
CUED Standard Dialogue Acts

Steve Young

June 19, 2009

Abstract

Within all CUED spoken dialogue systems, interactions at the intention level are represented by
a core set of dialogue acts. A key feature of the CUED scheme is the provision for representing
a distribution of dialogue act hypotheses. To obviate the need for combining multiple acts and
the consequent normalisation issues that this would raise, CUED dialogue acts are high level
and a single act can encapsulate a variety of intentions. This document describes the syntax
and semantics of the core set of CUED dialogue acts.

1 Attributes, values and the application domain

Dialogue acts refer to entities in the application domain. Each entity has a number of attributes
and understanding how the attributes of an entity are structured is an essential pre-requisite to
understanding the way that dialogue acts are defined.

All current CUED spoken dialogue systems (SDS) are designed to implement information
seeking applications. The universe of discussion is defined by a set of simple ontology rules
which define a tree structure such that the leaves of the trees are attribute values and the hierarchy
defines the relationships between attributes. The root of the tree corresponds to a specific entity
under discussion, and the nodes of the tree define the features which characterise that entity. This
entity typically represents the user’s information-seeking goal and hence it is often referred to as
the user goal tree.

Figure 1 shows an example (incomplete) ontology for a simple tourist information system.

entity -> venue(type,name,area,addr);
entity -> landmark(name,area,addr);
type -> restaurant(food,music,decor);
type -> hotel(pricerange, stars);
venue.name = ("Toni’s" | "Quick Bite" | ....);
landmark.name = ("Water Tower" | "Museum" | ....);
food = ("Italian" | "Chinese" | "Russian" | ...);
music = ("Jazz" | "Pop" | "Folk" | ...);
decor = ("Traditional" | "Roman" | "Art Deco" | ...
area = ("central" | "east" | "north" | "south" | ...);
addr = ("Main Street" | "Market Square" | ...);

Figure 1: Example Ontology Rules

The ontology rules operate like context-free rewrite rules such that the node on the left derives
the daughter nodes written as a comma-separated list to the right. All possible expansions of
these rules would enumerate all possible entities with distinguishable characteristics. Fig 2 shows
an example derivation.

1



Figure 2: Example Tree for TownInfo Application

However, unlike simple rewrite rules, each node expansion can also be tagged as some spe-
cific subtype. For example, an entity in the above can either be of subtype venue or subtype
landmark. The subtype tag is indicated by a reverse arrow in Fig 2. Syntactically, subtype tags
appear as functors on the rhs of the rules with the functor’s arguments being the daughter nodes.

The ontology tree structure defines the way that attributes (ie nodes) are referenced in di-
alogue acts. Each node corresponds to an attribute, and subtypes and atomic leaf nodes are
values. Thus, in the example shown in Fig 2, valid nodes are: entity, area, addr, etc and valid
values are "Italian", "restaurant", "Main Street".

Since some nodes may re-occur in different contexts, node names can be qualified. In the
example rules, name is ambiguous, hence it is qualified in the rules as either landmark.name or
venue.name. Furthermore, when used in a qualifying position, node names and their subtypes
are interchangeable. Thus, restaurant.food and type.food are both valid references to the
food node.

Node references and their values are used in a dialogue to query and supply information.
Information is supplied via attribute-value pairs, e.g. music="Jazz", type="restaurant",
restaurant.food="Italian", etc. Queries, however, are constructed with simple node-
names since the point of the query is to find a value, e.g. music, decor, restaurant.food,
etc.

Having explained how attributes and values are specified, the next section describes the struc-
ture of dialogue acts. The remaining sections then describe the dialogue acts themselves.

2 Structure of a Dialogue Act

The full syntax for depicting a set of dialogue acts is shown in Fig. 3 where vertical bars denote
alternatives, brackets denote options and curly braces denote zero or more repetitions.

A name consists of any alphanumeric sequence starting with a letter, a string is an arbitrary
character sequence enclosed in quotes and a float is any floating point number.1

A set of dialogue acts corresponds to one turn of a dialogue. Each member of the set represents
one possible hypothesis about the speaker’s intention. The probability of each hypothesis is given
by the value of prob. If prob is omitted, then all dialogue acts are deemed to be equally likely.
For example, the dialogue set

inform(food="Italian"){0.8}, inform(food="Russian"){0.2}

1In fact, the quotes for strings are only strictly necessary if the value contains a non-alphanumeric character.

2



actset = act { "," act }
act = acttype "(" [item { "," item }] ")" ["{" prob "}"]
item = bareattr | attrvalue | barevalue ;
bareattr = attr
attrvalue = attr eq value
barevalue = eq value
eq = "=" | "!="
attr = { qual "." } name
qual = name
value = string | subtype_name
prob = float

Figure 3: Syntax of CUED Dialogue Acts

conveys the information that food="Italian" with probability 0.8 and food="Russian"
with probability 0.2.

Each attribute=value pair is called an item and each item refers to a specific attribute or
entity within the application domain. As explained in section 1, in CUED systems, each attribute
corresponds to a node in a user goal tree.

In the linguistics literature, dialogue turns are commonly analysed as a combination of sev-
eral primitive dialogue acts. However, in the CUED standard, every dialogue turn must be rep-
resented by a single act to ensure that the probability of alternative hypotheses always sums to
one in a simple and consistent manner. To compensate for the inability to combine dialog acts,
the CUED standard therefore allows a single dialogue act to contain multiple items. For example,
the utterance ”I want to eat some Italian food and listen to some Jazz.” would be rendered as

inform(food="Italian", music="Jazz")

This is quite different to

inform(food="Italian"), inform(music="Jazz")

which would indicate that the speaker intended to either convey the information that food=
"Italian" or that music="Jazz" but not both.

Consistent with the conventions for node references described in section 1, an attribute name
can be either a simple name or a qualified name. For example, name is a simple name whereas
venue.name is a qualified name. Qualifiers can be concatenated to form a path in the tree and
subtype names can be substituted for qualifiers. Hence, for example, entity.type.music
could also be written as venue.type.music or venue.restaurant.music. In general qual-
ifiers are used to resolve ambiguities in cases where there are multiple attributes or entities with
the same name.

The value assigned to an attribute can be either a subtype name or an atom. In the for-
mer case, the information being conveyed is structural. For example, the act inform(type=
restaurant) indicates that the node type is expanded as the subtype restaurant whereas
inform(food="Italian") simply asserts that the value of the lexical node food is "Italian".
The value "dontcare" can be specified for any attribute to specify that the attribute is not im-
portant and any value will do. The value part of an item is optional since in some acts, the pur-
pose of the act is to elicit a value. For example, request(name,type=hotel) is a request for
the name of a hotel. A dialogue act can also include bare values as in inform(="dontcare").
In this case, the user has simply said ”I dont care”, and there is no context from which the asso-
ciated node can be identified.

3



3 Semantic Decoding and Ambiguity

For a variety of reasons (e.g. user imprecision, asr errors, ...) there will often be multiple ways of
interpreting a user input. For example,

<garbage> central <garbage>

might be inform(area=central) or confirm(area=central). In such cases, the se-
mantic decoder may output multiple interpretations as alternative hypotheses. 2

Since the CUED standard does not allow arbitrary combinations of primitive dialogue acts, a
similar situation will arise when the user issues multiple conflicting utterances. For example, if
the user says:

What’s the price? Is it expensive?

then there are two separate translations: request(price) and confirm(price=expensive),
each demanding a different answer. In cases such as these, a semantic decoder can output either
interpretation or output both as alternatives

request(price), confirm(price=expensive)

The dialogue manager will then see these as alternative interpretations of the input and act
accordingly.3

Finally, note that semantic decoders should only provide information that is actually in the
sentence. For example, consider the following:

I want an Italian restaurant <=> inform(type=restaurant,food="Italian")
I would like some Italian food <=> inform(food="Italian")

In the first case, the sentence refers both to a restaurant and Italian food. The second refers only
to food with no mention of a restaurant. Thus, although both utterances are superficially similar,
they translate to different dialogue acts.

4 Dialogue Act Definitions

This section describes the dialogue acts defined by the CUED standard. For convenience, they
are divided into 4 groups: information providing; query; confirmation; and housekeeping.

The full set of dialogue acts is summarised in Appendix A. Note that the standard currently
distinguishes between dialogue acts generated by a human user and acts generated automati-
cally by a system. Some acts are specific to each source and others are common. In future, this
distinction may be abandoned. Some of the special cases are specific to information tasks and
these may require further generalisation in the future.

4.1 Information Providing

Act System User Description
inform(a=x,b=y,...)

√ √
give information a=x, b=y, ...

inform(name=none)
√

× inform that no suitable entity can be found
inform(a!=x,...) ×

√
inform that a is not equal to x

inform(a=dontcare,...) ×
√

inform that a is a ”don’t care” value
inform(name=none,a!=x,b=y,...)

√
× inform that all entities with b=y satisfy a=x

inform(name=none,name!=a,b=y,...)
√

× inform that a is the only entity with b=y, ...

2The recogniser might output its N -best hypotheses, and the semantic decoder might then output M alternatives for
each hypothesis giving upto M ×N alternative dialogue acts.

3Note that a sensible response to either will probably satisfy the user.

4



The inform act is used by the speaker to convey one or more items of information. It does not
invite any specific response from the hearer. Some examples are:

I would like a Italian restaurant. <=> inform(type=restaurant,food="Italian")
In the centre of town. <=> inform(area="central")

There are several special cases associated with inform acts. Firstly, the name attribute can
be assigned the reserved value none. This indicates that there is no entity in the database
whose characteristics match the provided attribute values. In effect, name=none indicates a null
database match.

Secondly, the generic value dontcare can be used to specify a ”wildcard” i.e. a value which
will match anything. Thirdly, the special form inform(food!="Italian") indicates that the
food can be any value except Italian4. Some examples of the use of these special cases are

I’ll eat anything except Russian. <=> inform(food!="Russian")
Any type of music is fine. <=> inform(music=dontcare)
I dont care. <=> inform(=dontcare)

The reserved item name=none and negated attributes (e.g, inform(food!="Italian"))
can be combined to express the fact that there is no match in the database for entities without a
specific attribute value. In other words, this can be used to indicate that all entities in the database
have a specific attribute value.

Analogously, the combination of the reserved item name=nonewith a negated name attribute
(e.g, inform(name=none,name!="Char Sue",food=Chinese)) indicates that the negated
entity is the only one in the database matching the remaining attributes, e.g. there is no match in
the database for a venue that serves Chinese food and that is not Char Sue. Some examples of
the use of these special cases are

All bars in the centre are expensive. <=> inform(name=none,pricerange!=expensive,area="centre")
Botchka is the only restaurant in the south. <=> inform(name=none,name!="Botchka",area="South")

4.2 Query

Act System User Description
request(a)

√ √
request value of a

request(a,b=x,...)
√ √

request value for a given b=x ...
reqalts() ×

√
request alternative solution

reqalts(a=x,..) ×
√

request alternative consistent with a=x,...
reqalts(a=dontcare,..) ×

√
request alternative relaxing constraint a

reqmore()
√

× inquire if user wants anything more
reqmore(a=dontcare)

√
× inquire if user would like to relax a

reqmore() ×
√

request more information about current solution
reqmore(a=x,b=y,...) ×

√
request more info given a=x, b=y ...

A query dialogue act invites an answer to a specific question. The basic query dialogue act is the
request act which takes a single item denoting an attribute as its first argument. The normal
expectation of the speaker is that the hearer will respond by providing information about the
queried attribute. A request act can also include an optional number of attribute/value pairs
which provide conditional information to constrain the request. Examples of the use of request
acts are

4Note that inform(food!=Italian) is not the same as deny(food=Italian) since the former asserts a constraint
on the value of food whereas the latter is correcting a misunderstanding.

5



What is the address? <=> request(addr)
What’s the address of Toni’s place? <=> request(addr,name="Toni’s")
What kind of music do they play? <=> request(music)
Where is the Art Deco restaurant? <=> request(area,type=restaurant,

decor="ArtDeco")

In addition to the basic request act, there are two more specialised forms of query. Firstly,
the reqalts act indicates that the user wants to pursue a different goal. For example, if the user
is given information about a specific restaurant, he or she might respond with

Are there any more? <=> reqalts()

Alternatively, if the user has something more specific in mind, he or she might provide some
extra information, as in

Is there anything more central? <=> reqalts(area="central")

or relax the user’s constraints as in

Is there a chinese anywhere? <=> reqalts(food="Chinese", area=dontcare)

Secondly, the reqmore act is provided to prompt for more information about either the cur-
rent topic or some specific attribute. Extra attribute/value pairs can be included to identify a
specific entity that the user might have in mind. Examples are

Tell me more. <=> reqmore()
Tell me more about the hotel in the centre of town.

<=> reqmore(type=hotel,area="Central")

4.3 Confirmation

Act System User Description
confirm(a=x,b=y,..)

√ √
confirm a=x,b=y,..

confirm(a!=x,..)
√ √

confirm a != x etc
confirm(name=none) ×

√
confirm that no suitable entity can be found

confirm(a=dontcare,...)
√ √

confirm that a is a ”don’t care” value
confreq(a=x,..,c=z, d)

√
× confirm a=x,..,c=z and request value of d

select(a=x,a=y)
√

× select either a=x or a=y
affirm()

√ √
simple yes response

affirm(a=x,b=y,...)
√ √

affirm and give further info a=x, b=y, ...
negate()

√ √
simple no

negate(a=x)
√ √

negate and give corrected value for a
negate(a=x,b=y,...)

√ √
negate(a=x) and give further info b=y, ...

deny(a=x,b=y) ×
√

no, a!=x and give further info b=y, ...

Confirm acts invite ”yes”/”no” answers, either explicitly or implicitly. They are used primar-
ily by the system to guard against misunderstandings caused by speech errors. However, the
user can also issue confirm requests to check that information supplied really does match their
needs.

There are two types of confirmation. The confirm act itself represents an explicit confirma-
tion request requiring an answer of either ”yes” or ”no”. The confreq act represents an implicit
confirmation request. It combines one or more attribute/value pairs to confirm plus a query
item. If the attribute/value pairs are correct, the user can ignore them and simply respond to the
request. If they are not correct, the user would be expected to respond with a ”No” and ignore
the request for further information. Some examples are

You want a restaurant playing Jazz music? <=> confirm(type=restaurant,music="Jazz")
Is that in the centre of town? <=> confirm(area="central")
What part of town do you want to dine in? <=> confreq(area,type=restaurant)

6



An explicit positive response to a confirmation is indicated by an affirm act. An affirm
act can also include additional information. In this form it is identical to an affirm act followed
by an inform act.5 Negative responses are provided by negate and deny acts. The negate
act without arguments simply means ”No”. With arguments, there are two ways of interpreting
the first argument. If the first argument provides a corrected value, then the negate act is used.
Alternatively, if the first argument simply confirms the error, then the deny act is used. In both
cases, any further arguments are taken to be further information as in the affirm act. Examples
are as follows

Yes. <=> affirm()
Yes, with a nice Roman decor. <=> affirm(decor="Roman")
No. <=> negate()
No, I want Chinese food. <=> negate(food="Chinese")
No, not Russian Food. <=> deny(food="Russian")
No, I want Chinese food in the <=> negate(food="Chinese",area="Central")

centre of town.

Finally, the select act provides a forced choice response

Do you want Chinese or Russian? <=> select(food="Chinese",food="Russian")

4.4 Housekeeping

Act System User Description
hello()

√ √
start dialogue

hello(a=x,b=y,...) ×
√

start dialogue and give information a=x, b=y, ...
silence() ×

√
the user was silent

thankyou() ×
√

non-specific positive response from the user
ack() ×

√
back-channel eg ”uh uh”, ”ok”, etc

bye()
√ √

verbally end dialogue
hangup() ×

√
user hangs-up

repeat()
√ √

request to repeat last act
help() ×

√
request for help

restart() ×
√

request to restart
null()

√ √
null act - does nothing

The house-keeping dialogue acts are mostly for maintaining turn taking and their meanings
are straightforward. The hello act with arguments is essentially equivalent to the inform act.
Some examples are,

Hello, I want to find a hotel. <=> hello(type=hotel)
Can we start again? <=> restart()
Ok. <=> ack()
Ok, thank you. <=> thankyou()
What can I say? <=> help()

The null act indicates a response from the user which could not be identified. It is effectively
the default when all else fails. It is also used implicitly to indicate uncertainty. For example, if
the user’s utterance was very uncertain, it might be represented as

Mumble food mumble. <=> inform(type=restaurant) {0.2}, null() {0.8}

5But of course, dialog acts cannot be combined in the CUED scheme hence the affirm act is extended to provide the
same functionality.

7



5 Validation and Evaluation

The mapping of an utterance into a CUED dialogue act is performed by a semantic decoder. All
validation and testing of semantic decoders makes use of semantic map files. Each semantic map
file contains a list of

utterance <=> act(x=y, ....)

pairs in the same format as used for the examples above. To provide a “gold standard” for
basic compliance and regression testing, the file GoldSemRef contains 500 utterance to act map-
pings which cover all of the definitions and cases described above for the user side of the conver-
sation (see Appendix B for a partial listing).

In order to validate and test a semantic decoder for compliance with the above specification,
a standard semantic decoder called SemDecode and two Perl scripts are supplied:

1. SemDecode -C config [-v -d DecoderType] inputfile outputfile

All semantic decoders for use in CUED systems are implemented as classes within the
SemIO library. For off-line testing, a single front end called SemDecode is provided. SemDecode
reads an input semantic map file and strips off any existing dialogue acts to retain only the
utterances. Each utterance is then decoded and a dialogue act attached. The output file
contains the decoded results in the same standard format as the input file.

The specific decoder to use is selected by the -d flag. The currently supported types are:

YTag - the SEMIBASIC YTag-based parser used in the prototype HIS system
Phoenix - an implementation based on the CMU/Colorado Phoenix Parser
HVS - a statistical parser based on the hidden vector state model

The config file contains the various resource files needed to run the decoder. For example,
to run the YTag parser, the config file must contain definitions for

SEMIBASIC: RULEFILE1 = "pre.rules"
SEMIBASIC: RULEFILE2 = "sort.rules"
SEMIBASIC: RULEFILE3 = "da.rules"

Setting the -v flag enables verbose mode in which each decoded utterance is output to the
terminal. Further debugging can be enabled by setting the trace flags of the relevant SemIO
modules.

2. ChkSemRef.pl dictfile rulesfile semfile

This script implements a simple validation check on the integrity of a semantic map file. It
reads a HTK-format dictionary file, a HIS model rules file and the semantic map file to be
validated. The script checks that

• all words in every sentence are in the dictionary

• all dialogue act types are valid

• all attribute names are valid node names

• all values and subtypes are defined in the rules

3. SemScore.pl semtst semref

This script reads a test semantic map file and a reference semantic map file. Each file must
have the same number of entries in the same order. SemScore.pl compares each corre-
sponding line of each file and does the following:

• check that both utterances are identical

8



• check that the dialogue types are the same

• check that all items in the ref appear in the test

When comparing the items in each act, SemScore.pl ignores the order except where it
makes a difference to the interpretation of the dialogue act. Typically this means that if the
act is order sensitive (e.g. negate), the first item must be first but the remaining items can
be in any order. SemScore.pl computes the following statistics

Ha - the number of correctly recognised dialog acts
Na - the total number of dialog acts
Hi - the number of items correctly recognised
Ni - the total number of items in the reference
Ri - the total number of items in the test

Then

Act Type Item Item Item
Accuracy Precision Recall F-measure

A =
Ha

Na

P =
Hi

Ri

R =
Hi

Ni

F =
2PR

P+R

9



History of Changes

• 19/06/2009 by François Mairesse

Added support for two new system acts:

– inform(name=none,a!=x,b=y,...)

– inform(name=none,name!=a,b=y,...)

10



Appendix A: Summary of dialogue acts

Act System User Description
hello()

√ √
start dialogue

hello(a=x,b=y,...) ×
√

start dialogue and give information a=x, b=y, ...
silence() ×

√
the user was silent

thankyou() ×
√

non-specific positive response from the user
ack() ×

√
back-channel eg ”uh uh”, ”ok”, etc

bye()
√ √

end dialogue
hangup() ×

√
user hangs-up

inform(a=x,b=y,...)
√ √

give information a=x, b=y, ...
inform(name=none)

√
× inform that no suitable entity can be found

inform(a!=x,...) ×
√

inform that a is not equal to x
inform(a=dontcare,...) ×

√
inform that a is a ”don’t care” value

inform(name=none,a!=x,...)
√

× inform that all entities satisfy a=x
inform(name=none,name!=a,...)

√
× inform that a is the only entity with ...

request(a)
√ √

request value of a
request(a,b=x,...)

√ √
request value for a given b=x ...

reqalts() ×
√

request alternative solution
reqalts(a=x,..) ×

√
request alternative consistent with a=x,...

reqalts(a=dontcare,..) ×
√

request alternative relaxing constraint a
reqmore()

√
× inquire if user wants anything more

reqmore(a=dontcare)
√

× inquire if user would like to relax a
reqmore() ×

√
request more information about current solution

reqmore(a=x,b=y,...) ×
√

request more info given a=x, b=y ...
confirm(a=x,b=y,..)

√ √
confirm a=x,b=y,..

confirm(a!=x,..)
√ √

confirm a != x etc
confirm(name=none) ×

√
confirm that no suitable entity can be found

confreq(a=x,..,c=z, d)
√

× confirm a=x,..,c=z and request value of d
select(a=x,a=y)

√
× select either a=x or a=y

affirm()
√ √

simple yes response
affirm(a=x,b=y,...)

√ √
affirm and give further info a=x, b=y, ...

negate()
√ √

simple no
negate(a=x)

√ √
negate and give corrected value for a

negate(a=x,b=y,...)
√ √

negate(a=x) and give further info b=y, ...
deny(a=x,b=y) ×

√
no, a!=x and give further info b=y, ...

repeat()
√ √

request to repeat last act
help() ×

√
request for help

restart() ×
√

request to restart
null()

√ √
null act - does nothing

11



Appendix B: Example “Gold Standard” Dialogue Act Mappings

ok ack()

that is correct affirm()
yeah but i need a five star hotel affirm(type=hotel, stars=”5”)
yes i’m looking for a bar affirm(task=find, type=bar)
yes something quite basic affirm(pricerange=”cheap”)
yes somewhere near the tourist information office affirm(near=”Tourist Information”)
yes that sounds fine affirm()
cool thank you goodbye bye()
but is it near the park confirm(near=”Park”)
is it reasonably priced confirm(pricerange=”moderate”)

is that a two star hotel confirm(type=hotel, stars=”2”)

ok so it’s called number one confirm(venue.name=”Number One”)

so there is no hotel near the tower confirm(name=none, type=hotel, near=”Tower”)
so you can’t find anything confirm(name=none)

but i don’t want a restaurant deny(type=restaurant)

no i want indian food not italian deny(food=”Italian”, food=”Indian”)

no not in the centre of town near the river deny(area=”central”, near=”River Jay”)

no not italian deny(food=”Italian”)
hello i’m looking for a three star hotel hello(task=find, type=hotel, stars=”3”)

hiya i’m looking for a wine bar in the south of town
hello(task=find, type=bar, drinks=”wine”,
area=”south”)

help help()
what are the options help()
a bar in the north of the city inform(type=bar, area=”north”)
a bar near the shopping centre inform(type=bar, near=”Westside Shopping”)
a restaurant where i can eat pizza or spaghetti inform(type=restaurant, food=”Italian”)
any kind of music inform(music=”dontcare”)
anything but russian inform(food!=”Russian”)
anything except jazz inform(music!=”Jazz”)
anywhere inform(area=”dontcare”)
can you help me with a three star restaurant inform(type=restaurant, stars=”3”)
cheap price range please inform(pricerange=”cheap”)
cheap to moderate inform(pricerange!=”expensive”)
five star hotel please inform(type=hotel, stars=”5”)

how about one close to the cinema inform(near=”Cinema”)
i am looking for a bar inform(task=find, type=bar)

i am looking for a bar near the shopping centre
inform(task=find, type=bar, near=”Westside Shop-
ping”)

i am looking for something near the south part inform(task=find, area=”south”)

i am looking for somewhere to eat a snack in the south
inform(task=find, type=restaurant, food=”snacks”,
area=”south”)

i don’t mind inform(=”dontcare”)

i don’t mind the kind of music inform(music=”dontcare”)

i don’t mind what kind of music it is inform(music=”dontcare”)
i don’t want any drinks inform(drinks=”dontcare”)
i would like a bar preferably in the north inform(type=bar, area=”north”)

i would like a cheap italian restaurant
inform(type=restaurant, pricerange=”cheap”,
food=”Italian”)

i would like something near a cinema inform(near=”Cinema”)
i’ll eat anything except indian inform(food!=”Indian”)
i’ll have jazz music please inform(music=”Jazz”)
i’m looking for somewhere that serves beer inform(task=find, drinks=”beer”)
in the centre by the post office inform(area=”central”, near=”Post Office”)
in the centre near the post office inform(area=”central”, near=”Post Office”)

12



in the cheap inform(pricerange=”cheap”)
in the riverside area a five star hotel please inform(type=hotel, area=”riverside”, stars=”5”)
in the riverside area of the city inform(area=”riverside”)
it’s not important inform(=”dontcare”)

luxurious five star hotel
inform(type=hotel, pricerange=”expensive”,
stars=”5”)

moderate price range inform(pricerange=”moderate”)
moderately priced bar that s inform(type=bar, pricerange=”moderate”)
near the shopping centre inform(near=”Westside Shopping”)
not pizza or pasta please inform(food!=”Italian”)
ok i’d like a bar that’s mid price range please inform(type=bar, pricerange=”moderate”)
ok i’ll have classical music then please inform(music=”Classical”)
somewhere in the south of the city inform(area=”south”)
no negate()
no a five star hotel near the museum please negate(type=hotel, stars=”5”, near=”Museum”)

no a hotel in the south of town negate(type=hotel, area=”south”)
that’s not correct i am looking for a hotel negate(type=hotel, task=find)
could you repeat that repeat()
are there any hotels in any price range reqalts(type=hotel, pricerange=”dontcare”)
are there any other bars playing jazz reqalts(type=bar, music=”Jazz”)
are there any others reqalts()

i want a different restaurant reqalts(type=restaurant)
tell me more about murphys reqmore(venue.name=”Murphys”)
tell me more please reqmore()

but what’s the music like request(music)
can i get the phone number please request(phone)

can i have the address request(addr)
can i please have the address of the taj mahal request(addr, venue.name=”Taj Mahal”)
can you give me the address request(addr)
can you tell me its telephone number request(phone)
how expensive is it request(pricerange)
how expensive is the regent request(pricerange, venue.name=”The Regent”)

how much will that cost request(price)
what kind of music does it play request(music)
what kind of music does it play though request(music)
start again restart()

is that a bar or a hotel select(type=bar, type=hotel)
thank you very much thankyou()

13


