

Department of Engineering  
University of Cambridge > Engineering Department > Machine Intelligence Lab 
CIRCULAR MOTION RECOVERY FROM IMAGE PROFILES
P.R.S.Mendonça, KY.K.Wong and R.Cipolla.
Jan 2000
This paper addresses the problem of motion recovery from image profiles, in the important case of turntable sequences. No correspondences between points or lines are used. Symmetry properties of surfaces of revolution are exploited to obtain, in a robust and simple way, the image of the rotation axis of the sequence and the homography relating epipolar lines. These, together with geometric constraints for images of rotating objects, are used to obtain epipoles and, consequently, the full epipolar geometry of the camera system. This sequential approach (image of rotation axis  homography  epipoles) avoids many of the problems usually found in other algorithms for motion recovery from profiles. In particular, the search for the epipoles, by far the most critical step for the estimation of the epipolar geometry, is carried out as a onedimensional optimization problem, with a smooth unimodal cost function. The initialization of the parameters is trivial in all three stages of the algorithm. After the estimation of the epipolar geometry, the motion is recovered using the fixed intrinsic parameters of the camera, obtained either from a calibration grid or from selfcalibration techniques. Results from real data are presented, demonstrating the efficiency and practicality of the algorithm.
If you have difficulty viewing files that end '.gz'
,
which are gzip compressed, then you may be able to find
tools to uncompress them at the gzip
web site.
If you have difficulty viewing files that are in PostScript, (ending
'.ps'
or '.ps.gz'
), then you may be able to
find tools to view them at
the gsview
web site.
We have attempted to provide automatically generated PDF copies of documents for which only PostScript versions have previously been available. These are clearly marked in the database  due to the nature of the automatic conversion process, they are likely to be badly aliased when viewed at default resolution on screen by acroread.
 Search  CUED  Cambridge University  
©
2005 Cambridge University Engineering Dept Information provided by milabmaintainer 