CONTINUOUS GESTURE RECOGNITION USING A SPARSE BAYESIAN CLASSIFIER
Shu-Fai Wong and Roberto Cipolla
Aug 2006
An approach to recognise and segment 9 elementary gestures from a video input is proposed and it can be applied to continuous sign recognition. An isolated gesture is recognised by first converting a portion of video into a motion gradient orientation image and then classifying it into one of the 9 gestures by a sparse Bayesian classifier. The portion of video used is decided by using a sampling technique based on CONDENSATION framework. By doing so, gestures can be segmented from the video in a probabilistic manner. Experiments show that the proposed method can achieve accuracy around 90\% in both isolated and continuous gesture recognition without using special equipment such as glove devices and the system can run in real-time.
If you have difficulty viewing files that end '.gz'
,
which are gzip compressed, then you may be able to find
tools to uncompress them at the gzip
web site.
If you have difficulty viewing files that are in PostScript, (ending
'.ps'
or '.ps.gz'
), then you may be able to
find tools to view them at
the gsview
web site.
We have attempted to provide automatically generated PDF copies of documents for which only PostScript versions have previously been available. These are clearly marked in the database - due to the nature of the automatic conversion process, they are likely to be badly aliased when viewed at default resolution on screen by acroread.