Dialogue Strategies,” inProc Int Conf Acoustics,
Speech and Signal Processing, Seattle,USA, 1998.

[4] E Levin, R Pieraccini, and W Eckert, “A Stochastic Model of Human-
Machine Interaction for Learning Dialog Strategies,”IEEE Trans
Speech and Audio Processing, vol. 8, no. 1, pp. 11–23, 2000.

[5] SJ Young, “Probabilistic Methods in Spoken Dialogue Systems,”
Philosophical Trans Royal Society (Series A), vol. 358, no. 1769, pp.
1389–1402, 2000.

[6] RS Sutton and AG Barto,Reinforcement Learning: An Introduction,
Adaptive Computation and Machine Learning. MIT Press, Cambridge,
Mass, 1998.

[7] LP Kaelbling, ML Littman, and AR Cassandra, “Planning and Acting
in Partially Observable Stochastic Domains,”Artificial Intelligence,
vol. 101, pp. 99–134, 1998.

[8] EJ Sondik,The Optimal Control of Partially Observable Markov De-
cision Processes, Phd, Stanford University, 1971.

[9] ML Littman, “The Witness Algorithm: solving partially observable
Markov decision processes,” Tech. Rep., Brown University,December
1994 1994.

[10] RI Brafman, “A Heuristic Variable Grid Solution Methodfor
POMDPs,” inAAAI, Cambridge, MA, 1997.

[11] B Bonet, “An e-Optimal Grid-based Algorithm for Partially Observ-
able Markov Decision Processes,” inProceedings of the Nineteenth
International Conference on Machine Learning(ICML 2002),, Sydney,
Australia, 2002.

[12] J Pineau, G Gordon, and S Thrun, “Point-based value iteration: An
anytime algorithm for POMDPs,” inProc Int Joint Conference on AI
(IJCAI), Acapulco, Mexico, 2003, pp. pp1025–1032.

[13] MTJ Spaan and N Vlassis, “Perseus: randomized point-based value it-
eration for POMDPs,” Tech. Rep., Universiteit van Amsterdam, 2004.

[14] JD Williams, P Poupart, and SJ Young, “Factored Partially Observ-
able Markov Decision Processes for Dialogue Management,” in 4th
Workshop on Knowledge and Reasoning in Practical Dialogue Sys-
tems, Edinburgh, 2005.

[15] N Roy, J Pineau, and S Thrun, “Spoken Dialogue Management Using
Probabilistic Reasoning,” inProceedings of the ACL 2000, 2000.

[16] B Zhang, Q Cai, J Mao, and B Guo, “Planning and Acting under
Uncertainty: A New Model for Spoken Dialogue System,” inProc
17th Conf on Uncertainty in AI, Seattle, 2001.

[17] D Traum, “Computational Models of Grounding in Collaborative Sys-
tems,” in Working Papers of the AAAI Fall Symposium on Psycho-
logical Models of Communication in Collaborative Systems, 1999, pp.
124–131.

[18] JD Williams and SJ Young, “Scaling up POMDPs for Dialogue Man-
agement: the Summary POMDP Method,” inIEEE workshop on Au-
tomatic Speech Recognition and Understanding (ASRU2005), Puerto
Rico, 2005.

[19] JD Williams and SJ Young, “Scaling POMDPs for dialog management
with composite summary point-based value iteration (CSPBVI),” in
AAAI Workshop on Statistical and Empirical Approaches for Spoken
Dialogue Systems, Boston, 2006.

[20] K Scheffler and SJ Young, “Automatic Learning of Dialogue Strat-
egy using Dialogue Simulation and Reinforcement Learning,” in HLT
2002, San Diego, USA, 2002.

[21] J Schatzmann, K Georgila, and SJ Young, “Quantitative Evaluation
of User Simulation Techniques for Spoken Dialogue Systems,” in 6th
SIGdial Workshop on DISCOURSE and DIALOGUE, Lisbon, 2005.

