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ABSTRACT

This paper explains how partially observable Markov decigro-
cesses (POMDPs) can provide a principled mathematicakfnark
for modelling the inherent uncertainty in spoken dialogteyss. It

briefly summarises the basic mathematics and explains wagt ex

optimisation is intractable. It then describes a form ofraggna-
tion called theHidden Information State modehich does scale and
which can be used to build practical systems.

Index Terms— statistical dialog modelling; partially observable

Markov decision processes (POMDPs); hidden informatiatest
model

1. INTRODUCTION

The structure of a conventional dialog system is outlinefignl(a).
It contains three major components: speech understansip@gch

generation and dialogue management. The speech undéngtand

component maps user utterances into some abstract refatizen

of the user’s intended speech agtand the speech generation com-

ponent performs the inverse operation mapping the machiee’

sponseu., into speech. The dialog manager is fundamentally differ-

ent to the other components in that rather than performing@ping
function, itis concerned with decision-making with deldyewards.
Thus, unlike the other components, conventional supetvesning
is not directly applicable to dialog management.

The core of the dialog manager is a data structure which repre

sents the system’s view of the world in the form of a machiagest

sm. This machine state typically encodes an estimate of thiee d

tinct sources of information: the user’s input &gt, an estimate of
the intended user goal,*. and some record of the dialog histcry?
Most conventional dialog managers rely on hand-craftedrdghis-
tic rules for interpreting each (noisy) user dialog @actand updating
the state (see for example timtormation state updatapproach [1]).

Based on each new state estimate, a dialog policy is usedettt se

an appropriate response in the form of a system speeceh,acthis
dialog cycle continues until either the user’s goal is $atisor the
dialog fails.

but it is not clear in practice how these can be used effdgtiVe-
nally, the impact of decisons taken by the dialog managerato n
necessarily have an immediate effect, hence dialog optiors re-
quires forward planning and this is extremely difficult inetefmin-
istic framework.

As has been argued previously, taking a statistical approac
spoken dialog system design provides the opportunity forirsp
many of the above problems in a flexible and principled way[2]
Early attempts at using a statistical approach modelledlifieg
system as a Markov decision process (MDP)[3, 4, 5]. MDPsideov
a good statistical framework since they allow forward plagrand
hence dialog policy optimisation through reinforcemeatteng [6].
However, MDPs assume that the entire state is observablecele
they cannot account for either the uncertainty in the useest, and
dialog historys,, or the uncertainty in the decoded user’s dialog act
Aoy -
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Fig. 1. Structure of a spoken dialog system. Part (a) shows a con-
ventional dialog manager which maintains a single statienast;

(b) shows a dialog manager which maintains a distributicer @
states and accepts an N-best list of alternative user inputs

Fig 1(b) shows an alternative model for the dialog managémen
component in which the uncertainty in the user’s dialog act the
uncertainty in the machine state are shown explicitly. lis tiew
model, the state estimator maintains a distribution acatisstates

The designers of such systems have to deal with a number @hther than a point-estimate of the most likely state. Thédiman-

problems. Since the user’s statgis unknown and the decoded in-

putsa,, are prone to errors, there is a significant chanceghauvill
be incorrect. Hence, the dialog manager must include quoite-c
plex error recovery procedures. Recognition confidencessotan
reduce the incidence of misunderstandings but these eetiuigsh-
olds to be set which are themselves notoriously difficultgtiroise.
Modern recognisers can produce alternative recognitigrotheses

1Examples of user goals are “the need for flight informatiomien Lon-
don and New York”, “the need to find a Chinese restaurant reacéntre of
town”, “the desire to order three Pepperoni pizza’s”, etc.

2Since bothu,, ands,, are noisy, the record of dialog history is also noisy,

hence the tilde org.

ager therefore tracks all possible dialog paths rather phsinthe
most likely path. The ensuing dialog decision is then bagethe
distribution over all dialog states rather than just a dpesiate. This
allows competing hypotheses to be considered in determithia
machine’s next move and simplifies error recovery since talpg
manager can simply shift its attention to an alternativeotlypsis
rather than trying to repair the existing one.

If the decoded user input act is regarded as an observatien, t
the dialog model shown in Fig 1(b) is a Partially Observabie
(POMDP)[7]. The distribution over dialog states is callbdbelief
stateb and dialog policies are based érrather than the true un-
derlying state. The key advantage of the POMDP formalisrhas t



it provides a complete and principled framework for moagjlthe
inherent uncertainty in a spoken dialog system. Thus, itirady

accommodates the implicit uncertainty in the estimate efuser’s
goal and the explicit uncertainty in the N-best list of demtbdiser
acts. Associated with each dialog state is a reward. Thecelafi
reward function is a dialog design issue, but it will typlggirovide

positive rewards for satisfying the user’s goal, and negagwards
for failure and wasting time. As with regular MDPs, dialoguti-

misation is equivalent to finding a decision policy which rinaises
the total reward.

wherek = P(o'|am, b) is a normalisation constant[7]. Maintaining
this belief state as the dialog evolves is calbedief monitoring

At each time step, the machine receives a rewaft(b;, am,+)
based on the current belief stéteand the selected actian,,:. The
cumulative, infinite horizon, discounted reward is callbd return
and it is given by:

R Z)\rbt,amt
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The use of POMDPs for any practical system is, however, faEach actiona,, ; is determined by a policy-(b;) and building a

from straightforward. Firstly, in common with MDPs, thetstapace
of a practical SDS is very large and if represented direittiypuld

be intractable. Secondly, since a belief distributhoover a discrete
states of cardinalityn + 1 lies in a real-valuea-dimensional sim-

POMDP system involves finding the poliay which maximises the
return. Unlike the case of MDPs, the policy is a function obatin-
uous multi-dimensional variable and hence its represienté not
straightforward. However, it can be shown that the optiraicy

plex, a POMDP is equivalent to an MDP with a continuous statgs always piecewise linear and convex in belief space[8]ndde it

spaceb € R".
titions in n-dimensional belief space to actions. Not sigipgly
these are extremely difficult to construct and whilst exattition
algorithms do exist, they do not scale to problems with mbaa ta
few states/actions.

This paper gives an overview of POMDPs for use in dialog man-

Thus, a POMDP policy is a mapping from par- can be represented by a sepolicy vectorsvhere each vectay; is

associated with an actian(i) € A,, andv;(s) equals the expected
value of taking actiom(7) in states. Given a complete set of policy
vectors, the optimal value function and correspondingcpal

V™ (b) = max {v;.b} 3)

agement and then describes a form of POMDP which can support

very large hierarchical state spaces. This new model isretpy

the information state approach to dialog system implentiemtzand

hence it is called the Hidden Information State (HIS) frarodw
for statistical dialog systems. The HIS model provides amach
method of state representation based on partitioning, taaltbivs

efficient policy optimisation by mapping between the fudltstspace
and a much reduced summary space.

2. POMDPS FOR DIALOGUE MANAGEMENT

2.1. POMDP Basics

Formally, a Partially Observable MDP is defined as a tuplg =1

{Sm,Am, T, R, 0, Z, X\, bo} whereS,, is a set of machine states;
A,, is a set of actions that the machine may takelefines a transi-

tion probability P(s),|sm, am); R defines the expected (immediate,

real-valued) reward(sn,, am); O is a set of observationg defines
an observation probability?(o’|s},, , a); X is a geometric discount
factor0 < X\ < 1; andby is an initial belief state.

A POMDP operates as follows. At each time-step, the machine

is in some unobserved statg, € S,,. Sinces,, is not known
exactly, a distribution over states is maintained calle@léebstate
such that the probability of being in statg, given belief state is
b(sm) 3. Based on the current belief stdtethe machine selects an
actiona,, € An, receives a reward(s, am ), and transitions to
a new (unobserved) statg,, wheres,, depends only o, and
am. The machine then receives an observatibne O which is
dependent os!,, anda.,,. Finally, the belief distributiow is updated
based o’ anda,, as follows:

V(sm) = P(smlo’,am,b)
P(0'|sp, @m, b)P(si|am, b)
P(0'|am,b)
P(0'|sh,, am) > e S P(spp|am, b, 8m)P(sm|am,b)

P(o'|am, b)
k- P08, am) Z P(8m|am, 8m)b(sm)

SmE€Sm,

@)

3In other words, a belief state is a vector whose componenesative
the probabilities of being in each machine state.

and 4)
This representation is illustrated in Fig 2(a) for the calsESe, | = 2
and a value function requiring just 3 distinct linear segteehe
value function itself is the upper heavy line. The linearrsegts
divide belief space into 3 regions and the optimal actiorate@tin
each region is the action associated with the uppermostvecthat
region. So for example, # < z in Fig. 2, then actior(1) would
be chosen, ift < b < y then actionz(2) would be chosen, and so
on.

7" (b) = a(argl?ax {v;.b}).

(@)

i

Fig. 2. POMDP Value function representation: (a) shows exact rep-
resentation; (b) shows grid-based representation.
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The optimal exact value function can be found by working back
wards from the terminal state in a process calNatlie iteration
At each iteratiort, policy vectors are generated for all possible ac-
tion/observation pairs and their corresponding valuesaneputed
in terms of the policy vectors at stép— 1. Ast increases, the es-
timated value function converges to the optimal value fiomctrom
which the optimal policy can be derived. Many spurious poliec-
tors are generated during this process, and these can bedptoin
limit the combinatorial explosion in the total number of tars[7, 9].
Unfortunately, this pruning is itself computationally expive and
in practice, exact optimisation is not tractable. Howewegprox-
imate solutions can still provide useful policies. The diesp ap-
proach is to discretise belief space and then use standaid &>
timisation methods [6]. Since belief space is potentiabiywarge,
grid points are concentrated on those regions which arby ltkebe
visited[10, 11]. This is illustrated in Fig 2(b). Each bélgint rep-
resents the value function at that point and it will have eisded



with it the corresponding optimal action to take. When arnoact
is required for an arbitrary belief poibt the nearest belief point is
found and its action is used. This can lead to errors and hirece
distribution of grid points in belief space is very importafor ex-
ample, in Fig. 2(b), it = z thena(3) would be selected although
from Fig. 2(a) it can be seen that the optimal action was #gtua
a(2).

would speaka., given the goak’, and the last system prompt,,.

This enables a posterior ranking of N-best recognition watutp be
made based on the dialog system’s current beliefs. &gz goal
modeldetermines the probability of the user goal switching fram

to s, following the system prompt.,,. Finally, thedialog model
enables information relating to the dialog history to benteined
such as grounding and focus. Fig 3 shows the SDS-POMDP in the

Grid-based methods are often criticised because they do ndbrm of a dynamic Bayesian network influence diagram.

scale well to large state spaces[12]. The HIS model destiiige
low avoids the scaling problem by mapping the full beliefcpato

The detailed form of the statistical models needed in (8) wil
depend on the detailed structure of the dialogue manages.oibh

a much reduced summary space where grid-based approxisatioservation model will typically be derived directly from tibest

appear to work reasonably well. A popular approach whichtisri
mediate between exact and grid-based methods is tBaisebased
Value lIteration (PBVI12, 13]. This is a hybrid method in which
only a small set of belief points are computed, but a full poliec-
tor is computed at each point. This allows value functionddo
interpolated between grid points allowing it to deal wittgler state
spaces.

2.2. The SDS POMDP

As discussed in the introduction, when using a POMDP to madel
spoken dialog system, it is natural to factor the machinte stdo
three components,, = (s, a., sa) [14]* The belief staté is then

a distribution over these three components. The observatis
the estimate of the user dialog &ct. In the general case this will
be an N-best list of hypothesised user acts, each with arciasso
probability, i.e.

(@ ,pn)] 5)

o = [(&11“])1),(&37]?2),...,

such thap, = P(ay|o)forn=1...N.

The transition function for an SDS-POMDP follows directly b
substituting the factored state into the regular POMDPsitam
function and making some reasonable independence assms\pti
ie.

P(Slm|5’m7a’m) = P(S;va;aslﬂsuyauasdaam)

P(S;|Su7am)P(aiL'S;uam)P(S/d|S;7a;7sd7am) (6)

This is thetransition model Making similar reasonable indepen-
dence assumptions regarding the observation functiors give
P(o'lay)  (7)

P(0 |51y, am) = P(0|sy, aly, 84, am) =

This is theobservation model
The above factoring simplifies the belief update equationesi
substituting (6) and (7) into (1) gives

b (s, au, 82) =

k - P(lay)  Playlsi,am) > P(s4]su, am)
W—_’ ~— < ~ ~~ <
observation  user action user goal
model model model
S P(silsh,dlsaam)  b(su.sa) ()

o dialog model

As shown by the labelling in (8), the probability distriburtifor a.,
is called theuser action modellt allows the observation probability

list output by the recogniser and the associated posterayail-
ity of each hypothesis in the list. The user action model ddpe
on the representation of dialog acts and the user goal. Hawiv
will usually be some form of discrete distribution with paraters
estimated from dialog corpora. The user goal model is offdime
ited concern since for many dialog applications, it can siaed
that the user will change his/her goal relatively infregberinally,
the dialog model is usually a deterministic encoding basedame
form of grounding model (eg. [17]). It yields probability @mvhen
the updated dialog hypothesis (ie a specific combinatios,0fa.,,
ands,) is consistent with the history and zero otherwiséctual
examples of these probabilistic models will be providedHtsy 1S
system described below.

Fig. 3. SDS-POMDP dialog framework as a Bayesian Network

2.3. Utilising a Summary Space

In most practical spoken dialog systems, the state spactharsbt
of possible user dialog acts are very large. As a resultebeibn-
itoring as in (8) is computationally very expensive and clifgolicy
optimisation is intractable. In the description of the HISdal be-
low, a method of state partitioning will be described whidlowas
efficient belief monitoring for practical dialog systems.owtver,
something rather more aggressive is needed for policy dgdiion.
As explained previously, modelling a dialog system as a
POMDP involves maintaining a probability distribution oedl pos-
sible machine states. Although very unlikely states canrbequ
away, when performing belief monitoring it is important taimtain
a large spread of states so that the system can recover freammi
derstandings caused by recognition errors. When perfaymaticy
optimisation, however, the subsequent machine actiorkédylito
focus on just the most likely states. This suggests maiinigitwo
coupled state spaces: the full space calledrtaster state space
and a much simpler space called thanmary state spafi3, 19].
The summary state space consists of the top N user goal étajes

that is conditioned on/, to be scaled by the probability that the user from master space (where N is typically 1 or 2) and a simpliéied

4Note that alternative POMDP formulations can also be use8HS eg
[15, 16].

coding of the user action,, and dialog historys;. The summary

5The dialog model provides a convenient place to incorpdrateistics.



action space consists of a list of high level abstractiongassible entity —  venue(name,type,area) 1.0

machine responses. A dialog turn then consists of first imgittie type  —  bar(drinks,music) 0.4

belief state by evaluating (1) in master space. The updatéidfb type  — restaurant(food,pricerange) 0.3
A area = (centraasiwest...)

stateb is then mapped into a summary statevhere an optimised . ;
dialog policy is applied to compute a new summary machinemact food (ItaliariChinesg. . .)
am. The summary machine action is then mapped back into mastéiable 1. Example Ontology Rules for fictitious Tourist Information
space where it is converted to a specific machine dialog.acdnd  domain.
aresponse is output to the user.

Policy optimisation is also carried out using the couplegcgs. | . . ) o .
As with conventional MDPs, there are two main approachesigho 'S repeafedly SQ“t Into smaller_partltlor)s. This spliiis binary i.e.
based and on-line. Model-based optimisation relies dptie the ~ ? — {P';p — p'} with probability P(p’[p). Since multiple splits
system dynamics defined by the models in (7) and (8). Henee, tHca@n occur at each time step, this binary split assumptioceplao
system dynamics of the summary POMDP must be first estimateffStriction on the possible refinement of partitions frone aurn to
from the master POMDP using a random policy and samplingeOnctn€ next. Given that user goal space is partitioned in thig we-
the summary space distributions are known, any grid-bagtiche ~ /€fS can be computed based on partitionsSofrather than on the
sation scheme can be used. In PBVI, for example, a reprdsenta ndividual states of5,,. Initially the belief state is jusko(po) = 1.
set of belief points is generated by simulating dialogsrt®Big.from Whenever a patrtitiop is split, its belief mass is reallocated as,
some initial beliebo, PBVI stochastically simulates a single turn by , , , ,
generating each possible machine action and then samptioge: b(p’) = P(p'lp)b(p) and b(p —p) = (1 = P(p'[p))b(p) ~ (9)
sponding state and observation from the probability modEksch
newly reached belief point is compared to the existing b@lnts  Note that this splitting of belief mass is simply a realléoatof ex-
and if it is sufficiently different it is retained. This is regted un- sting mass, it is not a belief update, rather ibaief refinement
til the d.eS'red set of belief points IS obta_med._ Policy “F"“"?‘“O” The space of all user goals is described by a set of simple onto
the_n utilises a stan_dard dp recursion _to |te_rat|ve|y reﬁmestmgle logical rules of the form illustrated in Table 1 taken fromatifious
policy vector assaciated W'th.eaCh belief point (see [1PHketails). Tourist Information domain. These rules describe the hidiaal
The use of PBVI and other grid-based approaches to summacg sp structure of the data and the specific values which can bgreesto

optlmlsa_tlon is described in more _detall n [;8’ 19]. terminal node$. Since non-terminal nodes can be expanded in dif-

. On-line approaches u@lge_lr_nlngw_hlch is conceptually m_uch ferent ways, node expansion rules (indicated by)have an associ-
simpler. Starting from some initial policy, the system eg@@with 5104 prior probability corresponding to the partition sptbbability
a user as in normal operation. As with PBVI described aboaeh e p(p'|p) described above.
new belief point encountered in summary space is compardalli .
existing belief points and if it is sufficiently differentig retained. Partitions of user goal space are repre;;ented b)_/ a foresianf 1
Associated with each retained summary space belief piis a yvhere ea_ch tree represents a S'”g'? partition. _Th's forfesEes

. P . is stored in such a way that no partition is duplicated andstiva

function Q(b;, &m) whose value is the expectgd total reward ob- of the probability of all partitions is always unity. At théast of a
tained by choosing summary actiap, from stateb;. This function  gia|og, there is just one partition represented by a singi node
is estimated either by batch learning or sequentially usi@ctly  with belief mass unity. Each incoming user act is matchednaga
the same methods as for MDPs (see [6, Ch6/7]). Once&thalues  gach partition in turn. If there is no match, the ontologyesubire
have been estimated, the policy is found trivially by chogshe ac-  consulted and the system attempts to create a match by érgand
tion which maximises eaof value. Since even the summary state the tree. This expansion will result in partitions beingtsphd their
space is very large, several thousand dialogs are requir@hfline  pelief mass redistributed. This is illustrated in Fig. 4 ihigh a
learning and this is rarely practicable with real users. déemiser  partition representing a generic “venue” is split as theiltesf the

simulation techniques are typically used instead [20, 21]. user requesting a “bar”. The original “type” node had a phility
mass of 1.0 and this is redistributed according to the prothie
3. THE HIDDEN INFORMATION STATE MODEL corresponding ontology rule, 0.4 to the new partition afd-@mains

with the original. If the user subsequently mentioned at&esant”,

The remainder of this paper briefly describes the Hidderringion ~ tiS remaining mass of 0.6 would be split again.

State (HIS) model as a specific example of a POMDP-basedgdialo
framework which does scale to handle real-world applicegio

3.2. Belief Monitoring
3.1. State Partitioning Belief monitoring in the HIS model is based on the standar&SD
The key idea underlying the HIS model is that at any point in aPOMDP update formula given in (8). However, a further sirfigzd-
dialog, most of the possible user goal states have idertigledfs  tion can be obtained by defining the duration of a dialog asrsipg
simply because there has been no evidence offered by theiauserthe interaction needed to satisfy a single goal. This resuthe user
distinguish them. Significant computation can thereforeded by  goal model simplifying trivially to a delta function
grouping these states into equivalence classes. The Hi8Iriete-
fore assumes that at any timethe space of all user goats, can be P(sL|50) = 6(s, 5) (10)
divided into a number of equivalence classes where the menatbe wio w o
each class are tied together and are indistinguishableseTéguiv-
alence classes are callpdrtitions Initially, all statess,, € S, are 81t should be noted that apart from the database itself, tisene other
in a single partitiorpy. As the dialog progresses, this root partition application dependent data or code in a HIS dialog manager.




entity

Fig. 4. lllustration of Partition Splitting

Substituting (9) and (10) into (8) gives the belief updataagipn for
the HIS model
b,(p/7 a’:J‘? Sil) =
k P(o'|ay,)  P(aulp’, am)
N—_—— N——_———

observation  user action
model model

> P(salp’,al, sa,am)  P(p'lp)b(p,sa) (1)

dialog;model

belief refinement

wherep is the parent ofy’. Thus, there is now just one summa-
tion required for each distinct belief point. Since manylatjghy-
potheses have very low probability and can therefore beqofhuit

is simplest to ignore this summation and just compute albibbs
dialog hypotheses associated with ep@nd then merge those with
a commons,.

3.3. The HIS Model Dialogue Cycle

The overall operation of the prototype HIS system is sumsearin
Fig. 5. Each user utterance is decoded into an N-best lisiatdgl
acts. Each incoming act plus the previous system act arehetatc
against the forest of user goals and partitions are splitezsied.
Each user act,, is then duplicated and bound to each partition
Each partition will also have a set of dialog historigsassociated
with it. The combination of each, a., and updated, forms a new
dialog hypothesi& whose beliefs are evaluated using (11).
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Fig. 5. Overview of Prototype HIS Dialogue Manager

User dialog acts take the foraxt(a = v) whereact is the
dialog type,a is an attribute and is its value [for examplere-
quest(food=chinesg) the user action model is then approximated
by

P(aulp’, am) = P(T(a,)|T (am))P(M(ay)lp')  (12)

where 7 (-) denotes theype of the dialog act and\((-) denotes
whether or not the dialog aetatcheshe current partitionp’. The
first term on the RHS of (12) is estimated from a dialog corpioes,
second term is set to if the act matches and zero otherwise. As
noted earlier, the dialog modél(s)|p’, a,, s4, am) is set to 1 ifs,

is consistent withy’, a’,, s4, am and O otherwise.

3.5. Summary Space Mapping and Policy Optimisation

In the current HIS system, a belief point in summary statespa

a hybrid of continuous probability values and discretealass. It
consists of the probability of the 1st and 2nd best dialogliypses;
the type of the user aet, associated with the most likely state; a
summary status of the top partition (initial, partly expaddunique
state, etc) and a summary of the dialog history of the top thgsis
(initial, partly grounded, fully grounded, etc). The diste metric
to compare two dialog points strongly encourages discretepo-
nents to match exactly by returning a large distance if asgrdie
component differs, and a smaller Euclidean distance betwiee
continuous components. The summary action set consistsabé-s
gic actions such agreet requestimplicit_confirm explicit.confirm
submit inform, hangup etc. These are mapped back to master space

Once all dialog hypotheses have been evaluated and any dby assuming they operate on the most likely hypothesis andéh

plicates merged, the master belief statess mapped into summary

tailed dialog history maintained in master space enablesé¢tec-

spaceb and the nearest policy belief point is found. The associatedion of appropriate attributes and values. For exampleyefdum-

summary space machine actiap, is then mapped back to master
space and the machine’s actual respomgseis output. The cycle
then repeats until the user’s goal is satisfied.

3.4. Component Models

The current HIS system computes the required probabikisefol-
lows. Firstly, since the observation is an N-best list ofrus#s, the
observation probability?(o|a.) can be approximated ky; where

mary action isimplicit_confirm the system uses the dialog history
to identify an unconfirmed node and a required node from the to
hypothesis and then combines these to generate a respatsassu
impconfirm(venue=restaurant,food=7Tj.e. “You want a restaurant.
What kind of food would you like?”).

Policy optimisation currently utilises on-line batch Qxteing
using an external user simulator and &greedy policy (i.e. the
dialog manager follows its current best policy except thigh wrob-
ability e it substitutes a random action). Learning follows cladsica

a, = a, (see (5)) i.e. the posterior probability of the N-best list Monte Carlo policy iteration. The current policy is held stamt for

element corresponding tq,.

5000 dialogues whilst the Q-values associated with eachrsugn



space belief point are updated, the accumulated Q valuethene [3]
used to generate a new policy, and the cycle repeats unavéirage
reward stabilises.

[4]

4. CONCLUSIONS

5
This paper has argued that partially observable Markowsd&tpro- o]
cesses (POMDPs) provide a principled mathematical framefoo
modelling the inherent uncertainty in spoken dialog systerfihe [6]
three key ideas underlying this use of POMDPs are firstly biyat
maintaining a distribution over all possible machine salteis pos-
sible to accumulate multiple tracks of possibly conflictengdence. 7
Secondly, by treating the recognition output as an observétom
which the dialog state can be inferred, it is possible to Wlige un-
derstanding component’s confidence in each recogniseccseith [8]
the probability of that act given the current dialog statkirdly, by
casting the system as a Markov process it is possible to defide  [g]
optimise a control policy to automatically maximise a degireward
function. Thus, the use of POMDPs for dialog offers, in pifie at
least, more robust dialogs, reduced need for manual tuapyica- [10]

tion independence and the ability to adapt on-line.

The directimplementation of a POMDP leads to a system whichjy 1]
is computationally intractable. However, this can be overe by
applying two simple refinements. Firstly, states can be ggdunto
partitions and beliefs can be based on these partitions.odg &s
partitions can be split on demand during the dialog, thisseawno
loss of accuracy but greatly reduces the computationainemgents
for belief monitoring. Secondly, the complex state/acspace of a
practical real world dialog system can be mapped into a mimh s [13]
pler summary space which focuses on just the top 1 or 2 machine
state hypotheses. Since the majority of machine respornsas ne- [14]
fer to these hypotheses anyway, policy optimisation in tbckiced
summary space can be just as effective as optimisation im#ster
space whilst avoiding the complexity problems inherenhilgtter.

Finally, a practical system based on these principles has be [15]
briefly described called the Hidden Information State syst&he
HIS system has been implemented for a tourist informatianalp
and apart from a set of ontology rules it has no applicatiatiic
code, and it was trained entirely from data. Having esthblisa
viable framework, the challenge now is to demonstrate th&fpb-
tential of POMDPs can be translated into competitive spakalog
systems.

(12]

[16]

(17]

(18]
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