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Continuous F0 Modelling for HMM based
Statistical Parametric Speech Synthesis
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Abstract— The modelling of fundamental frequency, or F0, in
HMM-based speech synthesis is a critical factor in delivering
speech which is both natural and accurately conveys all of the
many nuances of the message. However, F0 modelling is difficult
because F0 values are normally considered to depend on a binary
voicing decision such that they are continuous in voiced regions
and undefined in unvoiced regions. F0 is therefore a discontinuous
function of time. multi-space probability distribution HMM
(MSDHMM) is a widely used solution to this problem. The
MSDHMM essentially uses a joint distribution of discrete voicing
labels and the discontinuous F0 observations. However, due to
the discontinuity assumption, the MSDHMM provides a rather
weak F0 trajectory model. In this paper, F0 is viewed as being a
continuous function of time and this is achieved by assuming
that F0 can be observed within unvoiced regions as well as
voiced regions. This provides a continuous F0 data stream
which can be modelled by standard HMMs. Voicing labels are
modelled either implicitly or explicitly in order to perform voicing
classification and a globally tied distribution (GTD) technique is
used to achieve robust F0 estimation. Both objective measures
and subjective listening tests demonstrate that continuous F0
modelling yields better synthesized F0 trajectories and significant
improvements to the naturalness of synthesised speech compared
to using the MSDHMM model.

Index Terms— statistical parametric speech synthesis, HMM
based synthesis, F0 modelling, voicing classification

I. INTRODUCTION

Compared to traditional unit concatenation speech synthesis
approaches, HMM-based statistical parametric speech synthe-
sis has recently attracted much interest due to its compact
and flexible representation of voice characteristics [1]. Based
on the source-filter model assumption, phonetic and prosodic
information are assumed to be conveyed primarily by the
spectral envelope, fundamental frequency (also referred to as
F0) and the duration of individual phones. The spectral and
F0 features can be extracted from a speech waveform [2],
and durations can be manually labelled or obtained through
forced-alignment using pre-trained HMMs. A unified HMM
framework may then be used to simultaneously model these
features, where the spectrum and F0 are typically modelled
in separate streams due to their different characteristics and
time scales1. During the synthesis stage, given a phone context
sequence generated from text analysis, the corresponding
sequence of HMMs are concatenated and spectral parameters
and F0 are generated [4]. These speech parameters are then
converted to a waveform using synthesis filters [5].

1Other information such as the aperiodic components in cases of mixed
excitation [3] may also be modelled using additional streams within the HMM
framework.

The modelling of fundamental frequency (F0) is difficult
due to the differing nature of F0 observations within voiced
and unvoiced speech regions. F0 is an inherent property
of periodic signals and in human speech it represents the
perceived pitch. During voiced speech such as vowels and
liquids, the modulated periodic airflow emitted from the glottis
serves as the excitation for the vocal tract. Since there is
strong periodicity, F0 values can be effectively estimated over
a relatively short-time period (e.g., a speech frame of 25ms)
using [6]. These F0 observations are continuous and normally
range from 60Hz to 300Hz for human speech [7]. However,
in unvoiced speech such as consonants, energy is produced
when the airflow is forced through a vocal-tract constriction
with sufficient velocity to generate significant turbulence. The
long term spectrum of turbulent airflow tends to be a weak
function of frequency [8], which means that the identification
of a single reliable F0 value in unvoiced regions is not possible.
Therefore, a widely accepted assumption is that F0 values in
unvoiced speech frames are undefined and must instead be
denoted by a discrete unvoiced symbol.

Consequently, any practical F0 modelling approach must be
capable of dealing with two issues:

1) classifying each speech frame as voiced or unvoiced;
2) modelling F0 observations in both voiced and unvoiced

speech regions.

Voicing classification is performed during F0 extraction [6],
and hence, the voicing label of each frame is usually assumed
to be observable. Since the nature of each F0 observation
depends on the type of voicing condition, voicing labels are
normally considered together with F0 observations rather than
being separately modelled. When viewed as a function of time,
F0 observations are effectively discontinuous and hence they
are not readily modelled by standard HMMs.

One solution is to directly model the discontinuous F0
observation and the multi-space probability distribution HMM
(MSDHMM) was proposed for this purpose [9]. Essentially, it
uses a joint distribution of voicing label and discontinuous
F0 observation as the state output distribution. The condi-
tional probability of discontinuous F0 is then defined as a
discrete probability within unvoiced regions, and a continuous
density within voiced regions. Using this definition, HMM
training can be performed efficiently and good performance
can be achieved [10]. Hence, the MSDHMM has been widely
accepted. However, the nature and implementations of this
type of F0 modelling have several limitations. Due to the
discontinuity at the boundary between voiced and unvoiced
regions, dynamic features can not be easily calculated. Hence,
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in the most widely used MSDHMM implementation, sepa-
rate streams are normally used to model static and dynamic
features [11]. This results in redundant voicing probability
parameters which may not only limit the number of clustered
states, but also weaken the correlation modelling between
static and dynamic features. The latter limits the model’s abil-
ity to accurately capture F0 trajectories. In addition, since all
continuous F0 values are modelled by a single continuous den-
sity, parameter estimation is sensitive to voicing classification
and F0 estimation errors. Furthermore, the special structure
of the MSDHMM prevents the straightforward application
of standard techniques such as adaptation (especially feature
based adaptation).

An alternative solution is to assume that continuous F0
observations also exist in unvoiced regions and there have been
a number of modelling approaches along these lines. In stress
classification, random values generated from a probability
density with a large variance have been used for unvoiced F0
observations [12]. In intonation contour modelling, setting all
unvoiced F0 to be zero has been investigated [13]. Unvoiced
F0 observations have also been assumed as continuous but
hidden variables and F0 generation modelled as a dynamical
system [14]. However, apart from the initial study on which
the work reported here is based [15], there is no reported work
on applying the continuous unvoiced F0 assumption to HMM
based statistical parametric speech synthesis.

This paper provides a complete HMM-based framework
for continuous F0 modelling called the CF-HMM whereby
F0 values are assumed to exist and are observable for both
voiced and unvoiced regions. The CF-HMM allows unvoiced
F0 observations to be interpolated values between voiced
regions, random values sampled from a predefined distribution
or the actual F0 values computed by the algorithm used for F0
tracking. Since there is no discontinuity, dynamic F0 features
can be easily calculated for all frames and modelled together
with the static features by a standard Gaussian Mixture Model
(GMM) in a single stream. As shown later, using both objec-
tive measures and subjective listening tests the CF-HMM can
significantly outperform the standard MSDHMM approach.

The CF-HMM can be configured in a number of different
ways but normally it employs two Gaussian components for
the state output distributions corresponding to voiced and
unvoiced F0. All unvoiced components are tied together to
form a globally tied distribution (GTD). The voicing condition
can be modelled either implicitly or explicitly. In the former
case, the statistical properties of unvoiced and voiced F0 values
are assumed to be distinctive and voicing classification then
relies on the component weights estimated during training
[15]. In the explicit case, the voicing condition is modelled
by an additional feature stream with a corresponding discrete
distribution.

The rest of the paper is arranged as follows. Section II
discusses discontinuous F0 modelling, in particular the MS-
DHMM is covered in some detail. The CF-HMM framework
for continuous F0 modelling is then described in section III.
Section IV presents the results of both objective and subjective
tests. Conclusions then follow.

II. DISCONTINUOUS F0 MODELLING

As indicated in section I, F0 observations are commonly
assumed to be undefined in unvoiced regions and continuous
in voiced regions. A discontinuous F0 observation will be
denoted as f+ in this paper. Its domain is

f+ ∈ {NULL} ∪ (−∞,+∞) (1)

where NULL is the discrete unvoiced symbol. The discrete
voicing label l is assumed to be observable and is either voiced
V or unvoiced U for each frame, i.e., l ∈ {U, V}.

In HMM-based speech synthesis, the above assumption
brings several issues. First, how to calculate the dynamic
features of f+ at the boundaries between voiced and un-
voiced regions. Second, how to model the discontinuous f+,
especially the NULL symbol, within the HMM framework.
Third, during the synthesis stage, how to perform voicing
classification and determine the voiced F0 trajectory given the
HMM model parameters. This section will explain how these
issues are addressed by the widely used MSDHMM approach
and discuss the associated problems.

A. multi-space probability distribution HMM

The multi-space probability distribution (MSD) is a general
mathematical form of probability distribution for discrete,
continuous and mixed random variables [9]. When applied in
F0 modelling with HMM, MSDHMM is a special case of a
HMM where the state output distribution is a joint distribution
of voicing label and discontinuous F0 observations [9]. The
dynamic Bayesian network (DBN) depiction of a standard
HMM and an MSDHMM are shown in Figure 1.2 Compared
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Fig. 1. Dynamic Bayesian network comparison between standard HMM.
and MSDHMM.

to a standard HMM, the MSDHMM uses the voicing label l
and discontinuous f+ as the joint F0 features to be modelled
and assumes statistical dependency between them. For the
observation o = [l f+], the output distribution at state s can
be written as

bs(o) = p(l, f+ | s) = P (l | s)p(f+ | l, s) (2)

2A DBN is a graph that shows the statistical dependencies of random
variables. In a DBN, a circle represents a continuous variable, a square
represents a discrete variable, unshaded variables are hidden, and shaded
variables are observed. The lack of an arrow from A to B indicates that
B is conditionally independent of A. Note that for convenience the notation
of continuous random variables is also used here for the discontinuous f+.
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where P (l | s) is the voicing probability at state s and p(f+ |
l, s) is the conditional distribution of the discontinuous F0
observation 3. In the MSDHMM approach, it is defined as

p(f+ = f | l, s) =
{
N (f ;µs, σs) l = V
0 l = U

(3)

P (f+ = NULL | l, s) =
{

0 l = V
1 l = U

(4)

where N (·) is a Gaussian density, f ∈ (−∞,+∞) denotes the
real F0 value, and l ∈ {U, V} is the voicing label. According
to the assumption of discontinuous F0, the unvoiced label U
and real F0 value can not be observed at the same time, and
neither can the voiced label V and the NULL symbol. Therefore,
the probabilities of those domains are defined as 0. This
can be interpreted as conditionally constraining the non-zero
probability to be within two subspaces of f+: the continuous
space spanned by f and the discrete space spanned by NULL.
Since the discrete space is actually spanned by a constant, the
probability in that space is defined to be 1. This interpretation
leads to the name multiple-space distribution (MSD) [9]. It is
worth noting that, although the state output distribution of the
MSDHMM is normally written and interpreted in a GMM-
like form [9], from Eq. (2), it is clear that it is not a mixture
model.

The use of MSD provides a mechanism for calculating
the likelihood of observations within the discontinuous F0
domain. However, the problems inherent in the discontinuity
assumption remain. In particular, the domains of the dynamic
F0 features (normally the 1st and 2nd order derivatives of
the static F0 observations, referred to as delta and delta-
delta features, respectively) are also discontinuous. Hence,
for frames at the boundaries between voiced and unvoiced
regions, they can not be directly calculated and are therefore
defined as NULL in the most widely used implementation of
MSDHMM, i.e., these frames are regarded as unvoiced as far
as the dynamic features are concerned [11]. This means that
near a boundary, the static F0 feature can be a real value
whilst the delta and delta-delta features are NULL. To avoid the
difficulties that would otherwise arise, MSDHMM therefore
models the dynamic and static features as separate streams
[10] where each stream takes the form of Eq. (2) 4. Hence,
the state output distribution of the full F0 observation is a
product of the output distributions of the static and dynamic
streams [11].

During the synthesis stage, a sequence of context-dependent
HMMs are concatenated corresponding to the phone string
representing the required utterance. To generate the final
sequence of F0 features, each state of each HMM is first

3The feasibility of defining a distribution of a random variable which is
partly continuous and partly discrete can be demonstrated using the axioms
of probability based on set theory, as can the applicability of Bayes’ theorem
[16]. In general, in this paper, P (·) is used to denote probability mass and
p(·) is used to denote probability density.

4A method of F0 modelling using a single stream for both static and
dynamic features with the discontinuous F0 assumption has been reported
in [17]. The method calculates dynamic features at the unvoiced/voiced
boundaries from the nearest voiced F0 observations across the unvoiced
segment in order to maintain the continuity of F0 contours across voiced
segments separated by unvoiced ones. However, no comparison to the multiple
stream method with a similar number of parameters was reported.

classified as a voiced or unvoiced state depending on whether
the voicing label probability P (V | s) is greater than a prede-
termined threshold (normally 0.5). Since different F0 streams
may have different voicing label probabilities, the voicing
classification in the MSDHMM relies somewhat arbitrarily on
the voicing probability P (V | s) of the static F0 stream [10].

For voiced regions, a continuous F0 trajectory is gener-
ated from the HMM parameters using a speech parameter
generation algorithm [18], [4]. This trajectory is then used
to control the periodic excitation parameters in a final post-
filtering synthesis process [5] 5. For unvoiced regions, no F0
values are needed and instead white noise is used as the
excitation source.

B. Limitations of the MSDHMM

The MSDHMM can provide good quality HMM-based
speech synthesis. However, as noted earlier, the discontinuity
assumption may lead to several limitations. This section will
discuss them in the context of the most widely accepted
implementation of MSDHMM.

Firstly, according to the definition of the multi-space proba-
bility distribution in Eq. (3) and Eq. (4), within any subspace,
probability mass is not shared between voiced and unvoiced
parts. It is always allocated to either the voiced Gaussian
density or the unvoiced discrete distribution. Consequently,
during the forward-backward algorithm used for expectation-
maximization (EM)-based estimation of the HMM parameters,
the state posterior occupancy will exclusively contribute to
only one of the two distributions depending on the voicing
condition. This hard assignment prevents voiced observations
near V/U boundaries from being used in the estimation of
the unvoiced distribution and vice versa. This affects the
estimation accuracy near V/U boundaries and it makes the
system sensitive to F0 extraction errors.

Secondly, in the MSDHMM each F0 stream has its own
independent voicing probability and since only one can be
used to make the V/U decision, the model is frequently incon-
sistent at V/U boundaries. Figure 2 shows a typical distribution
of the unvoiced label probability pairs for static and delta
F0 streams respectively in an MSDHMM.6 The inconsistency
of the unvoiced probabilities can be clearly observed from
figure 2. Note that the unvoiced label probability of the delta
stream is always greater than or equal to that of the static
stream. In fact, 7.4% of the frames classified as voiced by
the static stream would be classified as unvoiced by the delta
stream. This bias arises because when using the conventional
dynamic F0 calculation, the unvoiced regions for the delta
and delta-delta streams are longer than those for the static
stream [11].

Thirdly, the redundant voicing parameters associated with
the delta and delta-delta streams also increases the number of
free parameters. Thus, when the minimum description length
(MDL) criterion [19] or any similar complexity metric is
used to control the state clustering process, the additional

5Aperiodic component features may also be generated in this stage where
there is mixed excitation [3].

6The MSDHMM model was trained on the CMU ARCTIC slt data.
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Fig. 2. Distribution of unvoiced label probability pairs for static and delta
F0 streams.

free parameters will result in fewer clustered states [20] and
this could affect the accuracy of the context-dependent F0
modelling. More importantly, the redundant voicing probabil-
ity parameters will weaken the correlation between static and
dynamic F0 features. This will reduce the accuracy of the F0
trajectories generated in synthesised speech.

III. CONTINUOUS F0 MODELLING

The previous section has discussed the limitations of the
MSDHMM which arise from directly modelling F0 as a
discontinuous function. In this section, an alternative con-
tinuous F0 modelling approach is proposed which avoids
these problems. In this model, continuous F0 observations are
assumed to exist in both voiced and unvoiced speech regions
and hence both F0 and the voicing labels can be modelled by
regular HMMs. This will be referred to as the continuous F0
HMM (CF-HMM) approach.
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Fig. 3. Relationship between discontinuous F0 modelling (a) and continuous
F0 modelling with implicitly determined voicing condition (b) and explicitly
determined voicing condition (c).

Figure 3 shows the relationship between discontinuous and
continuous F0 modelling where figure 3(a) represents the
discontinuous case. As can be seen, there are two variants
depending on whether the voicing condition is determined
implicitly or explicitly. In the implicit case, figure 3(b), the
voicing labels are hidden and the voicing decision is effectively
determined by the statistical difference between voiced and
unvoiced F0 observations [15]. In contrast, explicit voicing

modelling, figure 3(c), assumes that voicing labels are ob-
servable and hence they can be modelled independently. This
can be considered as decomposing discontinuous F0 into two
independent factors with different domains.
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Fig. 4. Dynamic Bayesian network comparison between implicit and explicit
voicing condition modelling.

The dynamic Bayesian networks of the two methods are
compared in figure 4, which shows the different forms of
state output distributions. The sections below discuss these
two approaches in more detail.

A. Determining F0 in Unvoiced Regions

If F0 is considered to exist in unvoiced regions then there
must in practice be some method of determining it. One
approach is to make use of the pitch tracker used in F0
observation extraction, such as STRAIGHT [2]. In many
pitch trackers, multiple F0 candidates are normally generated
for each speech frame regardless of whether it is voiced or
unvoiced. A post-processing step is then used to generate
voicing labels. For voiced regions, the 1-best F0 candidates are
reliable. They normally have strong temporal correlation with
their neighbours and form a smooth trajectory. In contrast,
for many pitch trackers, in unvoiced regions, the 1-best F0
candidates do not have strong temporal correlation and tend to
be random. The 1-best F0 candidates of unvoiced regions can
therefore be used as F0 observations. This will be referred to as
1-best selection. Note that unvoiced F0 observations near the
boundaries of voiced regions may have temporal correlation
which is useful when calculating dynamic features.

Other methods of determining F0 in unvoiced regions may
also be used, such as sampling from a pre-defined distribution
with large variance [12], using SPLINE interpolation [21] or
choosing the F0 candidate which is closest to the interpolated
F0 trajectory [15].

In practice, synthesis quality is not greatly affected by the
method of determining F0 and in this paper, unless otherwise
stated, 1-best selection is used.

B. Implicit voicing condition modelling

In implicit voicing condition modelling, the voicing label
information is only used during the construction of F0 ob-
servations. If a frame is voiced then the extracted F0 value
is used as the observation, otherwise some other method of
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computing F0 is used to derive the observation as discussed
in the previous section 7.

As voicing labels are assumed to be hidden, a two-
component GMM must be used to model the continuous F0
observation f , with one component corresponding to voiced
F0 and the other corresponding to unvoiced F0. Due to the un-
correlated nature of unvoiced F0 observations, the distribution
of unvoiced F0 is assumed to be independent of the HMM
states. The output distribution of an observation at state s can
then be written as

bs(o) = p(f | s) =
∑

l∈{U,V}

P (l | s)p(f | l, s)

= P (U | s)N (f ;µU, σU) + P (V | s)N (f ;µs, σs) (5)

where the observation is just the continuous F0 value o = f ,
P (U | s) and P (V | s) are the state-dependent unvoiced or
voiced component weights respectively, P (U | s) + P (V |
s) = 1. µU and σU are parameters of the globally tied
distribution (GTD) for unvoiced speech, and µs and σs are
state-dependent Gaussian parameters for voiced speech. Since
the F0 observation is continuous, dynamic features can be
easily calculated without considering boundary effects. Conse-
quently, static, delta and delta-delta F0 features are modelled
in a single stream and Eq. (2) can be directly used for the
complete observation o consisting of both static and dynamic
F0 features.

During HMM training, the initial parameters of the globally
tied unvoiced Gaussian component can be either pre-defined
or estimated on all unvoiced F0 observations. The subse-
quent training process is similar to standard HMM training.
With global tying and random unvoiced F0 observations, the
estimated parameters of the unvoiced Gaussian component
will have very broad variance 8 and be distinctive from the
voiced Gaussian components which model specific modes
of the F0 trajectory with much tighter variances. The state-
dependent weights of the two components will reflect the
voicing condition of each state. During the synthesis stage,
similar to MSDHMM, the weight of the voiced component is
compared to a predefined threshold to determine the voicing
condition. Then the parameters of the voiced Gaussians are
used to generate an F0 trajectory for voiced regions with the
same parameter generation algorithm as used in MSDHMM.
For unvoiced states, no F0 values are generated and instead
white noise is used for excitation of the synthesis filter.

With the continuous F0 assumption, the limitations of
MSDHMM in section II-B are effectively addressed. Since
there is only one single F0 stream, there are no redundant
voicing probability parameters. When using the MDL criterion
in state clustering, the removal of redundancy will lead to
more clustered states which may model richer F0 variations.
More importantly, compared to MSDHMM, the use of a
single stream introduces a stronger constraint on the temporal
correlation of the continuous F0 observations and this will
lead to the generation of more accurate F0 trajectories. It is

7As implicit voicing condition modelling requires distinct statistical prop-
erties between voiced and unvoiced distributions, the interpolation approach
in section III-A is not appropriate here.

8Note that this property depends on the implementation of F0 extraction.

also worth noting that the use of GTD not only contributes to
voicing classification, it has an additional advantage. During
HMM training, due to the use of multiple (two) Gaussian
components, F0 observations within voiced regions are no
longer exclusively assigned to voiced Gaussians. F0 extraction
errors may be subsumed by the “background” GTD. This
will lead to more robust estimation of the voiced Gaussian
parameters than MSDHMM.

C. Explicit voicing condition modelling

Although the CF-HMM with implicit voicing condition
modelling can effectively capture F0 trajectories within voiced
regions [15], the voicing classification can be erratic since the
sequence constraints implied by the model are rather weak.
To address this problem, explicit voicing condition modelling
may be used. Here, as in the MSDHMM, the voicing label is
also assumed to be observable. These two different types of
features are then modelled in independent streams. The state
output distribution at state s is defined as

bs(o) = p(l, f | s) = p(f | s)γfP (l | s)γl (6)

where the observation o = [f l], p(f | s) and P (l | s) are the
distributions for the continuous F0 and voicing label streams
respectively, and γf and γl are stream weights. In this paper,
γf is set to be 1 and γl is set to be a very small positive value
ε 9, which means the voicing label stream does not affect the
likelihood calculation. In this paper, the voicing label stream
uses the same decision tree as the F0 stream. Hence, implicit
and explicit CF-HMM will have the same number of clustered
states.

Since it is a continuous real number, f is augmented by
dynamic features, as in the implicit voicing case. No dynamic
features are required for the voicing label l. Using Eq. (6),
standard maximum likelihood HMM training can be used to
estimate parameters of p(f | s) and P (l | s). During the
synthesis stage, each state s is classified as voiced if P (V | s)
is greater than a predefined threshold and unvoiced otherwise.
The F0 trajectory is then generated using the same approach
as in section III-B.

Since the voicing condition is modelled by an indepen-
dent data stream, there is no requirement for the statistical
properties of the voiced and unvoiced regions to be distinct.
Hence for example, as suggested in section III-A, SPLINE
interpolation could be used in unvoiced regions in the hope that
its tighter variance might lead to better trajectory modelling
in V/U boundary regions [21].

In Eq. (6), the continuous F0 density p(f | s) can have any
form, including the single Gaussian in the widely used form
of MSDHMM. However, even though voicing classification is
now explicit, it is still better to use the GTD model defined
by Eq. (5) since the globally tied distribution may absorb F0
estimation errors and lead to more robust modelling.

9This means, in HMM training, the voicing labels do not contribute to
the forward-backward state alignment stage but their model parameters are
updated once the state alignment has been determined.
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IV. EXPERIMENTS

The continuous F0 modelling techniques described above
have been evaluated on two CMU ARCTIC speech synthesis
data sets [22]. A U.S. female English speaker, slt, and
a Canadian male speaker, jmk, were used. Each data set
contains recordings of the same 1132 phonetically balanced
sentences totalling about 0.95 hours of speech per speaker. To
obtain objective performance measures, 1000 sentences from
each data set were randomly selected as the training set for
all experiments, and the remainder were used to form a test
set.

All systems were built using a modified version of the
HTS HMM speech synthesis toolkit version 2.0.1 [23]. Mixed
excitation using STRAIGHT was employed in which the
conventional single pulse train excitation for voiced frames is
replaced by a weighted sum of white noise and a pulse train
with phase manipulation for different frequency bands. The
weights are determined based on aperiodic component features
of each frequency-band [3]. This mixed excitation model has
been shown to give significant improvements in the quality of
the synthesized speech [24].

The speech features used were 24 Mel-Cepstral spectral
coefficients, the logarithm of F0, and aperiodic components
in five frequency bands (0 to 1, 1 to 2, 2 to 4, 4 to 6 and 6
to 8 KHz). All features were extracted using the STRAIGHT
programme [2]. Spectral, F0 and aperiodic component features
were modelled in separate streams during context-dependent
HMM training. MDL-based state clustering [19] was per-
formed for each stream to group the parameters of the context-
dependent HMMs at state level. For MSDHMM, as indicated
in section II-A, separate streams have to be used to model
each of the static, delta and delta-delta F0 features [11].
In contrast, all CF-HMM systems used a single stream for
static and dynamic features of the continuous F0 observations.
The CF-HMM with explicit voicing condition modelling also
had an extra data stream for voicing labels. During HMM
training for all systems, the aperiodic components were not
used for forward-backward state alignment and were only
updated given the alignment based on other features. This is
similar to the treatment of the voicing label in section III-C.

The duration of each HMM state is modelled by a single
Gaussian distribution. Once the spectral, F0 and aperiodic
component parameters had been estimated, a new set of state
alignments were computed and each state-dependent Gaussian
was estimated from the state alignment statistics [25], [26]. A
separate state clustering process was then performed for the
duration model parameters.

During the synthesis stage, global variance (GV) was used
in the speech parameter generation algorithm to reduce the
well-known over-smoothing problem of HMM based speech
synthesis [27].

As noted earlier, state clustering was controlled using the
minimum description length criterion (MDL) [19] in all of
the systems evaluated. However, due to the redundant voicing
probability parameters, an MSDHMM system trained with the
same MDL factor will have significantly fewer clustered F0
states, and consequently number of model parameters, than

HMM Female Male
λ # F0 param. λ # F0 param.

MSD 1.0 8712 1.0 15588
0.6 16821 0.72 24084

CF 1.0 16632 1.0 24115

TABLE I
NUMBER OF FREE F0 PARAMETERS FOR MSDHMM AND CF-HMM.

a comparable CF-HMM system. This is evident in table I
where the number of model parameters is shown when the
MDL weighting factor λ 10 is unity and when it is tuned to
give a similar total number of states for both systems. To
ensure a fair comparison between the MSDHMM and CF-
HMM systems, these tuned MDL factors were used for all
the MSDHMM evaluation systems to ensure that the resulting
number of clustered F0 states were similar in all cases.

A. Objective comparison

To quantitatively compare discontinuous and continuous
F0 modelling, the root mean square error (RMSE) of F0
observations and the voicing classification error (VCE) were
calculated for both the MSDHMM and CF-HMM systems.
To reduce the effect of the duration model when comparing
the generated F0 trajectories, state level durations were first
obtained by forced-aligning the known natural speech from
the test set. Then, given the natural speech durations, voicing
classification was performed for each state, followed by F0
value generation within the voiced regions. By this mecha-
nism, natural speech and synthesised speech were aligned and
could be compared frame by frame.

The root mean square error of F0 is defined as

RMSE =

√∑
t∈V (f(t)− fr(t))2

#V
(7)

where fr(t) is the extracted F0 observation of natural speech
at time t, f(t) is the synthesized F0 value at time t, V = {t :
l(t) = lr(t) = V} denotes the time indices when both natural
speech and synthesized speech are voiced, #V is the total
number of voiced frames in the set. The voicing classification
error is defined as the rate of mismatched voicing labels

VCE = 100

∑
t=1,T

(
1− δ

(
l(t), lr(t)

))
T

(8)

where δ(l, lr) is 1 if l = lr and 0 otherwise, and T is the total
number of frames.

Table II compares the RMSE and VCE objective measures
obtained using a CF-HMM system with GTD and explicit
voicing condition modelling and an MSDHMM system. It
can be seen that CF-HMM effectively reduces the average
F0 synthesis errors (RMSE) in both training and test sets
compared to MSDHMM. This demonstrates the effectiveness
of using continuous F0 observations. On the other hand, the

10λ is the factor controlling the balance between likelihood increase and
model complexity in MDL [19]. The smaller λ is, the less penalty is given
to model complexity (number of free parameters), which will result in more
clustered states.
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Data Set HMM Female Male
RMSE VCE (%) RMSE VCE (%)

train MSD 16.39 4.71 12.32 5.16
CF 11.33 7.01 9.18 8.09

test MSD 16.65 5.85 13.37 7.17
CF 12.58 7.29 11.90 8.43

TABLE II
OBJECTIVE COMPARISON OF F0 MODELLING IN THE MSDHMM SYSTEM

AND A CF-HMM SYSTEM WITH GTD AND EXPLICIT VOICING CONDITION

MODELLING.

VCEs of CF-HMM are always worse than MSDHMM. This
is expected since MSDHMM not only assumes observable
voicing labels, but also assumes dependency between F0
observations and voicing labels, as shown in figure 1(b).
Hence, voicing condition modelling in MSDHMM is stronger
than CF-HMM, where there is no dependency between F0
observations and voicing labels as shown in figure 4(b).
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Fig. 5. Example F0 trajectories generated by the MSDHMM and CF-HMM
models compared to natural speech.

Figure 5 shows an example of the F0 trajectories generated
by the two models compared to natural speech. Similar trends
as shown by the objective measures can be observed: the CF-
HMM F0 trajectory is a closer match to the natural speech
whilst the MSDHMM has more accurate voicing classification.
When listening to the speech, it can be perceived that both
the natural speech and CF-HMM synthesised speech have a
distinct rise at the end, whilst the MSDHMM speech was flat.
In contrast, the effect of the voicing classification errors was
not perceptible.

Voicing GTD Female Male
Condition RMSE VCE (%) RMSE VCE (%)
Implicit

√
14.67 18.36 11.12 19.49

Explicit × 13.08 7.40 12.30 7.80√
12.58 7.29 11.90 8.43

TABLE III
EFFECT OF VOICING CONDITION MODELLING AND GTD IN CF-HMM.

Table III compares the effect of voicing condition modelling
and GTD within the CF-HMM framework on the test set. Note
that the default 1-best selection approach was used to generate
unvoiced F0 in this comparison for all systems. As can be
seen, explicit voicing condition modelling yields a significant
improvement in VCE compared to implicit modelling. Com-

paring the two explicit modelling approaches shows that GTD
does reduce the RMSE although at the cost of a slight increase
in VCE in the male speaker case.

B. Subjective listening tests

Whilst objective measures are useful in comparing detailed
system characteristics, the effective performance of a speech
synthesis system can only be properly measured by conducting
subjective listening tests. In this paper, two forms of test were
conducted.

Firstly, a mean opinion score (MOS) test was conducted
to compare the the effectiveness of the F0 modelling between
the MSDHMM and CF-HMM systems. The CF-HMM system
was configured to use GTD and explicit voicing condition
modelling with 1-best F0 selection. Thirty sentences were
selected from the held-out test sets and each listener was
presented with 10 sentences randomly selected from them
of which 5 were male voices and the other 5 were female.
The listener was asked to give a rating from 1 to 5 to each
utterance. The definition of the rating was: 1-bad, 2-poor, 3-
fair, 4-good, 5-excellent. In total, 10 non-native and 13 native
speakers participated in this test. In order to focus the eval-
uation on F0 synthesis, the state durations were obtained by
forced-aligning the natural speech with known phone context
transcriptions. Also, the spectral and aperiodic component
features used were extracted from natural speech. Thus, the
CF-HMM and MSDHMM models were only used to perform
voicing classification of each state and generate F0 trajectories
for the voiced regions. In addition, vocoded speech 11 and
natural speech were also included in the test to determine the
effects of vocoder artifacts on the assessment.
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Fig. 6. Mean opinion score comparison of CF-HMM vs MSDHMM for F0
modelling (spectral, aperiodic component and durational features are identical
across all systems). Also included for comparison are the MOS scores for
natural and vocoded speech. Confidence interval of 95% is shown.

Figure 6 shows the resulting MOS scores. It can be ob-
served that the CF-HMM system outperformed the MSDHMM
system for both male and female speakers. Vocoded speech,
which may be regarded as the best possible speech that could
be synthesised from any statistical model, was better than
speech synthesized using either the CF-HMM or MSDHMM
systems. However, the degradation from natural speech to
vocoded speech was large. Especially in the male speaker

11Vocoded speech is the speech synthesized from the original spectral, F0
and aperiodic component features of natural speech. The only loss during this
process comes from feature extraction and synthesis filter.
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case, this degradation is much larger than the degradation
from vocoded speech to CF-HMM synthesised speech. It can
also be observed that speech quality degradation of the female
speaker is less than that of the male speaker. Pair-wise two-
tail Student’s t-tests were performed to evaluate the statistical
difference between different systems. With a 95% confidence
level (i.e., the corresponding p-value threshold is 0.05), CF-
HMM was significantly better than MSDHMM for the female
speaker (p=0.0007), while the gain for the male speaker was
not statistically significant (p=0.07). This shows that the male
speech used in this experiment is less sensitive to continuous
F0 modelling.

The above MOS test used ideal duration, spectral and
aperiodic component features. To compare the actual perfor-
mance of complete synthesis systems, a pair-wise preference
test was conducted. For the test material 30 sentences from
a tourist information enquiry application were used. These
sentences have quite different text patterns compared to the
CMU ARCTIC text corpus and they therefore provide a useful
test of the generalization ability of the systems. Two wave
files were synthesised for each sentence and each speaker, one
from the CF-HMM system and the other from the MSDHMM
system. Five sentences were then randomly selected to make
up a test set for each listener, leading to 10 wave file pairs
(5 male, 5 female). To reduce the noise introduced by forced
choices, the 10 wave file pairs were duplicated and the order of
the two systems were swapped. The final 20 wave file pairs
were then shuffled and provided to the listeners in random
order. Each listener was asked to select the more natural
utterance from each wave file pair. Altogether 10 non-native
and 10 native speakers participated in the test. The result is
shown in figure 7.

63.5% 36.5%Male

CF-HMM

75.5% 24.5%

0% 25% 50% 75% 100%

Female

CF-HMM

MSDHMM

Fig. 7. Comparison between CF-HMM and MSDHMM on a forced choice
preference test. Confidence interval of 95% is shown.

It can be observed that the CF-HMM system outperformed
the MSDHMM system for both male and female speakers.
Statistical significance tests were also performed assuming a
binomial distribution for each choice. The preference for CF-
HMM was shown to be significant at 95% confidence level
(p-values for both speakers are approximately 0). Similar to
the MOS test, the CF-HMM was also more dominant for the
female speaker than the male speaker.

The above CF-HMM system used the 1-best selection
approach to generate unvoiced F0 observations and employed
explicit voicing condition modelling with GTD. The remaining
experiments examine the choice of implicit vs explicit voicing
condition modelling, the use of GTD and the choice of F0
determination in unvoiced regions. This same text materials
as the above preference test were used for all the below

experiments. There were 20 listeners, 10 native and 10 non-
native participated in these tests.

48.5% 51.5%Male

Explicit

66.5% 33.5%

0% 25% 50% 75% 100%

Female

Explicit

Implicit

Fig. 8. Comparison between implicit and explicit voicing condition mod-
elling. Confidence interval of 95% is shown.

Figure 8 compares the choice of implicit vs explicit voicing
condition modelling. In both cases, the 1-best selection ap-
proach was used to generate unvoiced F0 observations. As can
be seen, explicit modelling is better than implicit modelling
for female speaker, while slightly worse for male speakers.
Statistical significance tests showed that the difference was
significant for the female speaker (p-value is approximately 0)
and not significant at all for the male speaker (p=0.64). This
also reflects the trend in the objective comparison in table III:
explicit modelling yielded gains of both RMSE and VCE for
the female speaker, while for the male speaker, the RMSE gain
is smaller and the VCE performance degraded.

When explicit voicing condition modelling is used, p(f |
s) in Eq. (6) can be modelled by a single Gaussian or a 2
component Gaussian with GTD. Again, in this test, the 1-
best selection approach was used in both CF-HMM systems
to generate unvoiced F0 observations.

52.5% 47.5%Male

GMM with GTD

50.5% 49.5%

0% 25% 50% 75% 100%

Female

GMM with GTD

Single Gaussian

Fig. 9. Comparison between CF-HMM with and without GTD. Confidence
interval of 95% is shown.

Figure 9 illustrates the effect of GTD. For both speakers,
CF-HMM with GTD was better than CF-HMM without GTD.
However, the performance improvements were not significant
for both speakers (female: p=0.42, male: p=0.22). This sug-
gests that GTD may not be the main reason for the per-
formance improvement in CF-HMM, though it does achieve
better results.

In all previous experiments, the 1-best selection approach
was used to generate unvoiced F0 observations. It is a
random generation approach. As indicated in section III-C,
with explicit voicing condition modelling, F0 observations in
unvoiced regions can be determined by interpolation and this
deterministic approach may yield smoother trajectories near
V/U boundaries.

Figure 10, shows a comparison between unvoiced F0 deter-
mined by 1-best selection and SPLINE interpolation. In this
test, GTD was used for both systems and As can be seen, the
results are mixed. The 1-best selection method outperformed
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Fig. 10. Comparison between unvoiced F0 generated by 1-best selection and
SPLINE interpolation. Confidence interval of 95% is shown.

interpolation for the female voice, whilst the opposite was true
for the male voice. Significance tests showed that there was no
significant difference for both speakers (female: p=0.07, male:
p=0.86). This suggests that the synthesis quality achieved from
continuous F0 modelling may not be sensitive to the method
used to determine unvoiced F0 in unvoiced regions. This is
consistent with the conclusion in [15] which reported similar
results using the implicit condition modelling approach.

V. CONCLUSION

This paper has described a new continuous F0 modelling
framework for HMM-based statistical parametric speech syn-
thesis, referred to as CF-HMM. In this framework, unvoiced
F0 is assumed to exist and be observable. F0 in unvoiced
regions can be determined using various approaches, such
as random sampling from the pitch extractor or interpolating
values between voiced regions. The voicing condition can be
modelled either implicitly by exploiting the differing statistical
properties between voiced and unvoiced F0 observations, or
explicitly by an independent voicing label stream. In addition,
a globally tied distribution (GTD) can be used to distinguish
unvoiced F0 distribution from voiced F0 distribution and
absorb F0 estimation errors.

Objective metrics of F0 accuracy have been applied to
an MSDHMM system and various CF-HMM systems. They
show that CF-HMM can effectively reduce F0 synthesis errors
compared to MSDHMM systems. Of the differing CF-HMM
configurations, explicit voicing condition modelling results in
better voicing classification and the use of the GTD technique
consistently reduces F0 synthesis errors.

These objective results were consistent with the subjective
listening tests results. In mean opinion score tests, listen-
ers preferred the CF-HMM system to MSDHMM. Pair-wise
preference tests showed that overall the quality of speech
synthesized by the CF-HMM system is significantly better
than MSDHMM. The preference tests showed that explicit
voicing condition modelling is significantly better than im-
plicit for the female speaker, while there was a different but
insignificant trend for the male speaker. Though the use of
GTD showed consistent gains for both speakers, these gains
were not significant. There was also no statistical difference in
performance between the different approaches to determining
F0 in unvoiced regions. These experiments suggest that the
gain of the CF-HMM over MSDHMM may mainly come from
the inherent continuous F0 assumption.

In summary, the CF-HMM framework addresses many of
the limitations of the currently preferred implementation of

multi-space probability distribution HMM (MSDHMM) and it
has been shown to yield significantly improved performance.
Furthermore, it is a framework which is much more consistent
with HMM-based speech recognition systems and it can
therefore more easily share existing techniques, algorithms and
code.
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